1
|
Bayer VJ, Hümmler A, Brinkmann N, Achten C. Varying extractability of petrogenic and pyrogenic polycyclic aromatic hydrocarbons (PAH) in urban soils: Evaluation of sample preparation and extraction of 71 PAH and alkylated PAH. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125411. [PMID: 39622406 DOI: 10.1016/j.envpol.2024.125411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
PAH extraction methods have been widely studied over the last decades. However, there is still no consistent method for contaminated soils. Here, for the first time, PAH source characteristics in soils were considered for the investigation of different pretreatment methods, extraction techniques and solvents in nine petrogenic to primarily pyrogenic urban soils. Sources were identified by macroscopic identification of source substrates and analysis of 71 PAH and alkylation patterns. The comparison of extraction solvents revealed that a combined sequential extraction using dichloromethane (for petrogenic PAH) and toluene:methanol (6:1) led to the highest extraction efficiencies for all samples and is therefore best suited for PAH analysis of unknown samples. Acetone:n-hexane led to the lowest extraction efficiencies for all samples and is not recommended as extraction solvent. The comparison of extraction techniques showed that Pressurized Solvent Extraction is more efficient than ultrasonic extraction especially for petrogenic PAH, but also for pyrogenic PAH. Grinding increased PAH extractability considerably but mainly for petrogenic PAH from bituminous coal particles. In mixed to primarily pyrogenic samples with a smaller proportion of coal, the enhanced extractability of coal leads to a more petrogenic PAH distribution and consequently a decrease in the source identifying PAH Alkylation Index. It is concluded that PAH contents in unknown (urban) soils, where pyrogenic and petrogenic PAH can be present, cannot generally be compared if different extraction techniques, different extraction solvents and grinding or no grinding are applied. As extraction efficiency increases with more effective methods and solvents for bituminous coals, it is recommended to define a specific extraction technique and solvent mixture for improved comparability in future PAH analyses.
Collapse
Affiliation(s)
- Viviane J Bayer
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstr. 24, 48149, Münster, Germany
| | - Anna Hümmler
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstr. 24, 48149, Münster, Germany
| | - Nils Brinkmann
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstr. 24, 48149, Münster, Germany
| | - Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstr. 24, 48149, Münster, Germany.
| |
Collapse
|
2
|
Wu X, Du W, Yuan Z, Wang S. Application of tree cores to investigate the historical pollution trends of atmospheric polycyclic aromatic compounds: A case study in a typical coal-contaminated region of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176985. [PMID: 39427907 DOI: 10.1016/j.scitotenv.2024.176985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
In this study, 76 polycyclic aromatic compounds (PACs) were detected in air, soil, and tree core samples from Huainan, a typical coal-contaminated region of China. Concentrations of ΣPACs in soil and air samples were 2400 ± 5100 ng/g and 150 ± 63 ng/m3, respectively. Priority PAHs were predominant in both air and soil samples, contributing over 50 % of ΣPACs. Source analysis indicated that PAC contamination in Huainan primarily originated from local coal-related activities. The benzo[a]pyrene (BaP)-toxic equivalent concentrations (TEQBaP) of PACs in the air samples (5.6 ± 5.3 ng/m3) exceeded the threshold of 1 ng/m3. Some PACs, such as benzo[e]pyrene (BeP) and Alk-BaPs, demonstrated significant toxicity and are recommended for consideration as priority pollutants. The historical pollution trends of atmospheric PACs were obtained based on the tree core samples. PAC concentrations in tree core segments showed a strong correlation with atmospheric PM10 levels in Huainan. As air quality has improved in recent years, the PACs concentrations in tree core segments have also decreased. Historical fluctuations of atmospheric PACs were largely attributed to the changes in the gas treatment systems of a nearby coal-fired power plant and adjustments in environmental policies. By integrating trends observed in tree core segments with air concentrations, the historical atmospheric PAC concentrations were extrapolated. The extrapolated results showed similar concentration levels and trends when compared with historical data from other studies in China. Thus, tree cores can not only reflect the historical trends of atmospheric PACs with high temporal precision but also are feasible for extrapolating historical concentrations of airborne PACs.
Collapse
Affiliation(s)
- Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
| | - Wanying Du
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China; Wuhu Dongyuan New Country Developing Co., Ltd., Wuhu, Anhui 241000, PR China; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| |
Collapse
|
3
|
Li S, Xu Z, Wu P, Zhu S, Liang H. Native polycyclic aromatic hydrocarbons (PAHs) in coal and its preparation products-A mixed source of environmental contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124894. [PMID: 39243931 DOI: 10.1016/j.envpol.2024.124894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants and inherent components of coal and coal gangue. The similarities and differences in PAH characteristics between these two source materials are largely unknown. In this study, raw coal, cleaned coal, slime, middlings, and gangue from the Wangjialing Coal Preparation Plant in China were analyzed to determine the concentration and distribution of extractable PAHs. The total concentrations of 41PAHs (∑41PAH), US EPA 16 priority parent PAHs (∑16PAH), and their alkylated derivatives (∑aPAH) ranged from 18.3 to 89.6, 8.70 to 34.5, and 8.40-48.0 mg/kg, respectively, and were ranked as raw coal > cleaned coal > slime > middlings > gangue. The PAH characteristics of raw coal and its preparation products were consistent, with predominant 2-3-ring PAHs and similar PAH isomer ratio distributions. The distribution of conventional PAH isomer ratios for different ranks of coal and coal gangue from different origins was compiled from the literature. The resulting distribution was consistent and overlapped with both petrogenic and pyrogenic sources defined by the ratios. Therefore, coal and coal gangue should be considered one category and classified as a mixed source (mixture of petrogenic and pyrogenic sources). To accurately identify environmental PAH sources, investigations of aPAHs in the environment and PAH characteristics in coal and coal gangue should be expanded.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Beijing, 100083, China
| | - Ziqi Xu
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100092, China
| | - Peng Wu
- Beijing GuodianFutong Science and Technology Development Company Limited, Beijing, 100070, China
| | - Shuquan Zhu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Handong Liang
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Beijing, 100083, China.
| |
Collapse
|
4
|
Alghamdi MA, Hassan SK, Shetaya WH, Al Sharif MY, Nawab J, Khoder MI. Polycyclic aromatic hydrocarbons in indoor mosques dust in Saudi Arabia: Levels, source apportionment, human health and carcinogenic risk assessment for congregators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174331. [PMID: 38945247 DOI: 10.1016/j.scitotenv.2024.174331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Mosques are important places for Muslims where they perform their prayers. The congregators are exposed to hazardous pollutants such as polycyclic aromatic hydrocarbons (PAHs) associated with dust. However, studies on PAHs exposure in religious places are scarce. Air-condition filter (ACF) dust can correspond to air quality to a certain extent, since dust particles derived from indoor and outdoor places stick to it. Therefore, the present study aimed to evaluate the 16 EPA PAHs in ACF dust from mosques to determine their levels, profiles, sources and risks. Average Σ16 PAHs concentrations were 1039, 1527, 2284 and 5208 ng/g in AC filter dust from mosques in residential (RM), suburban (SM), urban (UM) and car repair workshop (CRWM), respectively, and the differences were statistically significant (p < 0.001). Based on the molecular diagnostic PAH ratios, PAHs in mosques dust is emitted from local incomplete fuel combustion, as well as complete fossil fuels combustion sources (pyrogenic), petroleum spills, crude and fuel oil, traffic emissions, and other possible sources of industrial emissions in different functional areas. The incremental lifetime cancer risks (ILCRs) values for children and adults across the different types of mosques follow the order: CRWM > UM > SM > RM. ILCRs values for both children and adults were found in order: dermal contact > ingestion > inhalation. The cancer risk levels via ingestion for children were relatively higher than the adults. The values of cancer risk for children and adults via dermal contact and ingestion (except in RM) were categorized in the 'potentially high risk' category (> 10-4). The mean values of total cancer risks (CR) for children (5.74 × 10-3) and adults (5.07 × 10-3) in mosques also exceeded the accepted threat value (>10-4). Finally, it is recommended that regular and frequent monitoring of PAHs should be carried out in mosques to improve the quality and maintain the health of congregators around the globe.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia.
| | - Salwa K Hassan
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| | - Waleed H Shetaya
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| | - Marwan Y Al Sharif
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Javed Nawab
- Department of Environmental Sciences, Kohat University of Science & Technology, Kohat, Pakistan
| | - Mamdouh I Khoder
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| |
Collapse
|
5
|
Geng Y, Zhang C, He P, Wang Y, Kong L, Li Z, Wei B, Ma Y, Liang H, Ding C, Tie C. Urine LMs quantitative analysis strategy development and LMs CWP biomarkers discovery. Prostaglandins Other Lipid Mediat 2024; 171:106816. [PMID: 38302009 DOI: 10.1016/j.prostaglandins.2024.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Coal workers' pneumoconiosis (CWP) is one of the most common inhalation occupational diseases. It is no effective treatment methods. Early diagnosis of CWP could reduce mortality. Lipid mediators (LMs) as key mediators in the generation and resolution of inflammation, are natural biomarkers for diagnosis inflammatory disease, such as CWP. The UHPLC-MRM technique was used to detect LMs in urine. The metabolic network of LMs in CWP and CT group samples was comprehensively analyzed. Screening for major difference compounds between the two groups. Aimed to contribute to the early diagnosis and treatment of CWP. Urinary levels of 13-OxoODE, 9-OxoODE, and 9,10-EpOME were significantly higher in the CWP group compared with the CT group (P < 0.05). In the model group, the area under the receiver operating characteristic (ROC) for 9-OxoODE,13-OxoODE,9,10-EpOME was 84.4%, 73.3%, and 80.9%, respectively. In the validation group, the area under the ROC was 87.0%, 88.8%, and 68.8% for 9-OxoODE,13-OxoODE,9,10-EpOME, respectively. According to the logistic regression model, the area under the ROC was 80.4% in the model group and 86.7% in the validation group. 13-OxoODE,9-OxoODE,9,10-EpOME could be used as biomarkers for early diagnosis. Significant abnormalities of LOX and CYP450 enzyme pathways were seen in CWP organisms. Changes in the CYP450 enzyme pathway may be associated with PAHs.
Collapse
Affiliation(s)
- Yicong Geng
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Chunmin Zhang
- National Center for Occupational Safety and Health, NHC, 27 Shilong North Road, Beijing 102308, China
| | - Ping He
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Yi Wang
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Lingfei Kong
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Zhengying Li
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Bin Wei
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Yufang Ma
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Handong Liang
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, NHC, 27 Shilong North Road, Beijing 102308, China
| | - Cai Tie
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China.
| |
Collapse
|
6
|
Hümmler A, Bayer VJ, Achten C. Unravelling mixed sources of polycyclic aromatic hydrocarbons (PAH) in urban soils by visual characterization of anthropogenic substrates and coal particles, 71 PAH and alkylated PAH patterns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123029. [PMID: 38030105 DOI: 10.1016/j.envpol.2023.123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The identification of polycyclic aromatic hydrocarbon (PAH) sources in heterogeneous urban soils containing pyrogenic and/or petrogenic anthropogenic substrates is a common task for risk assessment. Here, for the first time, the results of source identification using analysis of 71 PAH, alkylated PAH patterns and PAH Alkylation Index were related to visually identified and quantified anthropogenic substrates in 50 soil samples. Only the combination of chemical methods with visual characterization enabled the deeper understanding of varying alkylated PAH patterns used for source apportionment and their superimposition if multiple sources occur. Pyrogenic substrates show homogenic slope-shape PAH patterns despite large visual variety. Petrogenic substrates (bituminous coals), show prevailingly bell-shape patterns but pyrogenic patterns also occur, probably due to residues from industrial processes and/or sorption of other pyrogenic PAH. Superimposition of both PAH patterns within a sample results in intermediate patterns, which are determined by the abundance of substrates and their individual PAH contents. A discrepancy between the share of petrogenic substrates and petrogenic PAH was observed due to low-medium PAH contents from coals/tailings. This may lead to misinterpretations if only chemical source identification methods are applied. With increasing proportion of petrogenic PAH in the mixture, the intermediate V-shape pattern (later bell-shape) appears in lower molecular weight PAH and moves progressively to higher molecular weight PAH. ∑71 PAH contents vary from 1.77 to 326.5 mg/kg (median 26.5 mg/kg). Non-EPA PAH measured include highly toxic ∑4 dibenzopyrene isomers (0.045-6.23 mg/kg, median 0.79 mg/kg) and 7H-benzo[c]fluorene (0.008-1.57 mg/kg, median 0.12 mg/kg). Most common anthropogenic substrates are bottom ashes, slags, bituminous coals/tailings and coke/coke ash. The PAH Alkylation Index identifies reliably samples dominated by either petrogenic (<0.4) or pyrogenic (>0.9) PAH, independently of the PAH content. Mixed or primarily pyrogenic PAH sources (0.4-0.9) need further investigations, like the presented combination of methods, which enables a reliable source apportionment.
Collapse
Affiliation(s)
- Anna Hümmler
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstr. 24, 48149, Münster, Germany.
| | - Viviane J Bayer
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstr. 24, 48149, Münster, Germany
| | - Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstr. 24, 48149, Münster, Germany.
| |
Collapse
|
7
|
Qian Y, Yuan K, Wang J, Xu Z, Liang H, Tie C. Parent and alkylated polycyclic aromatic hydrocarbon emissions from coal seam fire at Wuda, Inner Mongolia, China: characteristics, spatial distribution, sources, and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7323-7337. [PMID: 36934209 DOI: 10.1007/s10653-023-01476-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
The Wuda coalfield in Inner Mongolia is a vital coal base in China, and it is the hardest-hit area for coal fires (spontaneous combustion of coal seams and coal gangue). Using gas chromatography-mass spectrometry, this work tested the concentration and analyzed the characteristics, distribution, sources, and health risks of polycyclic aromatic compounds (PACs) in the surface soil of the Wuda District, including the coal mine, coal fire, agricultural, and background areas. The soil of coal mine and coal fire area were heavily polluted with PACs, with mean concentrations of 9107 and 3163 µg kg-1, respectively, considerably higher than those in the agricultural (1232 µg kg-1) and background areas (710 µg kg-1). Alkyl polycyclic aromatic hydrocarbons (APAHs) were the dominant pollutants among these PACs, accounting for 60-81%. Alkyl naphthalenes and alkyl phenanthrenes are the primary pollutants in APAHs, accounting for 80-90% of the total amounts. Additionally, using the positive matrix factorization method, it can be concluded that the primary PAC sources are petrogenic sources, coal and biomass combustion, coal fires, and vehicle emissions. Finally, according to the cancer risk values of 16 PAHs, only the coal mine area showed a potential cancer risk. However, this result lacks a risk assessment of APAHs and underestimates the actual risk. The results of this study improved the understanding of PAC pollution in coal fire and surrounding areas and provided a reference for environmental and health risk investigations.
Collapse
Affiliation(s)
- Yahui Qian
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, 100083, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Keyue Yuan
- College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Jing Wang
- College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Zhenpeng Xu
- College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Handong Liang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, 100083, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Cai Tie
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, 100083, China.
- College of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China.
| |
Collapse
|
8
|
Qian Y, Xu Z, Hong X, Luo Z, Gao X, Tie C, Liang H. Alkylated Polycyclic Aromatic Hydrocarbons Are the Largest Contributor to Polycyclic Aromatic Compound Concentrations in the Topsoil of Huaibei Coalfield, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12733. [PMID: 36232034 PMCID: PMC9566202 DOI: 10.3390/ijerph191912733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Alkyl polycyclic aromatic hydrocarbons (APAHs) are more toxic and persistent than their parent compounds. Here, the concentrations, composition profiles, and spatial distribution of polycyclic aromatic compounds (PACs) in 127 topsoil samples from Huaibei coalfield were analyzed. The PAC concentrations in different functional areas were significantly different: mining area > industrial area > residential area > agricultural area. APAHs were the major contributors to PACs, accounting for 71-83% of total PACs. Alkylnaphthalenes and alkylphenanthrenes were the primary APAH components, accounting for 83-87% of APAHs. Principal component analysis showed that petrogenic source, coal and biomass combustion, and vehicle emissions were the primary sources of PACs. By comparing the fingerprint information of soil, coal, and coal gangue, it was hypothesized that the petrogenic source of PAC pollution in typical mining areas and surrounding areas are coal particle scattering and coal gangue weathering. Some coal mining and industrial areas potentially pose risks to children, whereas others do not. There are limited evaluation criteria for alkyl PAHs; hence, the estimated risk is likely lower than the actual risk. In addition to the conventional 16 PAHs, it is critical to consider a broader range of PACs, especially APAHs.
Collapse
Affiliation(s)
- Yahui Qian
- State Key Laboratory of Coal Resources and Safe Mining, Beijing 100083, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Zhenpeng Xu
- State Key Laboratory of Coal Resources and Safe Mining, Beijing 100083, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Xiuping Hong
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Zhonggeng Luo
- State Key Laboratory of Coal Resources and Safe Mining, Beijing 100083, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Xiulong Gao
- State Key Laboratory of Coal Resources and Safe Mining, Beijing 100083, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Cai Tie
- College of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Handong Liang
- State Key Laboratory of Coal Resources and Safe Mining, Beijing 100083, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
| |
Collapse
|