1
|
Lepcha A, Kumar R, Dindhoria K, Bhargava B, Pati AM, Kumar R. Metagenomic insights into the functional potential of non-sanitary landfill microbiomes in the Indian Himalayan region, highlighting key plastic degrading genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136642. [PMID: 39653637 DOI: 10.1016/j.jhazmat.2024.136642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/03/2024] [Accepted: 11/22/2024] [Indexed: 01/29/2025]
Abstract
Solid waste management in the Indian Himalayan Region (IHR) is a growing challenge, intensified by increasing population and tourism, which strain non-sanitary landfills. This study investigates microbial diversity and functional capabilities within these landfills using a high-throughput shotgun metagenomic approach. Physicochemical analysis revealed that the Manali and Mandi landfill sites were under heavy metal contamination and thermal stress. Taxonomic annotation identified a dominance of bacterial phyla, including Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes, with genera like Pseudomonas and Bacillus prevalent. Squeezemeta analysis generated 9,216,983 open reading frames (ORFs) across the sampling sites, highlighting diverse metabolic potentials for heavy metal resistance and degrading organic, xenobiotics and plastic wastes. Hierarchical clustering and principal component analysis (PCA) identified distinct gene clusters in Manali and Mandi landfill sites, reflecting differences in pollution profiles. Functional redundancy of landfill microbiome was observed with notable xenobiotic and plastic degradation pathways. This is the first comprehensive metagenomic assessment of non-sanitary landfills in the IHR, providing valuable insights into the microbial roles in degrading persistent pollutants, plastic waste, and other contaminants in these stressed environments.
Collapse
Affiliation(s)
- Ayush Lepcha
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raghawendra Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India
| | - Kiran Dindhoria
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavya Bhargava
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India
| | - Aparna Maitra Pati
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura 799022, India.
| |
Collapse
|
2
|
Meng D, Ma J, Zhou W, Zhou P, Wang J, Zeng D. Risk assessment and source analysis of trace elements in soils around county landfills in Tibet. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:788. [PMID: 39105873 DOI: 10.1007/s10661-024-12936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
The ecology of the Qinghai‒Tibet Plateau is fragile, and the ecosystems in the region are difficult to remediate once damaged. Currently, landfilling is the mainstay of domestic waste disposal in China, and numerous, widely distributed county landfills exist. trace elements (TEs) in waste are gradually released with waste degradation and cannot be degraded in nature, affecting environmental quality and human health. To reduce the chance bias that exists in studies of individual landfills, we selected 11 representative county landfills in Tibet, total of 76 soil samples were collected, eight TEs (arsenic (As), mercury (Hg), chromium (Cr), copper (Cu), lead (Pb), cadmium (Cd), nickel (Ni), and zinc (Zn)) were determined, and analysed for the current status of pollution, risk to human health, and sources of TEs to explore the impact of the landfills. The results showed that only a few landfills had individual TEs exceeding the risk screening value of the Soil Environmental Quality Risk Control Standard for Soil Contamination (GB 15618-2018) (pH > 7.5). Most of the soils around the landfills had moderate levels of pollution, but some individual landfills had higher levels, mainly due to Cd and Hg concentrations. Source analysis showed that Hg originated mainly from atmospheric transport; the other TEs came mainly from the weathering of soil parent material and bedrock. The potential risk from TEs to human health was low, and the risk to children was greater than the risk to adults. Among the three exposure routes, oral ingestion resulted in the highest carcinogenic risk and noncarcinogenic risk, with a contribution rate of more than 95%. Among the TEs, Ni had the highest carcinogenic risk, followed by Cr and As, and As had the highest noncarcinogenic risk.
Collapse
Affiliation(s)
- Dean Meng
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Jiamin Ma
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Wenwu Zhou
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Peng Zhou
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Jiaqi Wang
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Dan Zeng
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
3
|
Yin T, Zhang X, Long Y, Jiang J, Zhou S, Chen Z, Hu J, Ma S. Impact of soil physicochemical factors and heavy metals on co-occurrence pattern of bacterial in rural simple garbage dumping site. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116476. [PMID: 38820822 DOI: 10.1016/j.ecoenv.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
Rural waste accumulation leads to heavy metal soil pollution, impacting microbial communities. However, knowledge gaps exist regarding the distribution and occurrence patterns of bacterial communities in multi-metal contaminated soil profiles. In this study, high-throughput 16 S rRNA gene sequencing technology was used to explore the response of soil bacterial communities to various heavy metal pollution in rural simple waste dumps in karst areas of Southwest China. The study selected three habitats in the center, edge, and uncontaminated areas of the waste dump to evaluate the main factors driving the change in bacterial community composition. Pollution indices reveal severe contamination across all elements, except for moderately polluted lead (Pb); contamination severity ranks as follows: Mn > Cd > Zn > Cr > Sb > V > Cu > As > Pb. Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteriota predominate, collectively constituting over 60% of the relative abundance. Analysis of Chao and Shannon indices demonstrated that the waste dump center boasted the greatest bacterial richness and diversity. Correlation data indicated a predominant synergistic interaction among the landfill's bacterial community, with a higher number of positive associations (76.4%) compared to negative ones (26.3%). Network complexity was minimal at the dump's edge. RDA analysis showed that Pb(explained:46%) and Mn(explained:21%) were the key factors causing the difference in bacterial community composition in the edge area of the waste dump, and AK(explained:42.1%) and Cd(explained:35.2%) were the key factors in the center of the waste dump. This study provides important information for understanding the distribution patterns, co-occurrence networks, and environmental response mechanisms of bacterial communities in landfill soils under heavy metal stress, which helps guide the formulation of rural waste treatment and soil remediation strategies.
Collapse
Affiliation(s)
- Tongyun Yin
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiangyu Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Yunchuan Long
- Guizhou Academy of Sciences, Shanxi Road 1, Guiyang 550001, PR China
| | - Juan Jiang
- Guizhou Academy of Sciences, Shanxi Road 1, Guiyang 550001, PR China
| | - Shaoqi Zhou
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, PR China
| | - Zhengquan Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jing Hu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China; Guizhou Jiamu Environmental Protection Technology Co., Ltd, PR China.
| | - Shengming Ma
- Guizhou Jiamu Environmental Protection Technology Co., Ltd, PR China
| |
Collapse
|
4
|
Podlasek A, Vaverková MD, Jakimiuk A, Koda E. A comprehensive investigation of geoenvironmental pollution and health effects from municipal solid waste landfills. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:97. [PMID: 38393507 PMCID: PMC10891210 DOI: 10.1007/s10653-024-01852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/01/2024] [Indexed: 02/25/2024]
Abstract
This study investigates human health risks associated with heavy metals (HMs) occurrence in municipal solid waste (MSW) landfills. For testing of selected MSW landfills steps were involved, including site characterization, soil sampling and chemical testing, statistical analysis, as well as health risk assessment, carcinogenic and non-carcinogenic effects. For the Polish landfill (Radiowo) the average HMs concentrations were found in the following order: Zn (52.74 mg/kg DM) > Pb (28.32 mg/kg DM) > Cu (12.14 mg/kg DM) > Ni (4.50 mg/kg DM) > Cd (3.49 mg/kg DM), while for the Czech landfill (Zdounky): Zn (32.05 mg/kg DM) > Cu (14.73 mg/kg DM) > Ni (4.73 mg/kg DM) > Pb (0.10 mg/kg DM) = Cd (0.10 mg/kg DM). Strong positive correlations between selected HMs demonstrated identical origins. Principal component analysis (PCA) performed for the Radiowo landfill transferred the soil parameters into three principal components (PCs), accounting for 87.12% of the total variance. The results of the PCA analysis for the Zdounky landfill revealed three PCs responsible for 95.16% of the total variance. The exposure pathways of HMs for landfills were in the following order: ingestion > dermal absorption > inhalation. For both landfills, the values of hazard quotient were lower than 1, indicating no potential negative health effects. In terms of the hazard index (HI), for both landfills, no adverse human health effects occur (HI < 1). The incremental lifetime cancer risk (ILCR) values indicated negligible or acceptable carcinogenic risk of HMs (average ILCR in the range from 5.01E-10 to 5.19E-06).
Collapse
Affiliation(s)
- Anna Podlasek
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776, Warsaw, Poland
| | - Magdalena Daria Vaverková
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776, Warsaw, Poland.
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic.
| | - Aleksandra Jakimiuk
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776, Warsaw, Poland
| | - Eugeniusz Koda
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776, Warsaw, Poland
| |
Collapse
|
5
|
Cai S, Zhou S, Wang Q, Cheng J, Zeng B. Assessment of metal pollution and effects of physicochemical factors on soil microbial communities around a landfill. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115968. [PMID: 38218107 DOI: 10.1016/j.ecoenv.2024.115968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
The physicochemical properties, chemical fractions of six metals (Cu, Zn, Pb, Cd, Cr, and Mn), and microbial communities of soil around a typical sanitary landfill were analyzed. The results indicate that soils around the landfill were from neutral to weak alkalinity. The contents of organic matter (OM), total nitrogen (TN), total phosphorous (TP), and activities of catalase, cellulase, and urease were significantly higher in landfill soils than those in background soils. Negative correlations were found between pH and metals. Cr was the dominant metal. Cu, Pb, Cr, and Mn were accumulated in the nearby farmland soils. Cd had the highest percentage of exchangeable fraction (33.7%-51.8%) in landfill and farmland soils, suggesting a high bioavailability to the soil environment affected by the landfill. Pb, Cr, and Mn existed mostly in oxidable fraction, and Cu and Zn were dominant in residual fraction. There was a low risk of soil metals around the landfill based on the RI values, while according to RAC classification, Cd had high to very high environmental risk. The MisSeq sequencing results showed that Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria were the dominant phyla of bacteria, and the most abundant phylum of fungi was Ascomycota. The NMDS analysis revealed that the landfill could influence soil fungal communities more intensely than bacterial communities. TN, cellulase, and bioavailable metals (Pb-Bio and Cr-Bio) were identified to have main influences on microbial communities. Pb-Bio was the most dominant driving factor for bacterial community structures. For fungi, Pb-Bio was significantly negatively related to Olpidiomycota and Cr-Bio had a significantly negative correlation with Ascomycota. It manifests that bioavailable metals play important roles in assessing environmental risks and microbial community structures of soil around landfill.
Collapse
Affiliation(s)
- Shenwen Cai
- College of Resources and Environment, Zunyi Normal University, Zunyi, China.
| | - Shaoqi Zhou
- College of Resources and Environment Engineering, Guizhou University, Guiyang, China
| | - Qinghe Wang
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| | - Junwei Cheng
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| | - Boping Zeng
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| |
Collapse
|
6
|
de Souza VB, Hollas CE, Bortoli M, Manosso FC, de Souza DZ. Heavy metal contamination in soils of a decommissioned landfill southern Brazil: Ecological and health risk assessment. CHEMOSPHERE 2023; 339:139689. [PMID: 37543230 DOI: 10.1016/j.chemosphere.2023.139689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
The incorrect disposal of waste negatively influences the population's quality of life and harms the environment. In Brazil, waste disposal in the open air is still a reality, which generates concerns about the contamination of the areas surrounding these dumpsites. The present work evaluated the possible environmental risks of a deactivated dumpsite in southern Brazil. The soil was characterized by physical and chemical tests, emphasizing the analysis of heavy metals Al, Fe, Cu, Mn, and Zn. Using geostatistical tools, it was possible to determine the distribution of these heavy metals in the influence of the landfill, since the metals Mn, Fe, and Zn showed a significant difference about the reference soil, indicating that they came from leaching from the landfill. The dispersion of the metals along the slope showed a tendency towards mobility since the highest concentrations were at elevations below the landfill. The area was considered contaminated due to the high scores of the evaluated indexes pollution, as the Improved Nemerow Pollution Index, which considers pollutant concentration, toxicity, and environmental impact to provide a measure of contamination, and was equivalent to 6.44, indicating that the area is contaminated. However, it presented low ecological risks, with a potential ecological risk of 18.55. As well as low risks to human health, with hazard index below the limit considered critical to health (HI < 1). Thus, the results of this study showed that the metals are released around the deactivated deposit, which compromises the environmental safety of the site, mainly due to its proximity to bodies of water that supply the region. Thus, the permanent control and monitoring of the areas of deactivated dumpsites are essential to avoid further pollution and should be included in the management plans for deactivating these deposits throughout the country.
Collapse
Affiliation(s)
| | - Camila Ester Hollas
- Federal University of Technology - Paraná, 85602-863, Francisco Beltrão, PR, Brazil
| | - Marcelo Bortoli
- Federal University of Technology - Paraná, 85602-863, Francisco Beltrão, PR, Brazil
| | - Fernando C Manosso
- Federal University of Technology - Paraná, 85602-863, Francisco Beltrão, PR, Brazil
| | - Davi Z de Souza
- Federal University of Technology - Paraná, 85602-863, Francisco Beltrão, PR, Brazil.
| |
Collapse
|
7
|
Bech J. Special issue "Geochemistry, Soil Contamination and Human Health. Part 3.". ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:247-252. [PMID: 36169763 DOI: 10.1007/s10653-022-01371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Jaume Bech
- University of Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Zhou W, Dan Z. Comparison and selection of municipal solid waste treatment technologies in Tibet plateau area. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-022-05255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractThe treatment of municipal solid waste has different impacts on the society, economy and environment of a region. It is extremely important to select a municipal solid waste disposal method suitable for the Tibetan Plateau. In the study, social, technical, economic, environmental and municipal solid waste characteristics are selected as comprehensive analysis indicators, and then combined with analytical hierarchy process and technique for order preference by similarity to an ideal solution methods for comprehensive analysis. The results show that the population size, population growth, population density and other indicators account for a large weight, and have a greater impact on the selection of municipal solid waste treatment methods. Through the final analysis, it is believed that the incineration treatment method is better than the landfill treatment method in the Tibetan plateau area.
Collapse
|