1
|
Hafza S, Parvathi A, Muhammed Iqbal PM, Sudheesh V, Sherin CK, Harikrishnachari NV. Spatial and temporal dynamics of prokaryotes in the Eastern Arabian sea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:458. [PMID: 40119974 DOI: 10.1007/s10661-025-13849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
This study resolves the spatial and seasonal variations in prokaryotic abundance (PA) and biomass concerning physicochemical parameters during Spring Inter-Monsoon (April-May), Summer Monsoon (June-September), and Winter Monsoon (November-February) in the Eastern Arabian Sea. PA and biomass distribution estimated using microscopic techniques revealed their peak abundance during Spring Inter-Monsoon, ranging from 2.29-4.41 × 106 Cells mL-1 to 8.39-21.82 μgL-1, respectively. Similarly, high PA and biomass were observed in late Summer Monsoon (September), ranging from 2.01-3.96 × 106 Cells mL-1 to 8.74-16.70 μgL-1, respectively, which was preceded by a higher phytoplankton abundance (chlorophyll a- 14.57 mgm-3) during the peak Summer Monsoon (August). The Winter Monsoon, started with a low PA and phytoplankton abundance. As Winter Monsoon progressed, convective mixing promoted phytoplankton growth in the latter half until March. The decay released dissolved organic carbon (DOC), leading to a rise in PA from January to February, peaking during Spring Inter-Monsoon (first peak). With the advent of Summer Monsoon, upwelling enriched surface layers with nutrients to promote phytoplankton growth in August. The subsequent decaying phase generated higher DOC which enhanced PA by the end of Summer Monsoon (second peak). However, PA declined to its lowest levels by November. Distance-based linear model analysis indicated that temperature and chlorophyll a were the most influential factors affecting PA in the upper photic-zone, while ammonia, dissolved oxygen, and DOC were associated factors. In contrast, nutrients were the major determining factors in disphotic waters (200-2000 m). This study highlights the intricate interplay between physicochemical and biological variables in shaping prokaryotic populations during various physical forcings through intense sampling efforts in the Arabian Sea.
Collapse
Affiliation(s)
- Shyla Hafza
- Department of Biotechnology, Cochin University of Science and Technology (CUSAT), Kochi, Kerala, India
- CSIR - National Institute of Oceanography, Regional Centre, Kochi, Kerala, India
| | - Ammini Parvathi
- Department of Biotechnology, Cochin University of Science and Technology (CUSAT), Kochi, Kerala, India.
- CSIR - National Institute of Oceanography, Regional Centre, Kochi, Kerala, India.
| | - P M Muhammed Iqbal
- CSIR - National Institute of Oceanography, Regional Centre, Kochi, Kerala, India
| | - Valliyodan Sudheesh
- Centre for Marine Living Resources and Ecology, Kochi, Kerala, India
- Central University of Kerala, Kasaragod, Kerala, India
| | - C K Sherin
- Centre for Marine Living Resources and Ecology, Kochi, Kerala, India
| | | |
Collapse
|
2
|
Keuschnig C, Vogel TM, Barbaro E, Spolaor A, Koziol K, Björkman MP, Zdanowicz C, Gallet JC, Luks B, Layton R, Larose C. Selection processes of Arctic seasonal glacier snowpack bacterial communities. MICROBIOME 2023; 11:35. [PMID: 36864462 PMCID: PMC9979512 DOI: 10.1186/s40168-023-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Arctic snowpack microbial communities are continually subject to dynamic chemical and microbial input from the atmosphere. As such, the factors that contribute to structuring their microbial communities are complex and have yet to be completely resolved. These snowpack communities can be used to evaluate whether they fit niche-based or neutral assembly theories. METHODS We sampled snow from 22 glacier sites on 7 glaciers across Svalbard in April during the maximum snow accumulation period and prior to the melt period to evaluate the factors that drive snowpack metataxonomy. These snowpacks were seasonal, accumulating in early winter on bare ice and firn and completely melting out in autumn. Using a Bayesian fitting strategy to evaluate Hubbell's Unified Neutral Theory of Biodiversity at multiple sites, we tested for neutrality and defined immigration rates at different taxonomic levels. Bacterial abundance and diversity were measured and the amount of potential ice-nucleating bacteria was calculated. The chemical composition (anions, cations, organic acids) and particulate impurity load (elemental and organic carbon) of the winter and spring snowpack were also characterized. We used these data in addition to geographical information to assess possible niche-based effects on snow microbial communities using multivariate and variable partitioning analysis. RESULTS While certain taxonomic signals were found to fit the neutral assembly model, clear evidence of niche-based selection was observed at most sites. Inorganic chemistry was not linked directly to diversity, but helped to identify predominant colonization sources and predict microbial abundance, which was tightly linked to sea spray. Organic acids were the most significant predictors of microbial diversity. At low organic acid concentrations, the snow microbial structure represented the seeding community closely, and evolved away from it at higher organic acid concentrations, with concomitant increases in bacterial numbers. CONCLUSIONS These results indicate that environmental selection plays a significant role in structuring snow microbial communities and that future studies should focus on activity and growth. Video Abstract.
Collapse
Affiliation(s)
- Christoph Keuschnig
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
- Currently at Interface Geochemistry, German Research Center for Geosciences, GFZ, Potsdam, Germany
| | - Timothy M Vogel
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Elena Barbaro
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Krystyna Koziol
- Department of Environmental Change and Geochemistry, Faculty of Geographical Sciences, the Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Mats P Björkman
- Department of Earth Sciences, University of Gothenburg, Box 460, SE-40530, Gothenburg, Sweden
| | - Christian Zdanowicz
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236, Uppsala, Sweden
| | | | - Bartłomiej Luks
- Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452, Warsaw, Poland
| | - Rose Layton
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Catherine Larose
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France.
| |
Collapse
|
3
|
Host-Associated Phages Disperse across the Extraterrestrial Analogue Antarctica. Appl Environ Microbiol 2022; 88:e0031522. [PMID: 35499326 DOI: 10.1128/aem.00315-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extreme Antarctic conditions provide one of the closest analogues of extraterrestrial environments. Since air and snow samples, especially from polar regions, yield DNA amounts in the lower picogram range, binning of prokaryotic genomes is challenging and renders studying the dispersal of biological entities across these environments difficult. Here, we hypothesized that dispersal of host-associated bacteriophages (adsorbed, replicating, or prophages) across the Antarctic continent can be tracked via their genetic signatures, aiding our understanding of virus and host dispersal across long distances. Phage genome fragments (PGFs) reconstructed from surface snow metagenomes of three Antarctic stations were assigned to four host genomes, mainly Betaproteobacteria, including Ralstonia spp. We reconstructed the complete genome of a temperate phage with nearly complete alignment to a prophage in the reference genome of Ralstonia pickettii 12D. PGFs from different stations were related to each other at the genus level and matched similar hosts. Metagenomic read mapping and nucleotide polymorphism analysis revealed a wide dispersal of highly identical PGFs, 13 of which were detected in seawater from the Western Antarctic Peninsula at a distance of 5,338 km from the snow sampling stations. Our results suggest that host-associated phages, especially of Ralstonia sp., disperse over long distances despite the harsh conditions of the Antarctic continent. Given that 14 phages associated with two R. pickettii draft genomes isolated from space equipment were identified, we conclude that Ralstonia phages are ideal mobile genetic elements to track dispersal and contamination in ecosystems relevant for astrobiology. IMPORTANCE Host-associated phages of the bacterium Ralstonia identified in snow samples can be used to track microbial dispersal over thousands of kilometers across the Antarctic continent, which functions as an extraterrestrial analogue because of its harsh environmental conditions. Due to the presence of these bacteria carrying genome-integrated prophages on space-related equipment and the potential for dispersal of host-associated phages demonstrated here, our work has implications for planetary protection, a discipline in astrobiology interested in preventing contamination of celestial bodies with alien biomolecules or forms of life.
Collapse
|
4
|
Hoffman AS, van Diepen LTA, Albeke SE, Williams DG. Potential microbial enzyme activity in seasonal snowpack is high and reveals P limitation. Ecosphere 2022. [DOI: 10.1002/ecs2.3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Abigail S. Hoffman
- Department of Botany University of Wyoming Laramie Wyoming USA
- Program in Ecology University of Wyoming Laramie Wyoming USA
| | - Linda T. A. van Diepen
- Program in Ecology University of Wyoming Laramie Wyoming USA
- Ecosystem Science and Management University of Wyoming Laramie Wyoming USA
| | - Shannon E. Albeke
- Wyoming Geographic Information Science Center University of Wyoming Laramie Wyoming USA
| | - David G. Williams
- Department of Botany University of Wyoming Laramie Wyoming USA
- Program in Ecology University of Wyoming Laramie Wyoming USA
| |
Collapse
|
5
|
Maccario L, Carpenter SD, Deming JW, Vogel TM, Larose C. Sources and selection of snow-specific microbial communities in a Greenlandic sea ice snow cover. Sci Rep 2019; 9:2290. [PMID: 30783153 PMCID: PMC6381142 DOI: 10.1038/s41598-019-38744-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022] Open
Abstract
Sea ice and its snow cover are critical for global processes including climate regulation and biogeochemical cycles. Despite an increase in studies focused on snow microorganisms, the ecology of snow inhabitants remains unclear. In this study, we investigated sources and selection of a snowpack-specific microbial community by comparing metagenomes from samples collected in a Greenlandic fjord within a vertical profile including atmosphere, snowpack with four distinct layers of snow, sea ice brine and seawater. Microbial communities in all snow layers derived from mixed sources, both marine and terrestrial, and were more similar to atmospheric communities than to sea ice or seawater communities. The surface snow metagenomes were characterized by the occurrence of genes involved in photochemical stress resistance, primary production and metabolism of diverse carbon sources. The basal saline snow layer that was in direct contact with the sea ice surface harbored a higher abundance of cells than the overlying snow layers, with a predominance of Alteromonadales and a higher relative abundance of marine representatives. However, the overall taxonomic structure of the saline layer was more similar to that of other snow layers and the atmosphere than to underlying sea ice and seawater. The expulsion of relatively nutrient-rich sea ice brine into basal snow might have stimulated the growth of copiotrophic psychro- and halotolerant snow members. Our study indicates that the size, composition and function of snowpack microbial communities over sea ice were influenced primarily by atmospheric deposition and inflow of sea ice brine and that they form a snow-specific assemblage reflecting the particular environmental conditions of the snowpack habitat.
Collapse
Affiliation(s)
- Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France.
- Microbiology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, USA
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France
| |
Collapse
|
6
|
Sanyal A, Antony R, Samui G, Thamban M. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiol Res 2018; 208:32-42. [PMID: 29551210 DOI: 10.1016/j.micres.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 02/03/2023]
Abstract
Cryoconite holes (cylindrical melt-holes on the glacier surface) are important hydrological and biological systems within glacial environments that support diverse microbial communities and biogeochemical processes. This study describes retrievable heterotrophic microbes in cryoconite hole water from three geographically distinct sites in Antarctica, and a Himalayan glacier, along with their potential to degrade organic compounds found in these environments. Microcosm experiments (22 days) show that 13-60% of the dissolved organic carbon in the water within cryoconite holes is bio-available to resident microbes. Biodegradation tests of organic compounds such as lactate, acetate, formate, propionate and oxalate that are present in cryoconite hole water show that microbes have good potential to metabolize the compounds tested. Substrate utilization tests on Biolog Ecoplate show that microbial communities in the Himalayan samples are able to oxidize a diverse array of organic substrates including carbohydrates, carboxylic acids, amino acids, amines/amides and polymers, while Antarctic communities generally utilized complex polymers. In addition, as determined by the extracellular enzyme activities, majority of the microbes (82%, total of 355) isolated in this study (Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Basidiomycota) had ability to degrade a variety of compounds such as proteins, lipids, carbohydrates, cellulose and lignin that are documented to be present within cryoconite holes. Thus, microbial communities have good potential to metabolize organic compounds found in the cryoconite hole environment, thereby influencing the water chemistry in these holes. Moreover, microbes exported downstream during melting and flushing of cryoconite holes may participate in carbon cycling processes in recipient ecosystems.
Collapse
Affiliation(s)
- Aritri Sanyal
- ESSO-National centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India
| | - Runa Antony
- ESSO-National centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India.
| | - Gautami Samui
- ESSO-National centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India
| | - Meloth Thamban
- ESSO-National centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India
| |
Collapse
|
7
|
Calace N, Nardi E, Pietroletti M, Bartolucci E, Pietrantonio M, Cremisini C. Antarctic snow: metals bound to high molecular weight dissolved organic matter. CHEMOSPHERE 2017; 175:307-314. [PMID: 28235739 DOI: 10.1016/j.chemosphere.2017.02.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
In this paper we studied some heavy metals (Cu, Zn, Cd, Pb, As, U) probably associated to high molecular weight organic compounds present in the Antarctic snow. Snow-pit samples were collected and analysed for high molecular weight fraction and heavy metals bound to them by means of ultrafiltration treatment. High molecular weight dissolved organic matter (HMW-DOM) recovered by ultrafiltration showed a dissolved organic carbon concentration (HMW-DOC) of about 18-83% of the total dissolved organic carbon measured in Antarctic snow. The characterisation of HMW-DOM fraction evidenced an ageing of organic compounds going from surface layers to the deepest ones with a shift from aliphatic compounds and proteins/amino sugars to more high unsaturated character and less nitrogen content. The heavy metals associated to HMW-DOM fraction follows the order: Zn > Cu > Pb >> Cd ∼ As ∼ U. The percentage fraction of metals bound to HMW-DOM respect to total metal content follows the order: Cu >> Pb > Zn, Cd in agreement with humic substance binding ability (Irwing-William series). Going down to depth of trench, all metals except arsenic, showed a high concentration peak corresponding to 2.0-2.5 m layer. This result was attributed to particular structural characteristic of organic matter able to form different type of complexes (1:1, 1:2, 1:n) with metals.
Collapse
Affiliation(s)
- Nicoletta Calace
- The Italian National Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati, 48, 00144, Rome, Italy.
| | - Elisa Nardi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| | - Marco Pietroletti
- The Italian National Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati, 48, 00144, Rome, Italy
| | - Eugenia Bartolucci
- The Italian National Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati, 48, 00144, Rome, Italy
| | - Massimiliana Pietrantonio
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| | - Carlo Cremisini
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| |
Collapse
|
8
|
Maccario L, Sanguino L, Vogel TM, Larose C. Snow and ice ecosystems: not so extreme. Res Microbiol 2015; 166:782-95. [PMID: 26408452 DOI: 10.1016/j.resmic.2015.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022]
Abstract
Snow and ice environments cover up to 21% of the Earth's surface. They have been regarded as extreme environments because of their low temperatures, high UV irradiation, low nutrients and low water availability, and thus, their microbial activity has not been considered relevant from a global microbial ecology viewpoint. In this review, we focus on why snow and ice habitats might not be extreme from a microbiological perspective. Microorganisms interact closely with the abiotic conditions imposed by snow and ice habitats by having diverse adaptations, that include genetic resistance mechanisms, to different types of stresses in addition to inhabiting various niches where these potential stresses might be reduced. The microbial communities inhabiting snow and ice are not only abundant and taxonomically diverse, but complex in terms of their interactions. Altogether, snow and ice seem to be true ecosystems with a role in global biogeochemical cycles that has likely been underestimated. Future work should expand past resistance studies to understanding the function of these ecosystems.
Collapse
Affiliation(s)
- Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Laura Sanguino
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France.
| |
Collapse
|
9
|
Shen F, Yao M. Are we biologically safe with snow precipitation? A case study in beijing. PLoS One 2013; 8:e65249. [PMID: 23762327 PMCID: PMC3675146 DOI: 10.1371/journal.pone.0065249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/23/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, the bacterial and fungal abundances, diversities, conductance levels as well as total organic carbon (TOC) were investigated in the snow samples collected from five different snow occurrences in Beijing between January and March, 2010. The collected snow samples were melted and cultured at three different temperatures (4, 26 and 37°C). The culturable bacterial concentrations were manually counted and the resulting colony forming units (CFUs) at 26°C were further studied using V3 region of 16 S rRNA gene-targeted polymerase chain reaction -denaturing gradient gel electrophoresis (PCR-DGGE). The clone library was constructed after the liquid culturing of snow samples at 26°C. And microscopic method was employed to investigate the fungal diversity in the samples. In addition, outdoor air samples were also collected using mixed cellulose ester (MCE) filters and compared with snow samples with respect to described characteristics. The results revealed that snow samples had bacterial concentrations as much as 16000 CFU/ml for those cultured at 26°C, and the conductance levels ranged from 5.6×10−6 to 2.4×10−5 S. PCR-DGGE, sequencing and microscopic analysis revealed remarkable bacterial and fungal diversity differences between the snow samples and the outdoor air samples. In addition, DGGE banding profiles for the snow samples collected were also shown distinctly different from one another. Absent from the outdoor air, certain human, plant, and insect fungal pathogens were found in the snow samples. By calculation, culturable bacteria accounted for an average of 3.38% (±1.96%) of TOC for the snow samples, and 0.01% for that of outdoor air samples. The results here suggest that snow precipitations are important sources of fungal pathogens and ice nucleators, thus could affect local climate, human health and agriculture security.
Collapse
Affiliation(s)
- Fangxia Shen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Larose C, Dommergue A, Vogel TM. The dynamic arctic snow pack: an unexplored environment for microbial diversity and activity. BIOLOGY 2013; 2:317-30. [PMID: 24832663 PMCID: PMC4009867 DOI: 10.3390/biology2010317] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/10/2013] [Accepted: 01/14/2013] [Indexed: 11/16/2022]
Abstract
The Arctic environment is undergoing changes due to climate shifts, receiving contaminants from distant sources and experiencing increased human activity. Climate change may alter microbial functioning by increasing growth rates and substrate use due to increased temperature. This may lead to changes of process rates and shifts in the structure of microbial communities. Biodiversity may increase as the Arctic warms and population shifts occur as psychrophilic/psychrotolerant species disappear in favor of more mesophylic ones. In order to predict how ecological processes will evolve as a function of global change, it is essential to identify which populations participate in each process, how they vary physiologically, and how the relative abundance, activity and community structure will change under altered environmental conditions. This review covers aspects of the importance and implication of snowpack in microbial ecology emphasizing the diversity and activity of these critical members of cold zone ecosystems.
Collapse
Affiliation(s)
- Catherine Larose
- Environmental Microbial Genomics, CNRS, Ecole Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France.
| | - Aurélien Dommergue
- Université Joseph Fourier - Grenoble 1 / CNRS, LGGE, 54 rue Molière BP56, F-38402 Saint Martin d'Hères, France.
| | - Timothy M Vogel
- Environmental Microbial Genomics, CNRS, Ecole Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France.
| |
Collapse
|