1
|
Xiuping H, Zheng D, Kang Y, Handong L, Chuan D. Fluoride and acid enrichment in coal fire sponges in the Wuda coalfield, Inner Mongolia, Northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123438. [PMID: 38272161 DOI: 10.1016/j.envpol.2024.123438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Coal fire sponges (CFSs) are a type of sponge-like contaminated soil bulge common in coal fire areas. However, the impacts of CFSs on the local environment are not yet understood. Thus, this study investigated soil samples from CFSs in the Wuda coalfield, Inner Mongolia, China, focusing on the acidity, sulfate, and fluorine content. The results showed that the CFSs were highly acidic, with an average pH of 0.76, and contained high levels of SO42- (257.29 × 103 μg/g), total fluorine (TF, 2011.6 μg/g), and water-soluble fluorine (WF, 118.94 μg/g), significantly exceeding those in the regional background soil and indicating that CFSs are a point source of heavy pollution. Soils in the 8000 m2 reclamation zone showed elevated acidity and high SO42- (129.6 × 103 μg/g), TF (1237.8 μg/g), and WF (43.05 μg/g) levels, which was likely the result of the weathering and dissemination of CFS. The CFS samples were rich in hydrogen fluoride, releasing 202.05 ppb of it when heated to 40 °C. Correlation analysis indicated that the acid sulfate soils in CFSs are likely caused by HSO4-/SO42-. Time-of-flight secondary ion mass spectrometry detected four characteristic ions (F-, H3O+, H2SO4+, and HSO4-) in all micro-domains of each sample, indicating that ionic fluorine compounds and sulfuric acid hydrate were found in the CFS samples. Sulfate minerals detected in CFSs included CaSO4, Fe2(SO4)3, CdSO4, NH4HSO4, and Na2SO4. Thus, the results identified CFSs as a transmission channel for contamination, with erosional surface soils as the carrier, for the first time. CFSs pose a serious threat of contamination, albeit over limited areas.
Collapse
Affiliation(s)
- Hong Xiuping
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, 235000, PR China
| | - Du Zheng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, 235000, PR China
| | - Yang Kang
- School of Chemical & Environmental Engineering, China University of Mining and Technology, Beijing, 100083, PR China.
| | - Liang Handong
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, 100083, PR China
| | - Du Chuan
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, 100083, PR China
| |
Collapse
|
2
|
Sawarkar R, Shakeel A, Kumar T, Ansari SA, Agashe A, Singh L. Evaluation of plant species for air pollution tolerance and phytoremediation potential in proximity to a coal thermal power station: implications for smart green cities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7303-7322. [PMID: 37368173 DOI: 10.1007/s10653-023-01667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
In metropolitan areas, air pollution poses a significant threat, and it is crucial to carefully select plant species that can tolerate such conditions. This requires a scientific approach based on systematic evaluation before recommending them to executive bodies. This study aimed to determine the air pollution tolerance index (APTI), dust retention capacity, and phytoremediation ability of 10 plant species growing in and around a lignite-based coal thermal power station. The results showed that Ficus benghalensis L. had the highest APTI, followed by Mimusops elengi L., Ficus religiosa L., Azadirachta indica A. Juss., and Annona reticulata L. F. benghalensis also showed the highest pH of leaf extract, relative water content, total chlorophyll, and ascorbic acid content, as well as the highest dust capturing capacity. Among the ten plant species, F. benghalensis, M. elengi, F. religiosa, A. indica and F. racemosa were identified as a tolerant group that can be used for particulate matter suppression and heavy metal stabilization in and around thermal power plants. These findings can inform the selection of plants for effective green infrastructure in smart green cities, promoting the health and well-being of urban populations. This research is relevant to urban planners, policymakers, and environmentalists interested in sustainable urban development and air pollution mitigation.
Collapse
Affiliation(s)
- Riya Sawarkar
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Adnan Shakeel
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Tinku Kumar
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Suhel Aneesh Ansari
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Ashish Agashe
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Miranda-Guevara A, Muñoz-Acevedo A, Fiorillo-Moreno O, Acosta-Hoyos A, Pacheco-Londoño L, Quintana-Sosa M, De Moya Y, Dias J, de Souza GS, Martinez-Lopez W, Garcia ALH, da Silva J, Borges MS, Henriques JAP, León-Mejía G. The dangerous link between coal dust exposure and DNA damage: unraveling the role of some of the chemical agents and oxidative stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7081-7097. [PMID: 37542205 PMCID: PMC10517898 DOI: 10.1007/s10653-023-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/15/2023] [Indexed: 08/06/2023]
Abstract
Exposure to coal mining dust poses a substantial health hazard to individuals due to the complex mixture of components released during the extraction process. This study aimed to assess the oxidative potential of residual coal mining dust on human lymphocyte DNA and telomeres and to perform a chemical characterization of coal dust and urine samples. The study included 150 individuals exposed to coal dust for over ten years, along with 120 control individuals. The results revealed significantly higher levels of DNA damage in the exposed group, as indicated by the standard comet assay, and oxidative damage, as determined by the FPG-modified comet assay. Moreover, the exposed individuals exhibited significantly shorter telomeres compared to the control group, and a significant correlation was found between telomere length and oxidative DNA damage. Using the PIXE method on urine samples, significantly higher concentrations of sodium (Na), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K), iron (Fe), zinc (Zn), and bromine (Br) were observed in the exposed group compared to the control group. Furthermore, men showed shorter telomeres, greater DNA damage, and higher concentrations of nickel (Ni), calcium (Ca), and chromium (Cr) compared to exposed women. Additionally, the study characterized the particles released into the environment through GC-MS analysis, identifying several compounds, including polycyclic aromatic hydrocarbons (PAHs) such as fluoranthene, naphthalene, anthracene, 7H-benzo[c]fluorene, phenanthrene, pyrene, benz[a]anthracene, chrysene, and some alkyl derivatives. These findings underscore the significant health risks associated with exposure to coal mining dust, emphasizing the importance of further research and the implementation of regulatory measures to safeguard the health of individuals in affected populations.
Collapse
Affiliation(s)
- Alvaro Miranda-Guevara
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Amner Muñoz-Acevedo
- Grupo de Investigación en Química y Biología, Universidad del Norte, Barranquilla, Colombia
| | - Ornella Fiorillo-Moreno
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
- Clínica Iberoamerica, Barranquilla, Colombia
- Clinica el Carmen, Barranquilla, Colombia
| | - Antonio Acosta-Hoyos
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Leonardo Pacheco-Londoño
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Milton Quintana-Sosa
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Yurina De Moya
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Johnny Dias
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guilherme Soares de Souza
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Wilner Martinez-Lopez
- Ministry of Education and Culture, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Juliana da Silva
- Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS, Brazil
- Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Malu Siqueira Borges
- Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - João Antonio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia e em Ciências Médicas, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, Brazil
| | - Grethel León-Mejía
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia.
| |
Collapse
|
4
|
Zhao J, Song S, Zhang K, Li X, Zheng X, Wang Y, Ku G. An investigation into the disturbance effects of coal mining on groundwater and surface ecosystems. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7011-7031. [PMID: 37326776 DOI: 10.1007/s10653-023-01658-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Coal mining disturbs surface ecosystems in coal mining subsidence areas. Based on the groundwater-surface composite ecosystem analysis, we constructed an ecological disturbance evaluation index system (18 indices) in a coal mining subsidence area using the analytic hierarchy process (AHP). Taking the Nalinhe mining area in Wushen Banner, China, in 2018-2020 as an example, the weight, ecological disturbance grade and correlation of different indicators were determined by implementing fuzzy mathematics, weighting method, and correlation analysis method. The major conclusions of this review were: (i) After two years of mining, ecological disturbance was the highest in the study area (Grade III) and the lowest in the non-mining area (Grade I). (ii) Coal mining not only directly interfered with the environment, but also strengthened the connection of different ecological indicators, forming multiple ecological disturbance chains such as "mining intensity-mining thickness-buried depth/Mining thickness", "coal mining-surface subsidence-soil chemical factors", and "natural environment-soil physical factors". The disturbance chain that controls the ecological response factors in the region remains to be determined. However, the ecological response factors are the most important factor that hinders the restoration of the ecology in a coal mining subsidence area. (iii) The ecological disturbance in the coal mining subsidence area continued increasing over two years due to coal mining. The ecological disturbance by coal mining cannot be completely mitigated by relying on the self-repair capability of the environment. This study is of great significance for ecological restoration and governance of coal mining subsidence areas.
Collapse
Affiliation(s)
- Jiangang Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Shuang Song
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Kai Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Xiaonan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - XinHui Zheng
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Yajing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Gaoyani Ku
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| |
Collapse
|
5
|
Jiang C, Li M, Li C, Huang W, Zheng L. Combining hydrochemistry and 13C analysis to reveal the sources and contributions of dissolved inorganic carbon in the groundwater of coal mining areas, in East China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7065-7080. [PMID: 37572235 DOI: 10.1007/s10653-023-01726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
East China is a highly aggregated coal-grain composite area where coal mining and agricultural production activities are both flourishing. At present, the geochemical characteristics of dissolved inorganic carbon (DIC) in groundwater in coal mining areas are still unclear. This study combined hydrochemical and carbon isotope methods to explore the sources and factors influencing DIC in the groundwater of different active areas in coal mining areas. Moreover, the 13C isotope method was used to calculate the contribution rates of various sources to DIC in groundwater. The results showed that the hydrochemical types of groundwater were HCO3-Ca·Na and HCO3-Na. The main water‒rock interactions were silicate and carbonate rock weathering. Agricultural areas were mainly affected by the participation of HNO3 produced by chemical fertilizer in the weathering of carbonate rocks. Soil CO2 and carbonate rock weathering were the major sources of DIC in the groundwater. Groundwater in residential areas was primarily affected by CO2 from the degradation of organic matter from anthropogenic inputs. Sulfate produced by gypsum dissolution, coal gangue accumulation leaching and mine drainage participated in carbonate weathering under acidic conditions, which was an important factor controlling the DIC and isotopic composition of groundwater in coal production areas. The contribution rates of groundwater carbonate weathering to groundwater DIC in agricultural areas and coal production areas ranged from 57.46 to 66.18% and from 54.29 to 62.16%, respectively. In residential areas, the contribution rates of soil CO2 to groundwater DIC ranged from 51.48 to 61.84%. The results will help clarify the sources and circulation of DIC in groundwater under the influence of anthropogenic activities and provide a theoretical reference for water resource management.
Collapse
Affiliation(s)
- Chunlu Jiang
- School of Resources and Geoscience, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China.
| | - Ming Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Chang Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Wendi Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| |
Collapse
|
6
|
Gopinathan P, Subramani T, Barbosa S, Yuvaraj D. Environmental impact and health risk assessment due to coal mining and utilization. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6915-6922. [PMID: 37676435 DOI: 10.1007/s10653-023-01744-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Affiliation(s)
- P Gopinathan
- CSIR-Central Institute of Mining and Fuel Research, Ministry of Science and Technology, Government of India, Dhanbad, Jharkhand, 828108, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - T Subramani
- Department of Mining Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600025, India.
- Department of Geology, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600025, India.
| | - Sofia Barbosa
- Earth Science Department, FCT-NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Divya Yuvaraj
- Department of Earth and Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|