1
|
Ye T, Liu T, Yi H, Du J, Wang Y, Xiao T, Cui J. In situ arsenic immobilization by natural iron (oxyhydr)oxide precipitates in As-contaminated groundwater irrigation canals. J Environ Sci (China) 2025; 153:143-157. [PMID: 39855787 DOI: 10.1016/j.jes.2024.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 01/27/2025]
Abstract
Arsenic-contaminated groundwater is widely used in agriculture. To meet the increasing demand for safe water in agriculture, an efficient and cost-effective method for As removal from groundwater is urgently needed. We hypothesized that Fe (oxyhydr)oxide (FeOOH) minerals precipitated in situ from indigenous Fe in groundwater may immobilize As, providing a solution for safely using As-contaminated groundwater in irrigation. To confirm this hypothesis and identify the controlling mechanisms, we comprehensively evaluated the transport, speciation changes, and immobilization of As and Fe in agricultural canals irrigated using As-contaminated groundwater. The efficiently removed As and Fe in the canals accumulated in shallow sediment rather than subsurface sediment. Linear combination fitting (LCF) analysis of X-ray absorption near edge spectroscopy (XANES) indicated that As(V) was the dominant As species, followed by As(III), and there was no FeAsO4 precipitate. Sequential extraction revealed higher contents of amorphous FeOOH and associated As in shallower sediment than in the subsurface layer. Stoichiometric molar ratio calculations, SEM‒EDS, FTIR, and fluorescence spectroscopy collectively demonstrated that the microbial reductive dissolution of amorphous FeOOH proceeded via reactive dissolved organic matter (DOM) consumption in subsurface anoxic porewater environment facilitating high labile As, whereas in surface sediment, the in situ-generated amorphous FeOOH was stable and strongly inhibited As release via adsorption. In summary, groundwater Fe2+ can efficiently precipitate in benthic surface sediment as abundant amorphous FeOOH, which immobilizes most of the dissolved As, protecting agricultural soil from contamination. This field research supports the critical roles of the phase and reactivity of in situ-generated FeOOH in As immobilization and provides new insight into the sustainable use of contaminated water.
Collapse
Affiliation(s)
- Tiancai Ye
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tianci Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hulong Yi
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco‒Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yi Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jinli Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Zeeshan M, Khan AH, Salam A, Hu Y, Iqbal A, Hou R, Umar AW, Wu F, Chen X, Zhang Z. Nano-selenium mitigates arsenate toxicity in soybean roots by modulating phenylalanine and salicylic acid pathways. BMC PLANT BIOLOGY 2025; 25:699. [PMID: 40414885 DOI: 10.1186/s12870-025-06726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Soybean (Glycine max L. Merrill), a vital source of edible oil and protein, ranks seventh in global agricultural production, yet its productivity is significantly hindered by potential toxic metal/liods (PTM) stress. Arsenic (As), a highly toxic soil contaminant, poses substantial risks to both plants and humans, even at trace concentrations, particularly in China. RESULTS This research endeavor delves into the combined effect of arsenate (AsV), a common form of As in soil, and nano-selenium (nSe), on the transcriptional regulation of key genes and the modulation of signaling and metabolic cascades in young soybean seedlings. Our findings indicate that nSe mitigates AsV toxicity by modulating hormonal signaling cascades, particularly the phenylalanine and salicylic acid pathways, thereby augmenting antioxidant defenses and mitigating the damaging effects of reactive oxygen species (ROS) on soybean roots. CONCLUSION This study offers valuable insights into the molecular mechanisms underlying metalloid tolerance in soybean, opening avenues for the development of strategies to bolster As resistance in contaminated soils. Nevertheless, further investigation is imperative to elucidate the intricate interplay of hormonal signaling in soybean roots during nSe supplementation under As stress conditions.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Aamir Hamid Khan
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, Łódź, 90-237, Poland.
| | - Abdul Salam
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Yuxin Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Anas Iqbal
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Ruiquan Hou
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai City, 519087, People's Republic of China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiaoyuan Chen
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Zhixiang Zhang
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Kong S, Cai D, Shao Y, Wei X, Yi Z, Root RA, Chorover J. Identification of key factors and mechanism determining arsenic mobilization in paddy soil-porewater-rice system. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135684. [PMID: 39241359 PMCID: PMC11451535 DOI: 10.1016/j.jhazmat.2024.135684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/03/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Arsenic (As) mobilization in paddy fields poses significant health risks, necessitating a thorough understanding of the controlling factors and mechanisms to safeguard human health. We conducted a comprehensive investigation of the soil-porewater-rice system throughout the rice life cycle, focusing on monitoring arsenic distribution and porewater characteristics in typical paddy field plots. Soil pH ranged from 4.79 to 7.98, while porewater pH was weakly alkaline, varying from 7.2 to 7.47. Total arsenic content in paddy soils ranged from 6.8 to 17.2 mg/kg, with arsenic concentrations in porewater during rice growth ranging from 2.97 to 14.85 μg/L. Specifically, arsenite concentrations in porewater ranged from 0.48 to 7.91 μg/L, and arsenate concentrations ranged from 0.73 to 5.83 μg/L. Through principal component analysis (PCA) and analysis of redox factors, we identified that arsenic concentration in porewater is predominantly influenced by the interplay of reduction and desorption processes, contributing 43.5 % collectively. Specifically, the reductive dissolution of iron oxides associated with organic carbon accounted for 23.3 % of arsenic concentration dynamics in porewater. Additionally, arsenic release from the soil followed a sequence starting with nitrate reduction, followed by ferric ion reduction, and subsequently sulfate reduction. Our findings provide valuable insights into the mechanisms governing arsenic mobilization within the paddy soil-porewater-rice system. These insights could inform strategies for irrigation management aimed at mitigating arsenic toxicity and associated health risks.
Collapse
Affiliation(s)
- Shuqiong Kong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, Hubei 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, China.
| | - Dawei Cai
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yixian Shao
- Zhejiang Institute of Geological Survey, Hangzhou, Zhejiang 311200, China
| | - Xiaguo Wei
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, Hubei 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, China
| | - Zhihao Yi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, Hubei 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, China
| | - Robert A Root
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, United States.
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
4
|
Shaheen N, Hasan T, Sultana M, Akhter KT, Khan IN, Irfan NM, Ahmed MK. Carcinogenic and non-carcinogenic health hazards of potentially toxic elements in commonly consumed rice cultivars in Dhaka city, Bangladesh. PLoS One 2024; 19:e0303305. [PMID: 38743648 PMCID: PMC11093395 DOI: 10.1371/journal.pone.0303305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
The study aimed to assess the level of potentially toxic elements (As, Cd, Pb, Zn, Cu, Cr, Mn, and Ni) and associated health implications through commonly consumed rice cultivars of Bangladesh available in Capital city, Dhaka. The range of As, Cd, Pb, Zn, Cu, Cr, Mn, and Ni in rice grains were 0.04-0.35, 0.01-0.15, 0.01-1.18, 10.74-34.35, 1.98-13.42, 0.18-1.43, 2.51-22.08, and 0.21-5.96 mg/kg fresh weight (FW), respectively. The principal component analysis (PCA) identified substantial anthropogenic activities to be responsible for these elements in rice grains. The estimated daily intake (EDI) of the elements was below the maximum tolerable daily intake (MTDI) level. The hazard index (HI) was above the threshold level, stating non-carcinogenic health hazards from consuming these rice cultivars. The mean target cancer risk (TCR) of As and Pb exceeded the USEPA acceptable level (10-6), revealing carcinogenic health risks from the rice grains.
Collapse
Affiliation(s)
- Nazma Shaheen
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Towhid Hasan
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Marjia Sultana
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Kazi Turjaun Akhter
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Ishrat Nourin Khan
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa, Iowa, United States of America
| | - Nafis Md. Irfan
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa, Iowa, United States of America
- Department of Internal Medicine, University of Iowa, Iowa, Iowa, United States of America
| | - Md. Kawser Ahmed
- Department of Oceanography, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
5
|
Ali A, Ullah Z, Ismaeel N, Rashid A, Khalid W, Siddique M, Iqbal J, Khan A, Waqas M, Ghani J. Integrated Approach to Hydrogeochemical Assessment of Groundwater Quality in Major Industrial Zone of Punjab, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34396-34414. [PMID: 38702486 DOI: 10.1007/s11356-024-33402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
Groundwater contamination with arsenic (As) is a significant concern in Pakistan's Punjab Province. This study analyzed 69 groundwater samples from Faisalabad, Gujranwala, Lahore, and Multan to understand hydrogeochemistry, health impacts, contamination sources, and drinking suitability. Results revealed varying as concentrations across districts, with distinctive cation and anion orders. Faisalabad exhibited Na+ > Mg2+ > Ca2+ > K+ > Fe2+ for cations and SO42- > Cl- > HCO3- > NO3- > F- for anions. Gujranwala showed Na+ > Ca2+ > Mg2+ > K+ for cations and HCO3- > SO42- > Cl- > NO3- > F- for anions. In Lahore, demonstrated: Na+ > Ca2+ > Mg2+ > Fe > K+ for cations and HCO3- > SO42- > Cl- > NO3- > F- for anions. Multan indicated K+ > Ca2+ > Mg2+ > Na+ > Fe for cations and HCO3- > SO42- > Cl- > F- > NO3- ) for anions. Hydrochemical facies were identified as CaHCO3 and CaMgCl types. Principal Component Analysis (PCA), highlighted the influence of natural processes and human activities on groundwater pollution. Water Quality Index (WQI) result reveal that most samples met water quality standards. The carcinogenic risk values for children exceeded permissible limits in all districts, emphasizing a significant cancer risk. The study highlights the need for rigorous monitoring to mitigate (As) contamination and protect public health from associated hazards.
Collapse
Affiliation(s)
- Asmat Ali
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China.
| | - Zahid Ullah
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Nayab Ismaeel
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Abdur Rashid
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Warda Khalid
- Environmental Protection Division, Zijin Mining Group Co., Ltd, Zijin Road, Zijin TowerShanghang, 364200, Longyan, Fujian Province, China
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Javed Iqbal
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Anwarzeb Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19120, Pakistan
- Department of Horticultural Science, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Muhammad Waqas
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Junaid Ghani
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
6
|
Wang Y, Xing M, Gao X, Wu M, Liu F, Sun L, Zhang P, Duan M, Fan W, Xu J. Physiological and transcriptomic analyses reveal that phytohormone pathways and glutathione metabolism are involved in the arsenite toxicity response in tomatoes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165676. [PMID: 37481082 DOI: 10.1016/j.scitotenv.2023.165676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
The main forms of inorganic arsenic (As) in soil are arsenate [As(V)] and arsenite [As(III)]. Both forms inhibit plant growth. Here, we investigate the effects of As(III) toxicity on the growth of tomatoes by integrating physiological and transcriptomic analyses. As(III) toxicity induces oxidative damage, inhibits photosynthetic efficiency, and reduces soluble sugar levels. As(III) toxicity leads to reductions in auxin, cytokinin and jasmonic acid contents by 29 %, 39 % and 55 %, respectively, but leads to increases in the ethylene precursor 1-amino-cyclopropane carboxylic acid, abscisic acid and salicylic acid contents in roots, by 116 %, 79 % and 39 %, respectively, thereby altering phytohormone signalling pathways. The total glutathione, reduced glutathione (GSH) and oxidized glutathione (GSSG) contents are reduced by 59 %, 49 % and 94 % in roots; moreover, a high GSH/GSSG ratio is maintained through increased glutathione reductase activity (increased by 214 %) and decreased glutathione peroxidase activity (decreased by 40 %) in the roots of As(III)-treated tomato seedlings. In addition, As(III) toxicity affects the expression of genes related to the endoplasmic reticulum stress response. The altered expression of aquaporins and ABCC transporters changes the level of As(III) accumulation in plants. A set of hub genes involved in modulating As(III) toxicity responses in tomatoes was identified via a weighted gene coexpression network analysis. Taken together, these results elucidate the physiological and molecular regulatory mechanism underlying As(III) toxicity and provide a theoretical basis for selecting and breeding tomato varieties with low As(III) accumulation. Therefore, these findings are expected to be helpful in improving food safety and to developing sustainable agricultural.
Collapse
Affiliation(s)
- Yingzhi Wang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Menglu Xing
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Xinru Gao
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Min Wu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Fei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Liangliang Sun
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ming Duan
- Center of Experimental Education, Shanxi Agricultural University, Taigu 030801, China
| | - Weixin Fan
- Center of Experimental Education, Shanxi Agricultural University, Taigu 030801, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
7
|
Singh R, Ahmed S, Luxmi S, Rai G, Gupta AP, Bhanwaria R, Gandhi SG. An assessment of the physicochemical characteristics and essential oil composition of Mentha longifolia (L.) Huds. exposed to different salt stress conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1165687. [PMID: 37143871 PMCID: PMC10151762 DOI: 10.3389/fpls.2023.1165687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Salt stress adversely influences growth, development, and productivity in plants, resulting in a limitation on agriculture production worldwide. Therefore, this study aimed to investigate the effect of four different salts, i.e., NaCl, KCl, MgSO4, and CaCl2, applied at various concentrations of 0, 12.5, 25, 50, and 100 mM on the physico-chemical properties and essential oil composition of M. longifolia. After 45 days of transplantation, the plants were irrigated at different salinities at 4-day intervals for 60 days. The resulting data revealed a significant reduction in plant height, number of branches, biomass, chlorophyll content, and relative water content with rising concentrations of NaCl, KCl, and CaCl2. However, MgSO4 poses fewer toxic effects than other salts. Proline concentration, electrolyte leakage, and DPPH inhibition (%) increase with increasing salt concentrations. At lower-level salt conditions, we had a higher essential oil yield, and GC-MS analysis reported 36 compounds in which (-)-carvone and D-limonene covered the most area by 22%-50% and 45%-74%, respectively. The expression analyzed by qRT-PCR of synthetic Limonene (LS) and Carvone (ISPD) synthetic genes has synergistic and antagonistic relationships in response to salt treatments. To conclude, it can be said that lower levels of salt enhanced the production of essential oil in M. longifolia, which may provide future benefits commercially and medicinally. In addition to this, salt stress also resulted in the emergence of novel compounds in essential oils, for which future strategies are needed to identify the importance of these compounds in M. longifolia.
Collapse
Affiliation(s)
- Ruby Singh
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sajad Ahmed
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Savita Luxmi
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Garima Rai
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Ajai Prakash Gupta
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Rajendra Bhanwaria
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- *Correspondence: Sumit G. Gandhi, ; ; Rajendra Bhanwaria,
| | - Sumit G. Gandhi
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- *Correspondence: Sumit G. Gandhi, ; ; Rajendra Bhanwaria,
| |
Collapse
|