1
|
Zhang L, Xu L, Zhang Z, Li J, Ren L, Liu Z, Zhang Y, Chen Y. Influence Mechanism of Vermicompost with Different Maturity on Atrazine Catabolism and Bacterial Community. TOXICS 2025; 13:30. [PMID: 39853028 PMCID: PMC11769362 DOI: 10.3390/toxics13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025]
Abstract
Atrazine causes serious contamination of agricultural soils and groundwater. This study investigated the influence mechanism of sterilized soil (CKs), unsterilized soil (CKn), sterilized soil amended with 45 (SsV1), 60 (SsV2), 75 (SsV3) days of vermicompost (the maturity days of vermicompost), and unsterilized soil amended with 45 (SnV1), 60 (SnV2), 75 (SnV3) days of vermicompost on atrazine catabolism. The atrazine degradation experiment lasted for 40 days. The results showed that the atrazine degradation rates for CKs, CKn, SsV1, SsV2, SsV3, SnV1, SnV2, and SnV3 were 24%, 56.9%, 62.8%, 66.1%, 65.9%, 87.5%, 92.9%, and 92.3%, respectively. Indigenous microorganisms capable of degrading atrazine were present in unsterilized soil, and the addition of vermicompost enhanced atrazine degradation. The humic acid content of SnV2 was the highest, at 4.11 g/kg, which was 71.97% higher than that of CKn. The addition of the vermicompost enhanced the production of hydroxyatrazine, deethylatrazine, and deisopropylatrazine. Vermicompost increased the abundance of atrazine-degrading bacteria (Mycobacterium, Devosia, etc.), and introduced new atrazine-degrading bacteria (Mesorhizobium, Demequina). The above results showed that the best degradation of atrazine was achieved with 60 days of vermicompost addition. This study provides a new, efficient, economical, and environmentally friendly strategy for the remediation of atrazine-contaminated soil.
Collapse
Affiliation(s)
- Luwen Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (L.Z.); (J.L.); (L.R.); (Z.L.)
| | - Lixin Xu
- College of Life Sciences, Jilin University, Changchun 130012, China;
| | - Zunhao Zhang
- The Electron Microscopy Center, Jilin University, Changchun 130000, China;
| | - Jiaolin Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (L.Z.); (J.L.); (L.R.); (Z.L.)
| | - Limeng Ren
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (L.Z.); (J.L.); (L.R.); (Z.L.)
| | - Zhichen Liu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (L.Z.); (J.L.); (L.R.); (Z.L.)
| | - Yan Zhang
- Costal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA;
| | - Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (L.Z.); (J.L.); (L.R.); (Z.L.)
| |
Collapse
|
2
|
Cheng X, Yang J, Zhang C, Tang T, Zhao X, Ye Q. Carbon-14 labeled transformation of atrazine in soils: Comparison of superabsorbent hydrogel coating and technical material. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175584. [PMID: 39155004 DOI: 10.1016/j.scitotenv.2024.175584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Atrazine exhibits adverse effects on diverse organisms in both terrestrial and aquatic environments, even though it effectively targets specific organisms. This study employed superabsorbent hydrogels to coat 14C-atrazine coupled with a four-compartment model to determine the fate of this herbicide in three oxic soils over a 100-day incubation period. Mineralization of atrazine was limited in all soils, with rates remaining below 3.5 %. The encapsulation treatment reduced mineralization of atrazine in soil A and soil B. Bound residues ranged from 26.1 to 43.6 % at 100 d. The encapsulation treatment enhanced the degradation of atrazine and reduced the content of deethylatrazine in soil A, but significantly increased the content of deisopropylatrazine in soil A and hydroxyatrazine in soil C. Using the obtained data, we also constructed a four-compartment model to clarify the relationships among the parent compound, degradation products, bound residues, and mineralization. This model accurately fits the fate of atrazine in the present work. Additionally, the correlation study suggested that both soil parameters and superabsorbent hydrogels played significant roles in influencing atrazine transformation. These findings serve as a reference for evaluating the environmental impact of superabsorbent hydrogels in atrazine pollution reduction and offer a foundational model approach for a comprehensive understanding of organic pollutants.
Collapse
Affiliation(s)
- Xi Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Jingying Yang
- Radiolabeled DMPK & BA Laboratory, Pharmaron (Ningbo) Technology Development Co. Ltd., Ningbo 315336, PR China.
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Mei L, Xia X, Cao J, Zhao Y, Huang H, Li Y, Zhang Z. Degradation of Three Herbicides and Effect on Bacterial Communities under Combined Pollution. TOXICS 2024; 12:562. [PMID: 39195664 PMCID: PMC11360099 DOI: 10.3390/toxics12080562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Pesticide residues in soil, especially multiple herbicide residues, cause a series of adverse effects on soil properties and microorganisms. In this work, the degradation of three herbicides and the effect on bacterial communities under combined pollution was investigated. The experimental results showed that the half-lives of acetochlor and prometryn significantly altered under combined exposure (5.02-11.17 d) as compared with those of individual exposure (4.70-6.87 d) in soil, suggesting that there was an antagonistic effect between the degradation of acetochlor and prometryn in soil. No remarkable variation in the degradation rate of atrazine with half-lives of 6.21-6.85 d was observed in different treatments, indicating that the degradation of atrazine was stable. 16S rRNA high-throughput sequencing results showed that the antagonistic effect of acetochlor and prometryn on the degradation rate under combined pollution was related to variation of the Sphingomonas and Nocardioide. Furthermore, the potential metabolic pathways of the three herbicides in soil were proposed and a new metabolite of acetochlor was preliminarily identified. The results of this work provide a guideline for the risk evaluation of combined pollution of the three herbicides with respect to their ecological effects in soil.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhaoxian Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China (X.X.); (Y.L.)
| |
Collapse
|
4
|
Li X, Cao X, Wang H, Sun Y, Zhang S, Khodseewong S, Sakamaki T. The promotion of the atrazine degradation mechanism by humic acid in a soil microbial electrochemical system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120767. [PMID: 38560953 DOI: 10.1016/j.jenvman.2024.120767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
The enhancing effects of anodes on the degradation of the organochlorine pesticide atrazine (ATR) in soil within microbial electrochemical systems (MES) have been extensively researched. However, the impact and underlying mechanisms of soil microbial electrochemical systems (MES) on ATR degradation, particularly under conditions involving the addition of humic acids (HAs), remain elusive. In this investigation, a soil MES supplemented with humic acids (HAs) was established to assess the promotional effects and mechanisms of HAs on ATR degradation, utilizing EEM-PARAFAC and SEM analyses. Results revealed that the maximum power density of the MES in soil increased by 150%, and the degradation efficiency of ATR improved by over 50% following the addition of HAs. Furthermore, HAs were found to facilitate efficient ATR degradation in the far-anode region by mediating extracellular electron transfer. The components identified as critical in promoting ATR degradation were Like-Protein and Like-Humic acid substances. Analysis of the microbial community structure indicated that the addition of HAs favored the evolution of the soil MES microbial community and the enrichment of electroactive microorganisms. In the ATR degradation process, the swift accumulation of Hydrocarbyl ATR (HYA) was identified as the primary cause for the rapid degradation of ATR in electron-rich conditions. Essentially, HA facilitates the reduction of ATR to HYA through mediated bonded electron transfer, thereby markedly enhancing the efficiency of ATR degradation.
Collapse
Affiliation(s)
- Xinyu Li
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Xian Cao
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Hui Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China.
| | - Yilun Sun
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Sirapat Khodseewong
- Faculty of Public Health, Mahasarakham University, Maha Sarakham, 44150, Thailand.
| | - Takashi Sakamaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Aramaki 6-6-06, Sendai, 980-8579, Japan.
| |
Collapse
|
5
|
Zheng M, Li Y, Cao M, Guo Y, Qiu G, Tu S, Xiong S, Fang D. Amino acid promoted oxidation of atrazine by Fe 3O 4/persulfate. Heliyon 2024; 10:e23371. [PMID: 38163114 PMCID: PMC10757014 DOI: 10.1016/j.heliyon.2023.e23371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
In the present study, we demonstrated that the presence of cysteine could remarkably enhance the degradation of atrazine by Fe3O4/persulfate system. The results of electron paramagnetic resonance (EPR) spectra confirmed the combination of cysteine and Fe3O4 exhibited much higher activity on activation of persulfate to generate more SO4•- and •OH than Fe3O4 alone. At pH of 3.0, SO4•- and •OH contributed to about 58.2 % and 41.8 % of atrazine removal respectively, while •OH gradually dominated the oxidation of atrazine from neutral condition to alkaline condition. The co-existing Cl- and HCO3- could quench SO4•-, resulting in the inhibition of atrazine degradation. The presence of low natural organic matters (NOM) concentration (0-2 mg L-1) could enhance the atrazine removal, and high concentration (>5 mg L-1) of NOM restrained the atrazine degradation. During the Cysteine/Fe3O4/Persulfate process, cysteine served as a complexing reagent and reductant. Through acidolysis and complexation, Fe3O4 could release dissolved and surface bound Fe2+, both of which contributed to the activation of persulfate together. Meanwhile, cysteine was not rapidly consumed due to a regeneration process, which was beneficial for maintaining Fe2+/Fe3+ cycle and constantly accelerating the activation of persulfate for atrazine degradation. The reused Fe3O4 and cysteine in the Cysteine/Fe3O4/Persulfate process exhibited high stability for the atrazine degradation after three cycles. The degradation pathway of atrazine included alkylic-oxidation, dealkylation, dechlorination-hydroxylation processes. The present study indicates the novel Cysteine/Fe3O4/Persulfate process might be a high potential for treatment of organic polluted water.
Collapse
Affiliation(s)
- Mingming Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Yinghao Li
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Menghua Cao
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuxin Guo
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Guohong Qiu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuxin Tu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuanglian Xiong
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dun Fang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China
| |
Collapse
|
6
|
Zhang L, Xu L, Zhang L, Zhang Y, Chen Y. Adsorption-desorption characteristics of atrazine on soil and vermicompost prepared with different ratios of raw materials. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:583-593. [PMID: 37614009 DOI: 10.1080/03601234.2023.2247942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
In this work, vermicompost was prepared with maize stover and cattle dung in ratios of 60:40 (VC1), 50:50 (VC2) and 40:60 (VC3), and the physicochemical properties of the vermicompost were related to the ratio of the raw materials used. The effect of the vermicomposts on the adsorption kinetics, adsorption isotherms and desorption of atrazine were investigated in unamended soil (S) and soil amended with 4% (w/w) of VC1(S-VC1), VC2(S-VC2) and VC3(S-VC3). The total organic carbon (TOC) content of VC1, VC2 and VC3 was 38.46, 37.33 and 34.47%, the HA content was 43.50, 42.22 and 39.28 g/kg, and the HA/FA ratios was 1.47, 0.44 and 0.83, respectively. The adsorption of atrazine on the soil, on the vermicompost and on soils amended with vermicompost followed a pseudo-second-order kinetic model. The Freundlich equation better fitted the adsorption isotherm of atrazine. The vermicomposts enhanced atrazine adsorption and decreased atrazine desorption. Correlation analysis showed that the TOC and HA were significantly positively correlated with Kf, which indicated that TOC and HA of the vermicomposts contributed significantly to the adsorption and desorption of atrazine. This study demonstrated that vermicomposts have great potential in the bioremediation of atrazine pollution and that their role is related to the raw materials used to prepare them.
Collapse
Affiliation(s)
- Luwen Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Lixin Xu
- College of Life Sciences, Jilin University, Changchun, China
| | - Lei Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Yan Zhang
- Costal Research and Extension Center, Mississippi State University, Starkville, Mississippi, USA
| | - Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| |
Collapse
|
7
|
Yang Z, Lou Y, Pan H, Wang H, Yang Q, Sun Y, Zhuge Y. Reinforced Bioremediation of Excessive Nitrate in Atrazine-Contaminated Soil by Biodegradable Composite Carbon Source. Polymers (Basel) 2023; 15:2765. [PMID: 37447411 DOI: 10.3390/polym15132765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Bioremediation is a good alternative to dispose of the excessive nitrate (NO3-) in soil and alleviate the secondary salinization of soil, but the presence of atrazine in soil interferes with the bioremediation process. In the present study, the biodegradable composite carbon source with different dosages was added to the atrazine-contaminated soil to intensify the bioremediation of excessive NO3-. The atrazine-contaminated soil with a 25 g/kg composite carbon source achieved the optimal NO3- removal performance (92.10%), which was slightly higher than that with a 5 g/kg composite carbon source (86.15%) (p > 0.05). Unfortunately, the negative effects of the former were observed, such as the distinctly higher emissions of N2O, CO2 and a more powerful global warming potential (GWP). Microbial community analysis showed that the usage of the composite carbon source clearly decreased the richness and diversity of the microbial community, and greatly stimulated nitrogen metabolism and atrazine degradation (p < 0.05). To sum up, the application of a 5 g/kg composite carbon source contributed to guaranteeing bioremediation performance and reducing adverse environmental impacts at the same time.
Collapse
Affiliation(s)
- Zhongchen Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Yanhong Lou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Hong Pan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Hui Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Quangang Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Yajie Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| |
Collapse
|
8
|
Khan SU, Kumar A, Prasad M, Upadhyay D, Mehta BK, Shashikumara P, Tamboli P. Effect of soil amendments on the sorption behavior of atrazine in sandy loam soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:686. [PMID: 37195375 DOI: 10.1007/s10661-023-11292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
The sorption behavior of pesticides applied during cultivation of crops is affected by amendments such as farm yard manure (FYM) and vermicompost (VC) during land preparation. Among pesticides, atrazine, a widely used herbicide in many crops, was analyzed for its kinetics and sorption behavior through the addition of FYM and VC in sandy loam soil. The pseudo-second-order (PSO) model best fit the kinetics results in the recommended dose of FYM and VC mixed soil. More atrazine was sorbed onto VC mixed soil than FYM mixed soil. In comparison to control (no amendment), both FYM and VC (1, 1.5, and 2%) increased atrazine adsorption, but the effect varied with dosage and type of amendment. The Freundlich adsorption isotherm adequately explained atrazine adsorption in soil/soil + (FYM/VC) mixtures, and the adsorption was highly nonlinear. The values of Gibb's free energy change (ΔG) were negative for both adsorption and desorption in soil/soil + (FYM/VC) mixtures, suggesting sorption was exothermic and spontaneous in nature. The results revealed that the application of amendments used by farmers interferes the availability, mobility, and infiltration of atrazine in the soil. Therefore, the findings of this study suggest that amendments such as FYM and VC can be effectively used to minimize the residual toxicity of atrazine-treated ago-ecosystems in tropical and sub-tropical regions.
Collapse
Affiliation(s)
| | - Anup Kumar
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India.
| | - Mahendra Prasad
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - Deepak Upadhyay
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - Brijesh K Mehta
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - P Shashikumara
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - Pooja Tamboli
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| |
Collapse
|
9
|
Wang H, Long X, Cao X, Li L, Zhang J, Zhao Y, Wang D, Wang Z, Meng H, Dong W, Jiang C, Li J, Li X. Stimulation of atrazine degradation by activated carbon and cathodic effect in soil microbial fuel cell. CHEMOSPHERE 2023; 320:138087. [PMID: 36754303 DOI: 10.1016/j.chemosphere.2023.138087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/03/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Soil microbial fuel cells (MFCs) have been increasingly studied in recent years and have attracted significant attention as an environmentally sustainable bioelectrochemical technology. However, the poor conductivity of the soil matrix and the neglect of the cathodic function have limited its application. In this study, quartz sand and activated carbon were subjected to investigation on their influence on atrazine degradation. Atrazine was introduced in different layers (cathode, upper layer) to explore the cathodic effect on atrazine removal. The results revealed that activated carbon could reduce the internal resistance (693 Ω) and generate the highest power density (25.51 mW/m2) of the soil MFCs, and thus increase the removal efficiency (97.92%) of atrazine. The dynamic degradation profiles of atrazine were different for different adding layers. The cathode electrode acted as an electron donor could increase the distance of the effective influence of the soil MFCs' cathode from the middle to the cathode layer. The cathode (region) and the region close to the cathode could degrade atrazine with the atrazine removal efficiencies ranging from 60.67% to 92.79%, and the degradation ability of the cathode was stronger than that of other layers. The degradation effect followed the order: cathode > upper > lower > middle). Geobacter, Desulfobulbus, and Desulfuromonas belonging to the δ-Proteobacteria class were identified as the dominant electroactive microorganisms in the anode layer, while their relative abundances are quite low in the upper and cathode layers. Pseudomonas is an atrazine-degrading bacterium, but its relative abundance was only 0.13-0.51%. Thus, bioelectrochemistry rather than microbial degradation was the primary driving force.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xian Cao
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Lei Li
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Jingran Zhang
- Chinese Academy of Sciences, Research Center for Eco-environmental Sciences, Beijing 100085, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Dongqi Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Zhe Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Haiyu Meng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Wen Dong
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Chunbo Jiang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China.
| |
Collapse
|
10
|
Ikeji CN, Adedara IA, Farombi EO. Dietary myricetin assuages atrazine-mediated hypothalamic-pituitary-testicular axis dysfunction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15655-15670. [PMID: 36169847 DOI: 10.1007/s11356-022-23033-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATZ) exposure is associated with reproductive dysfunction in both animals and humans. Myricetin, a flavonoid compound, is well documented for its numerous pharmacological activities. However, the impact of myricetin on the atrazine-mediated dysfunctional hypothalamic-pituitary-testicular axis is not known. This study investigated the role of myricetin on the atrazine-induced alterations in the male reproductive axis in rats orally gavaged with ATZ alone (50 mg/kg) or co-treated with ATZ + myricetin (MYR) at 5, 10, and 20 mg/kg for 30 consecutive days. Myricetin assuaged ATZ-induced reductions in intra-testicular testosterone, serum follicle-stimulating hormone, luteinizing hormone, and testosterone, coupled with decreases in alkaline phosphatase, acid phosphatase, lactate dehydrogenase, and glucose-6-phosphate dehydrogenase activities. Also, MYR treatment improved epididymal sperm count and motility and decreased sperm defects in ATZ-treated rats. Testicular sperm number, daily sperm production, and sperm viability remained unchanged in all treatment groups. Administration of MYR abated ATZ-mediated depletion in antioxidant status, an increase in myeloperoxidase activity, nitric oxide, hydrogen peroxide, malondialdehyde levels, and reactive oxygen and nitrogen species, as well as the histological lesions in the hypothalamus, epididymis, and testes of treated animals. All in all, MYR mitigated atrazine-mediated functional changes in the reproductive axis via anti-inflammatory and antioxidant mechanisms in atrazine-exposed rats. Dietary intake of MYR could be a worthy chemoprotective approach against reproductive dysfunction related to ATZ exposure.
Collapse
Affiliation(s)
- Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
11
|
Yu X, Jin X, Liu H, Yu Y, Tang J, Zhou R, Yin A, Sun J, Zhu L. Enhanced degradation of atrazine through UV/bisulfite: Mechanism, reaction pathways and toxicological analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159157. [PMID: 36195145 DOI: 10.1016/j.scitotenv.2022.159157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/11/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Atrazine residue in the environment continues to threaten aquatic ecosystem and human health owing to its adverse effect. However, limited researches focused on degradation mechanism of atrazine by UV/bisulfite, especially risk of intermediates at cellular and molecular level has not been seriously elaborated. In current work, transformation patterns and residual toxicity of intermediates of atrazine by UV/bisulfite were systematically investigated. The atrazine degradation was described by a pseudo first-order kinetic model (Kobs = 0.1053 min-1). The presence of H2PO4-, HCO3- and HA had a powerful inhibition. Scavenging test of radicals illustrated that SO4•-, •OH and O2•- existed in UV/bisulfite system, SO4•- and •OH were mainly responsible for atrazine degradation. Eight degradation intermediates were identified, which were involved in dealkylation, alkyl oxidation, dechlorination-hydroxylation, and alkylic-hydroxylation. E. coli as a model microorganism was selected to assess the risk of degradation intermediates. The levels of reactive oxygen species, MDA and Na+/K+-ATPase were declined, suggesting that oxidative damage induced by these intermediates was weakened. According to differential metabolites expression analysis, several key metabolites including aspartate, L-tryptophan, L-asparagine, cytidine, cytosin, stearic acid, behenic acid, were up-regulated, and glutathione, cadaverin, L-2-hydroxyglutaric acid and phytosphingosine were downregulated, clarifying that effective detoxification of atrazine can be performed by UV/bisulfite.
Collapse
Affiliation(s)
- Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Xu Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Jin Tang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Rujin Zhou
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Aiguo Yin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
12
|
Bhatti P, Duhan A, Pal A, Beniwal RK, Kumawat P, Yadav DB. Ultimate fate and possible ecological risks associated with atrazine and its principal metabolites (DIA and DEA) in soil and water environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114299. [PMID: 36399993 DOI: 10.1016/j.ecoenv.2022.114299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (AT) is a triazine herbicide widely used to control weeds in several crops. De-isopropylatrazine (DIA) and de-ethylatrazine (DEA) are two of the eight primary metabolites produced by AT breakdown in soil and water. The physico-chemical properties of the soil determine their final fate. So, this study aimed to assess the function of clay loam and sandy loam soils in determining their ultimate fate and the potential ecological risks to non-target species during their persistence in soil and transportation to water bodies. The soil in pots was spiked with standard solutions of AT, DEA, and DIA at 0.3 and 0.6 mg/kg for the persistence study. The leaching potential was determined by placing soils in Plexi columns and spiking them with 50 and 100 µg standard solutions. Liquid-liquid extraction was used to prepare the samples, which were then analyzed using GC-MS/MS. The dynamics of dissipation were first-order. AT, DEA and DIA disappeared rapidly in sandy loam soil, with half-lives ranging from 6.2 to 8.4 days. AT and its metabolites had a significant amount of leaching potential. In sandy loam soil, leaching was more effective, resulting in maximal residue movement up to 30-40 cm soil depth. The presence of a notable collection of residues in leachate fractions suggests the potential for surface and groundwater contamination. In particular, DEA and DIA metabolites caused springtail Folsomia candida and earthworm Eisenia fetida to have longer and greater unacceptable risks. If the residues comparable to the amount acquired in leachate fractions reach water bodies, they could cause toxicity to a variety of freshwater fish, aquatic arthropods, amphibians, and aquatic invertebrates. Future studies should take a more comprehensive approach to evaluate ecological health and dangers to non-target species.
Collapse
Affiliation(s)
- Priyanka Bhatti
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India.
| | - Anil Duhan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India; Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India.
| | - Ajay Pal
- Department of Biochemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India.
| | - Ravi Kumar Beniwal
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India.
| | - Priyanka Kumawat
- Department of Agronomy, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303 328, India.
| | - Dharam Bir Yadav
- Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India.
| |
Collapse
|
13
|
Aldas-Vargas A, Poursat BAJ, Sutton NB. Potential and limitations for monitoring of pesticide biodegradation at trace concentrations in water and soil. World J Microbiol Biotechnol 2022; 38:240. [PMID: 36261779 PMCID: PMC9581840 DOI: 10.1007/s11274-022-03426-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Pesticides application on agricultural fields results in pesticides being released into the environment, reaching soil, surface water and groundwater. Pesticides fate and transformation in the environment depend on environmental conditions as well as physical, chemical and biological degradation processes. Monitoring pesticides biodegradation in the environment is challenging, considering that traditional indicators, such as changes in pesticides concentration or identification of pesticide metabolites, are not suitable for many pesticides in anaerobic environments. Furthermore, those indicators cannot distinguish between biotic and abiotic pesticide degradation processes. For that reason, the use of molecular tools is important to monitor pesticide biodegradation-related genes or microorganisms in the environment. The development of targeted molecular (e.g., qPCR) tools, although laborious, allowed biodegradation monitoring by targeting the presence and expression of known catabolic genes of popular pesticides. Explorative molecular tools (i.e., metagenomics & metatranscriptomics), while requiring extensive data analysis, proved to have potential for screening the biodegradation potential and activity of more than one compound at the time. The application of molecular tools developed in laboratory and validated under controlled environments, face challenges when applied in the field due to the heterogeneity in pesticides distribution as well as natural environmental differences. However, for monitoring pesticides biodegradation in the field, the use of molecular tools combined with metadata is an important tool for understanding fate and transformation of the different pesticides present in the environment.
Collapse
Affiliation(s)
- Andrea Aldas-Vargas
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Baptiste A J Poursat
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
14
|
Luo S, Ren L, Wu W, Chen Y, Li G, Zhang W, Wei T, Liang YQ, Zhang D, Wang X, Zhen Z, Lin Z. Impacts of earthworm casts on atrazine catabolism and bacterial community structure in laterite soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127778. [PMID: 34823960 DOI: 10.1016/j.jhazmat.2021.127778] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Atrazine accumulation in agricultural soil is prone to cause serious environmental problems and pose risks to human health. Vermicomposting is an eco-friendly approach to accelerating atrazine biodegradation, but the roles of earthworm cast in the accelerated atrazine removal remains unclear. This work aimed to investigate the roles of earthworm cast in promoting atrazine degradation performance by comprehensively exploring the change in atrazine metabolites and bacterial communities. Our results showed that earthworm cast amendment significantly increased soil pH, organic matters, humic acid, fulvic acid and humin, and achieved a significantly higher atrazine removal efficiency. Earthworm cast addition also remarkably changed soil microbial communities by enriching potential soil atrazine degraders (Pseudomonadaceae, Streptomycetaceae, and Thermomonosporaceae) and introducing cast microbial degraders (Saccharimonadaceae). Particularly, earthworm casts increased the production of metabolites deethylatrazine and deisopropylatrazine, but not hydroxyatrazine. Some bacterial taxa (Gaiellaceaea and Micromonosporaceae) and humus (humic acid, fulvic acid and humin) were strongly correlated with atrazine metabolism into deisopropylatrazine and deethylatrazine, whereas hydroxyatrazine production was benefited by higher pH. Our findings verified the accelerated atrazine degradation with earthworm cast supplement, providing new insights into the influential factors on atrazine bioremediation in vermicomposting.
Collapse
Affiliation(s)
- Shuwen Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, PR China.
| |
Collapse
|
15
|
Tan H, Zhang H, Wu C, Wang C, Li Q. Pesticides in surface waters of tropical river basins draining areas with rice-vegetable rotations in Hainan, China: Occurrence, relation to environmental factors, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117100. [PMID: 33865099 DOI: 10.1016/j.envpol.2021.117100] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Pesticides are heavily applied in rice-vegetable rotations in tropical China, yet publicly available information on the contamination and risk of currently used pesticides (CUPs) and legacy pesticides (LPs) in surface waters of river basins draining these areas is very limited. Therefore, in two tropical river basins (Nandu River and Wanquan River basins) dominated by rice-vegetable rotations in Hainan, China, pesticides were analyzed in 256 surface water samples in wet and dry seasons. Forty-one pesticides were detected, and total concentrations ranged from not detectable to 24.2 μg/L. Carbendazim and imidacloprid were the two most prevalent CUPs, detected in 59.8% and 17.7%, respectively, of surface water samples at concentrations above 0.1 μg/L. Chlorpyrifos was the main LP, detected in 9.0% of samples at a concentration above 0.05 μg/L. The fungicides difenoconazole and emamectin benzoate, the herbicide butachlor, and the insecticide acetamiprid occurred in ≥12.5% samples at concentrations above 0.1 μg/L. Surface waters typically (85.2%) contained 5 to 15 residues, with an average of nine. Seasonally, the concentrations of the 41 pesticides were in the order January > July > November > September. Spatially, the composition of the main CUPs (not LPs) was significantly different depending on position in the drainage, which also changed with seasons. Crop and pest types and wet and dry seasons were the key factors controlling the spatiotemporal distribution of CUPs and LPs in surface waters. On the basis of evaluations of the exposures to individual pesticides and the dominant combinations with ≥8 pesticides, multiple pesticides were likely a significant risk to aquatic organisms, although noncarcinogenic and carcinogenic risks to humans were low. This study provides valuable data to better understand pesticide occurrence and ecological risks in river basins draining areas with rice-vegetable rotation systems in tropical China.
Collapse
Affiliation(s)
- Huadong Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou, 571737, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou, 571737, China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou, 571737, China
| | - Huijie Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; School of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyuan Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou, 571737, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou, 571737, China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou, 571737, China.
| | - Chuanmi Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou, 571737, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou, 571737, China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou, 571737, China
| |
Collapse
|
16
|
Liu J, Zhou JH, Guo QN, Ma LY, Yang H. Physiochemical assessment of environmental behaviors of herbicide atrazine in soils associated with its degradation and bioavailability to weeds. CHEMOSPHERE 2021; 262:127830. [PMID: 32763580 DOI: 10.1016/j.chemosphere.2020.127830] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Atrazine residue in soil is one of the serious environmental problems and continues to risk ecosystem and human health. To address the environmental behaviors and dissipation of atrazine and better manage the application of atrazine in reality, we comprehensively investigated the adsorption and desorption, migration ability, and vanishing of atrazine in three distinct soils in China including Jiangxi (JX, pH 5.45, TOC 0.54%), Nanjing (NJ, pH 6.15, TOC 2.13%), and Yancheng (YC, pH 8.60, TOC 0.58%) soils. The atrazine adsorptive capacity to the soils was arranged in the order of NJ > YC > JX. The leaching assay with profiles of the soils showed strong migration, suggesting it had a high bioavailability to weeds and potential for underground water contamination. We further investigated the effects of environmental factors such as soil moisture, microbial activity and photolysis on atrazine degradation and showed that the degradation of atrazine in the soil mainly underwent the abiotic process, most likely through hydrolysis and photolysis-mediated mechanisms, and to less extend through soil microbial catabolism. Using HRLC-Q-TOF-MS/MS and by comparing the measured and theoretical m/z values and fragmentation data, ten metabolites comprising eight degraded products and two conjugates were characterized. Atrazine existing in the soils and sprayed coordinately blocked the growth of three common weeds, which prompted us to use the minimal atrazine in practice to control the waste of the pesticide and its impact on the environment. Overall, our work provided an insight into the mechanisms for the degradation of atrazine residues in the soils and contributed to the environmental risk assessment of the pesticide and management in its application control in the crop rotation and safe production.
Collapse
Affiliation(s)
- Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Hua Zhou
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Qian Nan Guo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Khatoon H, Rai JPN. Optimization studies on biodegradation of atrazine by Bacillus badius ABP6 strain using response surface methodology. ACTA ACUST UNITED AC 2020; 26:e00459. [PMID: 32395437 PMCID: PMC7210405 DOI: 10.1016/j.btre.2020.e00459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 11/03/2022]
Abstract
Atrazine is widely used herbicide that causes harmful effects to living organisms. A bacterial isolate Bacillus badius ABP6 strain was used in the study. Optimization parameters showed better influence on the Biodegradation process of atrazine. Response surface methodology is a promising approach for Biodegradation enhancement by optimizing process parameters.
In this study, the optimization of distinctive environmental factors such as pH, temperature, agitation-speed and atrazine-concentration on atrazine degradation by utilizing Bacillus badius ABP6 strain, has been done through response-surface-methodology (RSM). The optimum-conditions after analysis for the maximum atrazine degradation were: pH 7.05, temperature 30.4 °C, agitation-speed 145.7 rpm, and atrazine-concentration 200.9 ppm. The prescribed model was approved for high F-value (95.92), very low P-value (<0.01) and non- significant lack of fit (0.1627). It was observed that under the optimized-conditions, the R2 value of regression models for all the response variables was 0.9897 and the maximum atrazine degradation i.e. 89.7 % was found. Finally for graphical representation, the validated optimum-conditions of variables and responses were simulated using three dimensional plots (3D). The confirmation of the model is successful to suggest the optimization parameters of atrazine degradation under in-situ condition by bacterial isolate employing response-surface-methodology optimization tool of Design expert software (new version 10.0.1).
Collapse
Affiliation(s)
- Hina Khatoon
- Department of Environmental Science, G.B. Pant University of Agriculture and Technology, Pantnagar (U.S. Nagar), Uttarakhand, India
| | - J P N Rai
- Department of Environmental Science, G.B. Pant University of Agriculture and Technology, Pantnagar (U.S. Nagar), Uttarakhand, India
| |
Collapse
|
18
|
Qu M, Liu G, Zhao J, Li H, Liu W, Yan Y, Feng X, Zhu D. Fate of atrazine and its relationship with environmental factors in distinctly different lake sediments associated with hydrophytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113371. [PMID: 31672348 DOI: 10.1016/j.envpol.2019.113371] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Atrazine contamination is of great concern due to its widespread occurrence in shallow lakes. Here, the distribution and degradation of atrazine in acidic and alkaline lake systems were investigated. Meanwhile, the bacterial communities in different sediments and the effects of environmental factors on atrazine-degrading bacteria were evaluated. In the lake systems without plants, atrazine levels in sediment interstitial water reached peak concentrations on the 4th d. More than 90% of atrazine was then degraded in all sediment interstitial water by day 30. Meanwhile, the degradation rate of atrazine in alkaline sediments was faster than that in acidic sediments. Values of hydroxylated metabolites in the acidic lake sediments tended to be greater. Moreover, the amounts of Proteobacteria, Actinobacteria, Firmicute, Nitrospinae, Aminicenantes, Ignavibacteriae and Saccharibacteria in acidic Tangxunhu Lake sediments were significantly different from alkaline Honghu Lake sediments, while the amounts of Cyanobacteria and Saccharibacteria in sediments treated with atrazine were significantly greater than those in sediments without atrazine (P < 0.05). Notably, pH was the most relevant environmental factor in the quantitative variation of atrazine-degrading bacteria, including in Clostridium-sensu-stricto, Pseudomonas, Comamonas and Rhodobacter. The Mantel test results indicated that the degradation of atrazine in different sediments was mainly affected by the sediment physicochemical properties rather than by the addition of atrazine and the cultivation of hydrophytes.
Collapse
Affiliation(s)
- Mengjie Qu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanglong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huidong Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Liu
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan 250014, China
| | - Yupeng Yan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xionghan Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Duanwei Zhu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Sánchez V, López-Bellido J, Rodrigo MA, Rodríguez L. Enhancing the removal of atrazine from soils by electrokinetic-assisted phytoremediation using ryegrass (Lolium perenne L.). CHEMOSPHERE 2019; 232:204-212. [PMID: 31154181 DOI: 10.1016/j.chemosphere.2019.05.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/08/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Atrazine (ATR) continues being one of the most frequently detected pesticides in natural waters and soils. In this work, an electrokinetic-assisted phytoremediation pot test (EKPR) was performed for the remediation of an atrazine-spiked soil; a low electric voltage gradient (1 V cm-1) with two different electric field operation times (6 and 24 h per day) was used in combination with ryegrass (Lolium perenne L.). EKPR increased up to 27% and 7% the overall ATR removal from soil as compared to natural attenuation and phytoremediation treatments, respectively. ATR soil concentration vs time curves were fitted to a pseudofirst-order kinetic equation, obtaining ATR half-life values of 8.2, 7.1 and 5.4 days for the treatments corresponding, respectively, to 0, 6 and 24 h day-1 of electric current application. It clearly showed that the ATR removal from soils was enhanced by the electric field. ATR plant accumulation was significantly improved with respect to phytoremediation when the electric current was continuously applied throughout the experiment (24 h day-1); most of the ATR residues were accumulated in the shoot biomass of the ryegrass plants.
Collapse
Affiliation(s)
- Virtudes Sánchez
- Department of Chemical Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela, s/n, 13071 Ciudad Real (Spain)
| | - Javier López-Bellido
- School of Agricultural Engineering, University of Castilla-La Mancha, Ronda de Calatrava, s/n, 13003, Ciudad Real (Spain)
| | - Manuel A Rodrigo
- Department of Chemical Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela, s/n, 13071 Ciudad Real (Spain)
| | - Luis Rodríguez
- Department of Chemical Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela, s/n, 13071 Ciudad Real (Spain).
| |
Collapse
|
20
|
Liu X, Chen K, Chuang S, Xu X, Jiang J. Shift in Bacterial Community Structure Drives Different Atrazine-Degrading Efficiencies. Front Microbiol 2019; 10:88. [PMID: 30761118 PMCID: PMC6363660 DOI: 10.3389/fmicb.2019.00088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/16/2019] [Indexed: 02/01/2023] Open
Abstract
Compositions of pollutant-catabolic consortia and interactions between community members greatly affect the efficiency of pollutant catabolism. However, the relationships between community structure and efficiency of catabolic function in pollutant-catabolic consortia remain largely unknown. In this study, an original enrichment (AT) capable of degrading atrazine was obtained. And two enrichments - with a better/worse atrazine-degrading efficiency (ATB/ATW) - were derived from the original enrichment AT by continuous sub-enrichment with or without atrazine. Subsequently, an Arthrobacter sp. strain, AT5, that was capable of degrading atrazine was isolated from enrichment AT. The bacterial community structures of these three enrichments were investigated using high-throughput sequencing analysis of the 16S rRNA gene. The atrazine-degrading efficiency improved as the abundance of Arthrobacter species increased in enrichment ATB. The relative abundance of Arthrobacter was positively correlated with those of Hyphomicrobium and Methylophilus, which enhanced atrazine degradation via promoting the growth of Arthrobacter. Furthermore, six genera/families such as Azospirillum and Halomonas showed a significantly negative correlation with atrazine-degrading efficiency, as they suppressed atrazine degradation directly. These results suggested that atrazine-degrading efficiency was affected by not only the degrader but also some non-degraders in the community. The promotion and suppression of atrazine degradation by Methylophilus and Azospirillum/Halomonas, respectively, were experimentally validated in vitro, showing that shifts in both the composition and abundance in consortia can drive the change in the efficiency of catabolic function. This study provides valuable information for designing enhanced bioremediation strategies.
Collapse
Affiliation(s)
| | | | | | - Xihui Xu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
|
22
|
Qu M, Li N, Li H, Yang T, Liu W, Yan Y, Feng X, Zhu D. Phytoextraction and biodegradation of atrazine by Myriophyllum spicatum and evaluation of bacterial communities involved in atrazine degradation in lake sediment. CHEMOSPHERE 2018; 209:439-448. [PMID: 29936117 DOI: 10.1016/j.chemosphere.2018.06.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/11/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
The accumulation of atrazine in lake sediments leads to persistent contamination, which may damage the succeeding submerged plants and create potential threats to the lake eco-environment. In this study, the degradation characteristics of atrazine and its detoxication by Myriophyllum spicatum and the associated bacterial community in lake sediments were evaluated. M. spicatum absorbed more than 18-fold the amount of atrazine in sediments and degraded atrazine to hydroxyatrazine (HA), deelthylatrazine (DEA), didealkylatrazine (DDA), cyanuric acid (CYA) and biuret. The formation of biuret suggested for the first time, the ring opening of atrazine in an aquatic plant. The residual rate of atrazine was 6.5 ± 2.0% in M. spicatum-grown sediment, which was significantly lower than the 18.0 ± 2.5% in unplanted sediments on day 60 (P < 0.05). Moreover, on day 15, the increase in contents of HA, CYA and biuret in M. spicatum-grown sediment indicated that M. spicatum promoted the degradation and removal of atrazine following rapid dechlorination. The colonization of M. spicatum and the addition of atrazine altered the structure of the dominant bacterial community in sediments, including effects on Nitrospirae and Acidobacteria. Based on the maximum amount among the genera of atrazine-degrading bacteria, Acetobacter was most likely responsible for the degradation of atrazine. Our findings reveal the natural attenuation of atrazine by aquatic organisms.
Collapse
Affiliation(s)
- Mengjie Qu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Na Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huidong Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tewu Yang
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Liu
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, 250014, China
| | - Yupeng Yan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xionghan Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Duanwei Zhu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
23
|
Yang X, Wei H, Zhu C, Geng B. Biodegradation of atrazine by the novel Citricoccus sp. strain TT3. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:144-150. [PMID: 28841530 DOI: 10.1016/j.ecoenv.2017.08.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
A previously undescribed atrazine-degrading bacterial strain TT3 capable of growing with atrazine as its sole nitrogen source was isolated from soil at the wastewater outfall of a pesticide factory in China. Phenotypic characterization and 16S rRNA gene sequencing indicated that the isolate belonged to the genus Citricoccus. Polymerase chain reaction (PCR) analysis revealed that TT3 contained the atrazine-degrading genes trzN, atzB, and atzC. The range for growth and atrazine degradation of TT3 was found to be pH 6.0-11.0, with a preference for alkaline conditions. At 30°C and pH 7.0, the strain removed 50mg/L atrazine in 66h with 1% inoculum. These results demonstrate that Citricoccus sp. TT3 has great potential for bioremediation of atrazine-contaminated sites, particularly in alkaline environments. To the best of our knowledge, there are no previous reports of Citricoccus strains that degrade atrazine, and therefore this work provides a novel candidate for atrazine bioremediation.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huanyu Wei
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Bing Geng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| |
Collapse
|
24
|
Wang H, Cao X, Li L, Fang Z, Li X. Augmenting atrazine and hexachlorobenzene degradation under different soil redox conditions in a bioelectrochemistry system and an analysis of the relevant microorganisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:735-741. [PMID: 28942276 DOI: 10.1016/j.ecoenv.2017.09.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Soil microbial fuel cells (MFCs) are a sustainable technology that degrades organic pollutants while generating electricity. However, there have been no detailed studies of the mechanisms of pollutant degradation in soil MFCs. In this study, the effects of external resistance and electrode effectiveness on atrazine and hexachlorobenzene (HCB) degradation were evaluated, the performance of soil MFCs in the degradation of these pollutants under different soil redox conditions was assessed, and the associated microorganisms in the anode were investigated. With an external resistance of 20Ω, the degradation efficiencies of atrazine and HCB were 95% and 78%, respectively. The degradation efficiency, degradation rate increased with decreasing external resistance, while the half-life decreased. There were different degradation trends for different pollutants under different soil redox conditions. The fastest degradation rate of atrazine was in the upper MFC section (aerobic), whereas that of HCB was in the lower MFC section (anaerobic). The results showed that electrode effectiveness played a significant role in pollution degradation. In addition, the microbial community analysis demonstrated that Proteobacteria, especially Deltaproteobacteria involved in current generation was extremely abundant (27.49%) on soil MFC anodes, although the percentage abundances of atrazine degrading Rhodocyclaceae (8.77%), Desulfitobacterium (0.64%), and HCB degrading Desulfuromonas (0.73%), were considerably lower. The results of the study suggested that soil MFCs can enhance the degradation of atrazine and HCB, and bioelectrochemical reduction was the main mechanism for the pollutants degradation.
Collapse
Affiliation(s)
- Hui Wang
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Xian Cao
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Lei Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Zhou Fang
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
25
|
la Cecilia D, Maggi F. In-situ atrazine biodegradation dynamics in wheat (Triticum) crops under variable hydrologic regime. JOURNAL OF CONTAMINANT HYDROLOGY 2017; 203:104-121. [PMID: 28754243 DOI: 10.1016/j.jconhyd.2017.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
A comprehensive biodegradation reaction network of atrazine (ATZ) and its 18 byproducts was coupled to the nitrogen cycle and integrated in a computational solver to assess the in-situ biodegradation effectiveness and leaching along a 5m deep soil cultivated with wheat in West Wyalong, New South Wales, Australia. Biodegradation removed 97.7% of 2kg/ha ATZ yearly applications in the root zone, but removal substantially decreased at increasing depths; dechlorination removed 79% of ATZ in aerobic conditions and 18% in anaerobic conditions, whereas deethylation and oxidation removed only 0.11% and 0.15% of ATZ, respectively. The residual Cl mass fraction in ATZ and 4 byproducts was 2.4% of the applied mass. ATZ half-life ranged from 150 to 247days in the soil surface. ATZ reached 5m soil depth within 200years and its concentration increased from 1×10-6 to 4×10-6mg/kgdry-soil over time. The correlation between ATZ specific biomass degradation affinity Φ0 and half-life t1/2, although relatively uncertain for both hydrolyzing and oxidizing bacteria, suggested that microorganisms with high Φ0 led to low ATZ t1/2. Greater ATZ applications were balanced by small nonlinear increments of ATZ biodegraded fraction within the root zone and therefore less ATZ leached into the shallow aquifer.
Collapse
Affiliation(s)
- Daniele la Cecilia
- Laboratory for Environmental Engineering, School of Civil Engineering, The University of Sydney, Bld. J05, Sydney 2006, NSW, Australia.
| | - Federico Maggi
- Laboratory for Environmental Engineering, School of Civil Engineering, The University of Sydney, Bld. J05, Sydney 2006, NSW, Australia.
| |
Collapse
|
26
|
Kumar A, Nain L, Singh N. Alginate immobilized enrichment culture for atrazine degradation in soil and water system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:229-236. [PMID: 28080203 DOI: 10.1080/03601234.2016.1270680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An atrazine degrading enrichment culture, a consortium of bacteria of genus Bacillus along with Pseudomonas and Burkholderia, was immobilized in sodium alginate and was used to study atrazine degradation in mineral salts medium (MSM), soil and wastewater effluent. Sodium alginate immobilized consortium, when stored at room temperature (24 ± 5°C), was effective in degrading atrazine in MSM up to 90 days of storage. The survival of bacteria in alginate beads, based on colony formation unit (CFU) counts, suggested survival up to 90 days and population counts decreased to 1/5th on 120 days. Comparison of atrazine degrading ability of the freely suspended enrichment culture and immobilized culture suggested that the immobilized culture took longer time for complete degradation of atrazine as a lag phase of 2 days was observed in the MSM inoculated with alginate immobilized culture. The free cells resulted in complete degradation of atrazine within 6 days, while immobilized cells took 10 days for 100% atrazine degradation. Further, immobilized cultures were able to degrade atrazine in soil and wastewater effluent. Alginate beads were stable and effective in degrading atrazine till 3rd transfer and disintegrated thereafter. The study suggested that immobilized enrichment culture, due to its better storage and application, can be used to degrade atrazine in soil water system.
Collapse
Affiliation(s)
- Anup Kumar
- a Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Lata Nain
- b Division of Microbiology, ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Neera Singh
- a Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute , New Delhi , India
| |
Collapse
|