1
|
Qiao P, Wang S, Li J, Zhao Q, Wei Y, Lei M, Yang J, Zhang Z. Process, influencing factors, and simulation of the lateral transport of heavy metals in surface runoff in a mining area driven by rainfall: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159119. [PMID: 36183764 DOI: 10.1016/j.scitotenv.2022.159119] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The lateral transport of heavy metals can expand the scope of original contamination, and an accurate prediction of heavy metal migration is necessary to control heavy metal transport. However, previous studies have mainly focused on the migration of soil pollutants in the runoff-soil-groundwater system, whereas research on the lateral migration of heavy metals in surface soil driven by rainfall is relatively scarce. Therefore, in this study we analyzed the horizontal migration of water-soluble heavy metals with surface runoff and non-water-soluble heavy metals with sediment particles, investigated the main factors affecting the processes of runoff and sediment transport and the main factors affecting the mobility of heavy metals in soils, summarized the existing methods for the simulation of heavy metal transportation. The construction of a lateral migration model based on the migration mechanism of soil heavy metals, the hydrological model, and the application of the lateral migration model should be the focus of future research. This study provides a theoretical basis for establishing a model of the lateral migration of soil heavy metals and is of great significance for the prevention and control of the risks related to the lateral migration of soil heavy metals.
Collapse
Affiliation(s)
- Pengwei Qiao
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China.
| | - Shuo Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China.
| | - Jiabin Li
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Qianyun Zhao
- YuHuan Environmental Technology Co., Ltd., Shijiazhuang 050051, China
| | - Yan Wei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| |
Collapse
|
2
|
Mirzaei M, Gorji Anari M, Saronjic N, Sarkar S, Kral I, Gronauer A, Mohammed S, Caballero-Calvo A. Environmental impacts of corn silage production: influence of wheat residues under contrasting tillage management types. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:171. [PMID: 36459271 PMCID: PMC9718881 DOI: 10.1007/s10661-022-10675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
The intensification of specific land management operations (tillage, herbicide, etc.) is increasing land degradation and contributing to ecosystem pollution. Mulches can be a sustainable tool to counter these processes. This is particularly relevant for rural areas in low-income countries where agriculture is a vital sector. In this research, the environmental impact of different rates of wheat residues (no residues, 25, 50, 75, and 100%) in corn silage cultivation was evaluated using the life cycle assessment (LCA) method under conventional tillage (CT) and no-tillage (NT) systems in a semi-arid region in Karaj, Iran. Results showed that in both tillage systems, marine aquatic ecotoxicity (ME) and global warming potential (GWP) had the highest levels of pollution among the environmental impact indicators. In CT systems, the minimum (17,730.70 kg 1,4-dichlorobenzene (DB) eq.) and maximum (33,683.97 kg 1,4-DB eq.) amounts of ME were related to 0 and 100% wheat residue rates, respectively. Also, in the CT system, 0 and 100% wheat residue rates resulted in minimum (176.72 kg CO2 eq.) and maximum (324.95 kg CO2 eq.) amounts of GWP, respectively. However, in the NT system, the 100% wheat residue rate showed the minimum amounts of ME (11,442.39 kg 1,4-DB eq.) and GWP (120.21 kg CO2 eq.). Also, in the NT system, maximum amounts of ME (17,174 kg 1,4-DB eq.) and GWP (175.60 kg CO2 eq.) were observed with a zero wheat residue rate. On-farm emissions and nitrogen fertilizers were the two factors with the highest contribution to the degradation related to environmental parameters at all rates of wheat residues. Moreover, in the CT system, the number of environmental pollutants increased with the addition of a higher wheat residue rate, while in the NT system, increasing residue rates decreased the amount of environmental pollutants. In conclusion, this LCA demonstrates that the NT system with the full retention of wheat residues (100%) is a more environmentally sustainable practice for corn silage production. Therefore, it may be considered one of the most adequate management strategies in this region and similar semi-arid conditions. Further long-term research and considering more environmental impact categories are required to assess the real potential of crop residues and tillage management for sustainable corn silage production.
Collapse
Affiliation(s)
- Morad Mirzaei
- Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.
| | - Manouchehr Gorji Anari
- Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Nermina Saronjic
- Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Sudip Sarkar
- ICAR Research Complex for Eastern Region, Patna, 800014, India
| | - Iris Kral
- Institute of Agricultural Engineering, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andreas Gronauer
- Institute of Agricultural Engineering, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Safwan Mohammed
- Institute of Land Utilization, Technology and Regional Planning, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Andrés Caballero-Calvo
- Departamento de Análisis Geográfico Regional y Geografía Física, Facultad de Filosofía y Letras, Universidad de Granada, Campus Universitario de Cartuja, 18071, Granada, Spain.
| |
Collapse
|
3
|
Luo T, Liu W, Xia D, Xia L, Guo T, Ma Y, Xu W, Hu Y. Effects of land use types on soil erodibility in a small karst watershed in western Hubei. PeerJ 2022; 10:e14423. [PMID: 36518298 PMCID: PMC9744158 DOI: 10.7717/peerj.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/29/2022] [Indexed: 12/03/2022] Open
Abstract
Background Soil erosion is a severe problem in the karst watershed, and analysis of soil erosion at the watershed scale is urgently needed. Methods This study tried to estimate the soil erodibility factor (K-factor) using the Erosion Productivity Impact Calculator (EPIC) nomograph and evaluate the spatial distribution of the predicted K-factor in a karst watershed. Soil properties and K-factors of five land use types (NF: natural mixed forest, CF: cypress forest, EF: economic forest, ST: stone dike terrace, VF: vegetable land) in the Xialaoxi small watershed were compared and key factors affecting erodibility were analyzed. Results Results showed that (1) The erodibility K-factor was unevenly distributed within different site types and strongly influenced by anthropogenic activities. The soil K-factors of sample sites subjected to frequent human disturbance (ST, VF) were high, ranging from 0.0480-0.0520 t hm2 h/(MJ mm hm2), while the soil K-factors of natural site types (NF, CF, and EF) were low, ranging from 0.0436-0.0448 t hm2 h/(MJ mm hm2). (2) The soil texture in the Xialaoxi watershed was mostly loamy, and that of the agricultural areas frequently disturbed by agricultural practices (ST, VF) was silty loam. (3) Soil carbon fractions were affected by land use types. Soil organic carbon storage of NF and CF had strong spatial heterogeneity. The soil organic carbon (SOC) and labile organic carbon (LOC) of the two were significantly higher than those of the disturbed EF and cultivated land soil. (4) There was a synergistic effect between the soil properties and the K-factor. K was significantly negatively related to sand fractions (2-0.05 mm) and non-capillary porosity, while positively related to silt content (0.05-0.002 mm). Overall, changes in bulk density (BD), total porosity (TP), non-capillary porosity (NCP), texture, and organic matter content caused by natural restoration or anthropogenic disturbance were the main reasons for soil erodibility. Natural care (sealing) and construction of stone dike planting practices were effective ways to reduce soil erosion in small karst watershed areas of western Hubei.
Collapse
Affiliation(s)
- Ting Luo
- China Three Gorges University, Hubei Provincial Engineering Research Center of Slope Habitat Construction Technology Using Cement-based Materials, Yichang, Hubei, China
| | - Wenjing Liu
- China Three Gorges University, Hubei Provincial Engineering Research Center of Slope Habitat Construction Technology Using Cement-based Materials, Yichang, Hubei, China
| | - Dong Xia
- Ministry of Natural Resources, Key Laboratory of Urban Land Resources Monitoring and Simulation, Guangdong, Shenzhen, China
| | - Lu Xia
- China Three Gorges University, Hubei Provincial Engineering Research Center of Slope Habitat Construction Technology Using Cement-based Materials, Yichang, Hubei, China
| | - Ting Guo
- China Three Gorges University, Hubei Provincial Engineering Research Center of Slope Habitat Construction Technology Using Cement-based Materials, Yichang, Hubei, China
| | - Yueyang Ma
- China Three Gorges University, Hubei Provincial Engineering Research Center of Slope Habitat Construction Technology Using Cement-based Materials, Yichang, Hubei, China
| | - Wennian Xu
- China Three Gorges University, Hubei Provincial Engineering Research Center of Slope Habitat Construction Technology Using Cement-based Materials, Yichang, Hubei, China
| | - Yue Hu
- China Three Gorges University, College of Art, Yichang, Hubei, China
| |
Collapse
|
4
|
Zhu M, He W, Liu Y, Chen Z, Dong Z, Zhu C, Chen Y, Xiong Y. Characteristics of Soil Erodibility in the Yinna Mountainous Area, Eastern Guangdong Province, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15703. [PMID: 36497776 PMCID: PMC9738717 DOI: 10.3390/ijerph192315703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Soil erodibility research is of theoretical and practical significance to the prediction and prevention of regional soil erosion. At present, the study on soil erodibility in the lateritic red soil area of eastern Guangdong province is relatively lacking. Taking the forest land soil of the Yinna mountainous area as the research object, the physical and chemical properties (organic matter mass fraction, texture, moisture, bulk density, pH, aggregate content) of soil samples at different altitudes were measured with field survey sampling and indoor analysis. Soil erodibility K values were simulated with different models (the EPIC model, the Torri model, and the Shirazi model) and the regional applicability of the K simulation models was discussed. The influence of soil properties on soil erodibility was analyzed. The results showed that: (1) K values in the Yinna mountainous area are between 0.0250 and 0.0331 t·hm2·h/MJ·mm·hm2, and the K value in the subsoil layer (20-40 cm) is higher than that of the topsoil layer (0-20 cm). These values decreased significantly with the increase of altitude. The soil in the study area belongs to low-medium to medium erodible soil types. (2) The three models have certain applicability in the Yinna mountainous area, but the simulation results still lack validation. (3) Soil particle size composition is the most important factor affecting the K value in the study area. As far as the topsoil is concerned, K values increase with the increase of clay and silt content and decrease with the increase of sand content and aggregate stability. Soil erodibility has no significant correlation with pH and bulk density and has no clear relationship with the content of soil organic carbon and soil moisture. The research results can provide basic data for regional soil and water conservation and the construction of K value databases of different soil types in China.
Collapse
Affiliation(s)
- Mingyong Zhu
- School of Geography and Tourism, Jiaying University, Meizhou 514015, China
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China
| | - Wenming He
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Youcun Liu
- School of Geography and Tourism, Jiaying University, Meizhou 514015, China
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China
| | - Zhiyun Chen
- School of Geography and Tourism, Jiaying University, Meizhou 514015, China
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China
| | - Zhicheng Dong
- School of Geography and Tourism, Jiaying University, Meizhou 514015, China
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China
| | - Changbai Zhu
- School of Geography and Tourism, Jiaying University, Meizhou 514015, China
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China
| | - Yankui Chen
- School of Geography and Tourism, Jiaying University, Meizhou 514015, China
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China
| | - Yongzhu Xiong
- School of Geography and Tourism, Jiaying University, Meizhou 514015, China
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China
| |
Collapse
|
5
|
RUSLE Model Evaluation of the Soil and Water Conservation Ratio of the Guizhou Province in China between 2000 and 2019. SUSTAINABILITY 2022. [DOI: 10.3390/su14138219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The soil and water conservation ratio (SWCR), which is a quantitative index for measuring the control degree of soil and water loss, is equal to the percentage of the land areas with a slight erosion intensity in the study area. The dynamic change in the SWCR reflects the dynamic process of realizing a specific soil and water conservation goal in a certain stage. The objectives of this study were to evaluate the change in the SWCR in the Guizhou Province in this century and to analyze its causes. The temporal and spatial variations of soil erosion intensity and SWCR were measured based on GIS technology and revised universal soil loss equation (RUSLE). The results showed that the spatial pattern of soil erosion intensity in the Guizhou Province was high in the west and low in the southeast, and that the soil erosion characteristics were obviously different between karst and non-karst areas. In the karst areas, the land with a moderate and above erosion intensity (>3 t hm−2 y−1 in the karst area; >25 t hm−2 y−1 in the non-karst area) accounted for 28.20–34.78% of the total area, while only accounting for 2.39–2.72% in the non-karst areas. From 2000 to 2019, the mean intensity of soil erosion decreased from 13.97 to 10.83 t hm−2 y−1, and the SWCR increased from 32.95% to 35.31%. According to the change in erosion intensity grades, 22.30% of the whole province’s erosion grade changed from high to low, especially in the west, with a high erosion intensity. Meanwhile, about 11.99% of the land in the central, eastern and southeastern regions, was where the erosion intensity showed a slight increase and the spatial distribution showed sporadic patch distribution characteristics, which may be related to an increase in infrastructure investment in the Guizhou Province in recent years. A large number of production and construction projects caused the destruction of surface vegetation and also caused patchy soil erosion. The spatial and temporal characteristics of the soil erosion and the SWCR in the Guizhou Province between 2000 and 2019 were mastered through this study, and our results provide an important basis for further scientific and reasonable soil and water conservation planning work.
Collapse
|
6
|
Palacios-Cabrera T, Valdes-Abellan J, Jodar-Abellan A, Rodrigo-Comino J. Land-use changes and precipitation cycles to understand hydrodynamic responses in semiarid Mediterranean karstic watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153182. [PMID: 35045347 DOI: 10.1016/j.scitotenv.2022.153182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Non-planned agricultural land abandonment is affecting natural hydrological processes. This is especially relevant in vulnerable arid karstic watersheds, where water resources are scarce but vital for sustaining natural ecosystems and human settlements. However, studies assessing the spatiotemporal evolution of the hydrological responses considering land-use changes and precipitation cycles for long periods are rare in karstic environments. In this research, we selected a representative karstic watershed in a Mediterranean semiarid domain, since in this belt, karst environments are prone to land degradation processes due to human impacts. Geographic Information Systems-based tools and hydrological modeling considering daily time steps were combined with temporal analysis of climate variables (wavelet analysis) to demonstrate possible interactions and vulnerable responses. Observed daily flow data were used to calibrate/validate these hydrological models by applying statistic indicators such as the NSE efficiency and a self-developed index (the ANSE index). This new index could enhance goodness-of-fit measurements obtained with traditional statistics during the model optimization. We hypothesize that this is key to adding new inputs to this research line. Our results revealed that: i) changes in the type of sclerophyllous vegetation (Quercus calliprinos, ilex, rotundifolia, suber, etc.) from 81.5% during the initial stage (1990) to natural grasslands by 81.6% (2018); and, ii) decreases in agricultural areas (crops) by approximately 60% and their transformation into coniferous forests, rock outcrops, sparsely natural grasslands, etc. in the same period. Consequently, increases in the curve number (CN) rates were identified as a result of land abandonment. As a result, an increase in peak flow events jointly with a relevant decrease of the average flow rates (water scarcity) in the watershed was predicted by the HEC-HMS model and verified through the observed data. This research provides useful information about the effects of anthropogenic changes in the hydrodynamic behaviour of karstic watersheds and water resource impacts, especially key in water-scarce areas that depict important hazards for the water supply of related populations and natural ecosystems.
Collapse
Affiliation(s)
- Teresa Palacios-Cabrera
- Faculty of Geology, Mines, Petroleum and Environmental Engineering, Central University of Ecuador, Ecuador
| | - Javier Valdes-Abellan
- Department of Civil Engineering, University of Alicante, Spain; University Institute of Water and Environmental Sciences, University of Alicante, Spain.
| | - Antonio Jodar-Abellan
- Departamento de Análisis Geográfico Regional y Geografía Física, Facultad de Filosofía y Letras, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; University Institute of Water and Environmental Sciences, University of Alicante, Spain
| | - Jesús Rodrigo-Comino
- Departamento de Análisis Geográfico Regional y Geografía Física, Facultad de Filosofía y Letras, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
| |
Collapse
|
7
|
Effects of Biochar Application on Vegetation Growth, Cover, and Erosion Potential in Sloped Cultivated Soil Derived from Mudstone. Processes (Basel) 2022. [DOI: 10.3390/pr10020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Soil degradation is a crucial problem, particularly in tropical and subtropical areas. Prevention or reduction of soil erosion requires strategies based on thorough rapid vegetation cover (VC) and favorable soil quality in subtropical and tropical areas. This study applied wood biochar (WB) and rice husk biochar (RHB) in a mudstone soil, which is widely distributed in Southern Taiwan, to investigate the effects of biochar application on soil erosion and vegetation restoration. The standard erosion unit plots (22.13 m in length and 9% in slope gradient) were set up to determine the relationship among soil losses, VC, and natural rainfall characteristics with and without biochar application. The results indicated that biochar application increased the growth rate (identified by cover ratio) of Bahia grass (Paspalum notatum Flüggé) by 2–2.6 times within 40 days compared with control (without biochar application) and increased VC by 20% after 120 days of treatment. The biochar application could effectively reduce soil losses by 60% at least in the mudstone soil. A well-predicted regression function of soil loss with VC and rainfall kinetic energy was established (amount of soil lost = −0.435 × ln VC + 0.54 × RKE, r = 0.89, p < 0.01).
Collapse
|
8
|
Vertical Distribution and Controlling Factors of Soil Inorganic Carbon in Poplar Plantations of Coastal Eastern China. FORESTS 2022. [DOI: 10.3390/f13010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Afforestation is a strategy to protect croplands and to sequestrate carbon in coastal areas. In addition, inorganic carbon is a considerable constitute of the coastal soil carbon pool. However, the vertical distribution and controlling factors of soil inorganic carbon (SIC) in plantations of coastal areas have been rarely studied. We analyzed the SIC content as well as physiochemical properties along soil profiles (0–100 cm) in young (YP) and mature (MP) poplar plantations in coastal eastern China. The soil profile was divided into six layers (0–10, 11–20, 21–40, 41–60, 61–80 and 81–100 cm) and a total of 36 soil samples were formed. The SIC content first increased from 0–10 cm (0.74%) to 11–20 cm (0.92%) and then fluctuated in the YP. In contrast, the SIC content increased with increasing soil depth until 40 cm and then leveled off, and the minimum and maximum appeared at 0–10 cm (0.54%) and 81–100 cm (0.98%) respectively in the MP. The soil inorganic carbon density was 12.05 and 12.93 kg m−2 within 0–100 cm in the YP and MP, respectively. Contrary to SIC, soil organic carbon (SOC) first decreased then levelled off within the soil profiles. Compared with the YP, the SIC content decreased 27.8% at 0–10 cm but increased 13.2% at 21–40 cm, meanwhile the SOC content in MP decreased 70.6% and 46.7% at 21–40 cm and 61–80 cm, respectively. The water-soluble Ca2+ and Mg2+ gradually decreased and increased, respectively within the soil profiles. The soil water-soluble Ca2+ increased 18.3% within 41–100 cm; however, the soil water-soluble Mg2+ decreased 32.7% within 21–100 cm in the MP when compared to the YP. Correlation analysis showed that SIC was negatively correlated with SOC, but positively correlated with soil pH and water-soluble Mg2+. Furthermore, structural equation modeling (SEM) indicated that SOC was the most important factor influencing the SIC content in the studied poplar plantations, indicating SOC sequestration promoted the dissolution of SIC. Therefore, our study highlights the trade-off between SIC and SOC in poplar plantations of coastal Eastern China.
Collapse
|
9
|
Eskandari Dameneh H, Gholami H, Telfer MW, Comino JR, Collins AL, Jansen JD. Desertification of Iran in the early twenty-first century: assessment using climate and vegetation indices. Sci Rep 2021; 11:20548. [PMID: 34654866 PMCID: PMC8519952 DOI: 10.1038/s41598-021-99636-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Remote sensing of specific climatic and biogeographical parameters is an effective means of evaluating the large-scale desertification status of drylands affected by negative human impacts. Here, we identify and analyze desertification trends in Iran for the period 2001-2015 via a combination of three indices for vegetation (NPP-net primary production, NDVI-normalized difference vegetation index, LAI-leaf area index) and two climate indices (LST-land surface temperature, P-precipitation). We combine these indices to identify and map areas of Iran that are susceptible to land degradation. We then apply a simple linear regression method, the Mann-Kendall non-parametric test, and the Theil-Sen estimator to identify long-term temporal and spatial trends within the data. Based on desertification map, we find that 68% of Iran shows a high to very high susceptibility to desertification, representing an area of 1.1 million km2 (excluding 0.42 million km2 classified as unvegetated). Our results highlight the importance of scale in assessments of desertification, and the value of high-resolution data, in particular. Annually, no significant change is evident within any of the five indices, but significant changes (some positive, some negative) become apparent on a seasonal basis. Some observations follow expectations; for instance, NDVI is strongly associated with cooler, wet spring and summer seasons, and milder winters. Others require more explanation; for instance, vegetation appears decoupled from climatic forcing during autumn. Spatially, too, there is much local and regional variation, which is lost when the data are considered only at the largest nationwide scale. We identify a northwest-southeast belt spanning central Iran, which has experienced significant vegetation decline (2001-2015). We tentatively link this belt of land degradation with intensified agriculture in the hinterlands of Iran's major cities. The spatial and temporal trends identified with the three vegetation and two climate indices afford a cost-effective framework for the prediction and management of future environmental trends in developing regions at risk of desertification.
Collapse
Affiliation(s)
- Hadi Eskandari Dameneh
- Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Iran
| | - Hamid Gholami
- Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Iran.
| | - Matt W Telfer
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, UK
| | - Jesús Rodrigo Comino
- Departamento de Análisis Geográfico Regional y Geografía Física, Facultad de Filosofía y Letras, Campus Universitario de Cartuja, University of Granada, 18071, Granada, Spain
| | - Adrian L Collins
- Sustainable Agriculture Sciences Department, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, UK
| | - John D Jansen
- GFÚ Institute of Geophysics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Cheng K, Xu X, Cui L, Li Y, Zheng J, Wu W, Sun J, Pan G. The role of soils in regulation of freshwater and coastal water quality. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200176. [PMID: 34365829 DOI: 10.1098/rstb.2020.0176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Water quality regulation is an important ecosystem service function of soil. In this study, the mechanism by which soil regulates water quality was reviewed, and the effects of soil management on water quality were explored. A scientometrics analysis was also conducted to explore the research fields and hotspots of water quality regulation of soil in the past 5 years. This review found that the pollutants entering the soil can be mitigated by precipitation, adsorption and desorption, ion exchange, redox and metabolic decomposition. As an optimal substrate, soil in constructed wetlands has perfect performance in the adsorption and passivation of pollutants such as nitrogen, phosphorus and heavy metals in water, and degradation of pesticides and emerging contaminants. Mangrove wetlands play an important role in coastal zone protection and coastal water quality restoration. However, the excessive application of agricultural chemicals causes soil overload, which leads to the occurrence of agricultural non-point source pollution. Under the dual pressures of climate change and food insecurity in the future, developing environmentally friendly and economically feasible sustainable soil management measures is crucial for maintaining the water purification function of soil by relying on the accurate quantification of soil function based on big data and modelling. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- Kun Cheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Xiangrui Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu 224003, People's Republic of China
| | - Yunpeng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Jufeng Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Wenao Wu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Jianfei Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Genxing Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| |
Collapse
|
11
|
Babur E, Kara O, Fathi RA, Susam YE, Riaz M, Arif M, Akhtar K. Wattle fencing improved soil aggregate stability, organic carbon stocks and biochemical quality by restoring highly eroded mountain region soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112489. [PMID: 33823452 DOI: 10.1016/j.jenvman.2021.112489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Eroded bare land stabilization is important to reduce soil erosion and stimulate soil carbon (C) sequestration for improved soil biogeochemical quality in hillslope soils. This study investigated the effectiveness of wattle fencing as a bioengineering tool to improve soil stabilization, soil physico-chemical properties and soil organic C dynamics and reduce soil erodibility in the Boyabat mountain regions of Turkey with rough and over-steepened slope (50-70%). Wattle fence treatments were developed in the area of 50 ha in the spring season of 2010 and surface (0-20 cm) and subsurface soil (20-40 cm) samples were taken in Spring, 2015. Results revealed that, compared to control with bare slope, wattle fencing significantly improved some soil physico-chemical, and microbial properties and erodibility indices by increasing clay ratio, dispersion ratio and aggregate stability index in surface and subsoils. Wattle fencing enhanced plant available water contents more in surface than in subsoils. Wattle fencing also increased microbial biomass C contents by 55% and 43% in surface and subsurface soils, respectively. Soil organic C followed similar trends; however, they were indifferent between sampling depths for the control soils. Soil organic C stocks and aggregate stability index were significantly positively correlated and seemed to be better predictor of positive effects of wattle fencing on soil structural stability, erodibility and associated properties. We found positive effects of soil organic C contents on microbial biomass C and soil-water relations suggesting restoration of soil biological functions and favorable influence on soil water retention following wattle fencing. Although sparse vegetation was observed in the research area, our study emphasizes performing further research to understand the effects of wattle fencing along with afforestation with native vegetation on soil erosion rates on a long-term basis by considering the variability in edaphic and environmental factors.
Collapse
Affiliation(s)
- Emre Babur
- Department of Soil Science and Ecology, Faculty of Forestry, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Omer Kara
- Department of Watershed Management, Faculty of Forestry, Karadeniz Technical University, Trabzon, Turkey
| | - Riyad Abdllah Fathi
- College of Environmental Science and Technologies, University of Mosul, Mosul, Iraq
| | | | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan.
| | - Muhammad Arif
- Department of Agronomy, The University of Agriculture Peshawar, Pakistan
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Hateffard F, Mohammed S, Alsafadi K, Enaruvbe GO, Heidari A, Abdo HG, Rodrigo-Comino J. CMIP5 climate projections and RUSLE-based soil erosion assessment in the central part of Iran. Sci Rep 2021; 11:7273. [PMID: 33790351 PMCID: PMC8012627 DOI: 10.1038/s41598-021-86618-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/18/2021] [Indexed: 02/01/2023] Open
Abstract
Soil erosion (SE) and climate change are closely related to environmental challenges that influence human wellbeing. However, the potential impacts of both processes in semi-arid areas are difficult to be predicted because of atmospheric variations and non-sustainable land use management. Thus, models can be employed to estimate the potential effects of different climatic scenarios on environmental and human interactions. In this research, we present a novel study where changes in soil erosion by water in the central part of Iran under current and future climate scenarios are analyzed using the Climate Model Intercomparison Project-5 (CMIP5) under three Representative Concentration Pathway-RCP 2.6, 4.5 and 8.5 scenarios. Results showed that the estimated annual rate of SE in the study area in 2005, 2010, 2015 and 2019 averaged approximately 12.8 t ha-1 y-1. The rangeland areas registered the highest soil erosion values, especially in RCP2.6 and RCP8.5 for 2070 with overall values of 4.25 t ha-1 y-1 and 4.1 t ha-1 y-1, respectively. They were followed by agriculture fields with 1.31 t ha-1 y-1 and 1.33 t ha-1 y-1. The lowest results were located in the residential areas with 0.61 t ha-1 y-1 and 0.63 t ha-1 y-1 in RCP2.6 and RCP8.5 for 2070, respectively. In contrast, RCP4.5 showed that the total soil erosion could experience a decrease in rangelands by - 0.24 t ha-1 y-1 (2050), and - 0.18 t ha-1 y-1 (2070) or a slight increase in the other land uses. We conclude that this study provides new insights for policymakers and stakeholders to develop appropriate strategies to achieve sustainable land resources planning in semi-arid areas that could be affected by future and unforeseen climate change scenarios.
Collapse
Affiliation(s)
- Fatemeh Hateffard
- grid.7122.60000 0001 1088 8582Department of Landscape Protection and Environmental Geography, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Safwan Mohammed
- grid.7122.60000 0001 1088 8582Institute of Land Use, Technology and Regional Development, University of Debrecen, Debrecen, 4032 Hungary
| | - Karam Alsafadi
- grid.7155.60000 0001 2260 6941Department of Geography and GIS, Faculty of Arts, Alexandria University, Alexandria, 25435 Egypt ,grid.260478.fSchool of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Glory O. Enaruvbe
- grid.10824.3f0000 0001 2183 9444African Regional Institute for Geospatial Information Science and Technology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ahmad Heidari
- grid.46072.370000 0004 0612 7950Soil Science Department, University of Tehran, Karaj, Iran
| | - Hazem Ghassan Abdo
- Geography Department, University of Tartous, Tartous, Syria ,grid.8192.20000 0001 2353 3326Geography Department, University of Damascus, Damascus, Syria ,grid.412741.50000 0001 0696 1046Geography Department, University of Tishreen, Lattakia, Syria
| | - Jesús Rodrigo-Comino
- grid.12391.380000 0001 2289 1527Physical Geography, Trier University, 54296 Trier, Germany ,grid.5338.d0000 0001 2173 938XSoil Erosion and Degradation Research Group, Department of Geography, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
13
|
Laskar SY, Sileshi GW, Pathak K, Debnath N, Nath AJ, Laskar KY, Singnar P, Das AK. Variations in soil organic carbon content with chronosequence, soil depth and aggregate size under shifting cultivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143114. [PMID: 33129519 DOI: 10.1016/j.scitotenv.2020.143114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Shifting cultivation is a globally important form of agriculture covering over 280 million hectares in the tropics, but it has often been blamed for deforestation and forest degradation. In North East India (NEI) it has been practiced for millennia and it is an important element of the cultural identity of indigenous communities. It is often practiced on slopping lands with fragile soils (mostly Acrisols), which are prone to rapid degradation with cultivation. The shortened fallow cycle as practised currently is ecologically unsustainable and economically not viable. This study aimed to quantify (i) changes in soil bulk density, aggregate stability and compaction in relation to chronosequence and soil depth, (ii) changes in the proportion of macro, meso, and micro aggregates and associated soil organic carbon (SOC) content in relation to soil depth and fallow chronosequence, and (iii) determine the minimum fallow length that achieves SOC stocks comparable with adjacent intact forest land. The proportion of soil macro-aggregates and meso-aggregates significantly varied with land-use and soil depth as well as their interactive effects. Across all soil depths, forest land had the highest proportion of macro-aggregates (75.6%), while the currently cultivated land had the least proportion (51.1%). The SOC contents in macro-aggregates increased with fallow age and decreased with soil depth; the highest (1.95%) being in the top 10 cm soil of 20 years old fallows and the lowest (0.39%) in 21-30 cm depth of 5 years old fallows. Multivariate analysis identified bulk density and porosity as the most important variables to discriminate between land use practices. The analysis provided evidence for significant changes in soil compaction, aggregate stability and SOC content with the transition from undisturbed forest to slash-and-burn cultivation and fallow phases. It is concluded that a minimum of 20 years of fallow period is required to achieve SOC content and C stocks comparable with intact forest land.
Collapse
Affiliation(s)
- Sabina Yasmin Laskar
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India
| | - Gudeta Weldesemayat Sileshi
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia; University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| | - Karabi Pathak
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India; Carbon Management and Sequestration Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nirmal Debnath
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India
| | - Arun Jyoti Nath
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India.
| | - Kaynath Yasmin Laskar
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India
| | - Pator Singnar
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India
| | - Ashesh Kumar Das
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
14
|
Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments. SUSTAINABILITY 2021. [DOI: 10.3390/su13020789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The main aim of this research was to determine the potential effects of different tillage systems (TT: traditional tillage and RT: reduced tillage) on runoff and erosion at two different locations (Kahramanmaras and Tarsus, Southern Turkey) under (i) fallow, (ii) wheat (Triticumaestivum L.), and (iii) sainfoin (Onobrychissativa L.) crops. Rainfall simulations with intensity of 120 mm h−1 and 30-min duration, representing a typical extreme thunderstorm in this area, were used. We quantified the elapsed time to runoff generation (ET), total runoff volume (R), soil loss (SL), sediment concentration (SC), and runoff coefficient (RC). At both locations, the fallow plots indicated the first runoff response ranging between 1.2 and 3.1 min, while the range was between 9.4 and 8.9 min for the sainfoin plots. The highest runoff coefficient was recorded for the fallow parcel in Tarsus (57.7%), and the lowest runoff coefficient was recorded for the sainfoin parcel in Kahramanmaras (4%). For both study sites, the fallow plots showed higher soil erosion rates (871 and 29.21 g m−2) compared with the wheat plots (307 and 11.25 g m−2), while sainfoin recorded the lowest soil losses (93.68 and 3.45 g m−2), for Tarsus and Kahramanmaras, respectively. Runoff and sediment yield generated from sainfoin and wheat parcels under the RT system were less than under the TT system at the Kahramanmaras location. At the Tarsus location, the effect of soil tillage on soil and water losses was insignificant on the sainfoin planted plots. The reduced tillage system was successful in reducing sediment yield and runoff generated from parcels growing wheat and sainfoin compared to traditional tillage in Tarsus location, but runoff and soil loss were found to be very high compared to parcels constructed in the Kahramanmaras location.
Collapse
|
15
|
Remke AA, Rodrigo-Comino J, Wirtz S, Ries JB. Finding Possible Weakness in the Runoff Simulation Experiments to Assess Rill Erosion Changes without Non-Intermittent Surveying Capabilities. SENSORS 2020; 20:s20216254. [PMID: 33147809 PMCID: PMC7662279 DOI: 10.3390/s20216254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 11/26/2022]
Abstract
The Terrestrial Photogrammetry Scanner (TEPHOS) offers the possibility to precisely monitor linear erosion features using the Structure from Motion (SfM) technique. This is a static, multi-camera array and dynamically moves the digital videoframe camera designed to obtain 3-D models of rills before and after the runoff experiments. The main goals were to (1) obtain better insight into the rills; (2) reduce the technical gaps generated during the runoff experiments using only one camera; (3) enable the visual location of eroded, transported and accumulated material. In this study, we obtained a mean error for all pictures reaching up to 0.00433 pixels and every single one of them was under 0.15 pixel. So, we obtained an error of about 1/10th of the maximum possible resolution. A conservative value for the overall accuracy was one pixel, which means that, in our case, the accuracy was 0.0625 mm. The point density, in our example, reached 29,484,888 pts/m2. It became possible to get a glimpse of the hotspots of sidewall failure and rill-bed incision. We conclude that the combination of both approaches—rill experiment and 3D models—will make easy under laboratory conditions to describe the soil erosion processes accurately in a mathematical–physical way.
Collapse
Affiliation(s)
- Alexander André Remke
- Department of Physical Geography, University of Trier, 54286 Trier, Germany;
- Dienstleistungszentrum Ländlicher Raum Mosel, 54770 Bernkastel-Kues, Germany
- Correspondence: (A.A.R.); (J.R.-C.)
| | - Jesus Rodrigo-Comino
- Department of Physical Geography, University of Trier, 54286 Trier, Germany;
- Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, 46010 Valencia, Spain
- Correspondence: (A.A.R.); (J.R.-C.)
| | - Stefan Wirtz
- Zentrum für Geoinformationswesen der Bundeswehr, 53879 Euskirchen, Germany;
| | - Johannes B. Ries
- Department of Physical Geography, University of Trier, 54286 Trier, Germany;
| |
Collapse
|
16
|
Estimating Human Impacts on Soil Erosion Considering Different Hillslope Inclinations and Land Uses in the Coastal Region of Syria. WATER 2020. [DOI: 10.3390/w12102786] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Soils in the coastal region of Syria (CRoS) are one of the most fragile components of natural ecosystems. However, they are adversely affected by water erosion processes after extreme land cover modifications such as wildfires or intensive agricultural activities. The main goal of this research was to clarify the dynamic interaction between erosion processes and different ecosystem components (inclination, land cover/land use, and rainy storms) along with the vulnerable territory of the CRoS. Experiments were carried out in five different locations using a total of 15 erosion plots. Soil loss and runoff were quantified in each experimental plot, considering different inclinations and land uses (agricultural land (AG), burnt forest (BF), forest/control plot (F)). Observed runoff and soil loss varied greatly according to both inclination and land cover after 750 mm of rainfall (26 events). In the cultivated areas, the average soil water erosion ranged between 0.14 ± 0.07 and 0.74 ± 0.33 kg/m2; in the BF plots, mean soil erosion ranged between 0.03 ± 0.01 and 0.24 ± 0.10 kg/m2. The lowest amount of erosion was recorded in the F plots where the erosion ranged between 0.1 ± 0.001 and 0.07 ± 0.03 kg/m2. Interestingly, the General Linear Model revealed that all factors (i.e., inclination, rainfall and land use) had a significant (p < 0.001) effect on the soil loss. We concluded that human activities greatly influenced soil erosion rates, being higher in the AG lands, followed by BF and F. Therefore, the current study could be very useful to policymakers and planners for proposing immediate conservation or restoration plans in a less studied area which has been shown to be vulnerable to soil erosion processes.
Collapse
|
17
|
The Use of Straw Mulches to Mitigate Soil Erosion under Different Antecedent Soil Moistures. WATER 2020. [DOI: 10.3390/w12092518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Straw mulch cover is one of the most important soil erosion control measures applied to reduce runoff and soil loss in cultivated areas. However, in developing countries such as Iran, without a clear tradition or knowledge about soil erosion control measures, the use of straw mulch is rare, and its impact in the most extended crops is not well understood. We investigated the separate and combined effects of colza (Brassica napus L.) and corn (Zea mays L.), to mitigate the activation of soil loss and runoff in sandy-loam soils, under different antecedent soil moisture conditions, in a rainfed plot in Northern Iran. Under laboratory conditions, we used a rainfall simulator device. The experiments were performed by using a rainfall intensity of 50 mm h−1, with a duration of 10 min and an inclination of 30%, with three replications. These conditions were used to evaluate the soils under extreme meteorological and topographical conditions. Two types of straw mulch, colza and corn, separated and combined with three different cover levels (25, 50 and 75%) and four distinct antecedent soil moisture conditions (0, 15, 20 and 30%), were used. The results showed that the applied straw mulches had significant effects on the reduction of soil loss and sediment concentration, by almost 99%. The maximum reduction of soil loss and sediment concentration was observed for the treatments with 0% moisture and 75% of corn, colza + corn and colza, with a reduction of 93.8, 92.2 and 84.9% for soil loss, respectively, and 91.1, 85.7 and, 60.7% for sediment concentration, respectively. The maximum reduction of runoff was also obtained with 0% soil moisture and a cover of 75%, reducing 62.5, 48.5 and 34.8% for colza, colza + corn and corn, respectively. The corn straw mulch showed the highest effectivity on reducing soil loss and sediment concentration toward colza treatment. But the colza straw mulch showed the best results on reducing runoff toward corn treatment. We conclude that the application of straw mulch is affordable and useful in reducing soil loss and runoff, instead of bare soils.
Collapse
|
18
|
Yao Y, Liu J, Wang Z, Wei X, Zhu H, Fu W, Shao M. Responses of soil aggregate stability, erodibility and nutrient enrichment to simulated extreme heavy rainfall. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136150. [PMID: 31905550 DOI: 10.1016/j.scitotenv.2019.136150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Extreme precipitation regime under global change context is estimated to cause heavy rainstorms and longer drought intervals. Temporal variations of soil structure and erosion characteristics during and after heavy rainstorms were less investigated, particularly across a wide soil texture gradient. In this study, 15 soils were selected with clay content ranging in 12.9-38.2%. Soil erosion characteristics and enrichment ratios of organic carbon (EROC) and nitrogen (ERN) were measured during 3 successive rainfall simulations at slope of 15° and intensity of 120 mm h-1. The water-stable aggregate distribution was measured for soils before and after rainfall and drying. The mean weight diameter (MWD) of water-stable aggregate remained unchanged before (1.476 ± 0.182) and after rainfall and drying (1.406 ± 0.135 mm), but decreased for soils with higher organic carbon contents. Soil erodibility (K factor) averaged in 0.018 ± 0.003, 0.011 ± 0.001 and 0.008 ± 0.001 in 3 successive rainfall events, with 42% and 27% decreases after each event, respectively (P < 0.05); and the decreases were greater for less aggregated soils or coarser textured soils. Stepwise regression showed that the <0.25 mm water-stable aggregate explained most variations of K and its dynamics. The EROC and ERN were close to 1 and were not correlated with clay content or MWD (P > 0.05). The ERN decreased first and then remained stable, and EROC was unchanged during successive rainfalls. These results indicated that soil texture or aggregation status affected soil erodibility and its temporal changes in successive rainstorms.
Collapse
Affiliation(s)
- Yufei Yao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Zhao Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Hansong Zhu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Wei Fu
- School of Land Resources and Urban & Rural Planning, Hebei GEO University, Shijiazhuang 050031, China
| | - Mingan Shao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| |
Collapse
|
19
|
Zheng S, Lourenço SDN, Cleall PJ, Ng AKY. Erodibility of synthetic water repellent granular materials: Adapting the ground to weather extremes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:398-412. [PMID: 31279187 DOI: 10.1016/j.scitotenv.2019.06.328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Granular materials with synthetic water repellent coatings have great potential to be used in ground interfaces (ground-atmosphere-vegetation and ground-structure) as infiltration barriers, due to their altered hydrological properties (suppressed infiltration and decreased sorptivity). However, very few studies have evaluated the impact of synthetic soil water repellency on soil erosion. This paper investigates the effect of water repellency on soil erosional behavior, including splash erosion and rill processes. Twenty-four flume tests were carried out on model slopes under artificial rainfall; soils with three wettability levels were tested, including wettable (contact angle, CA < 90°), subcritical water repellent (CA ~ 90°) and water repellent (CA > 90°). Various rainfall intensities (230 mm/h, 170 mm/h, 100 mm/h and 40 mm/h) and grain sizes (Fujian sand and sand/silt mixture) were adopted. Erosional variables, including splash erosion rate, average sediment concentration, peak sediment concentration and time to peak sediment were measured to quantitatively analyze the behavior. This study confirms the impact of water repellency on soil erosion and unveils the possibility to reduce infiltration at ground-atmosphere interface with controlled soil erosion. The results revealed that: (1) synthetic water repellency does not necessarily lead to increased soil erosion yield; its impact is dependent on grain size with the soil erosion loss increasing for Fujian sand, but decreasing for sand/silt mixtures; (2) splash erosion is positively correlated to soil water repellency and high rainfall intensity, regardless of grain size; (3) the erosion processes for sand/silt mixtures are particle size selective and not affected by soil water repellency, whereas this phenomenon is not observed with Fujian sand.
Collapse
Affiliation(s)
- Shuang Zheng
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Sérgio D N Lourenço
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| | - Peter J Cleall
- School of Engineering, Cardiff University, United Kingdom
| | - Angel K Y Ng
- Ove Arup & Partners (Hong Kong) Ltd., Hong Kong, China
| |
Collapse
|
20
|
Estimating Non-Sustainable Soil Erosion Rates in the Tierra de Barros Vineyards (Extremadura, Spain) Using an ISUM Update. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9163317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monitoring soil erosion processes and measuring soil and water yields allow supplying key information to achieve land degradation neutrality challenges. Vineyards are one of the most affected agricultural territories by soil erosion due to human and natural factors. However, the spatial variability of soil erosion, the number of sampling points, and plot size necessary to estimate accurate soil erosion rates remains unclear. In this research, we determine how many inter-rows should be surveyed to estimate the soil mobilization rates in the viticulture area of Tierra de Barros (Extremadura, SW Spain) using the Improved Stock Unearthing Method (ISUM). This method uses the graft union of the vines as a passive biomarker of the soil surface level changes since the time of plantation and inter-row measures. ISUM was applied to three inter-row and four rows of vines (5904 sampling points) in order to determine how many surfaces and transects must be surveyed as all the previous surveys were done with only one inter-row. The results showed average values of soil depletion reaching −11.4, −11.8, and −11.5 cm for the inter-rows 1, 2, and 3, respectively. The current soil surface level descended 11.6 cm in 20 years. The inter-rows 1, 2, and 3 with a total area of 302.4 m2 each one (2016 points) recorded 71.4, 70.8, and 74.0 Mg ha−1 yr−1, respectively. With the maximum number of sampling points (5904), 71.2 Mg ha−1 yr−1 were obtained. The spatial variability of the soil erosion was shown to be very small, with no statistically significant differences among inter-rows. This could be due to the effect of the soil profile homogenization as a consequence of the intense tillage. This research shows the potential predictability of ISUM in order to give an overall overview of the soil erosion process for vineyards that follow the same soil management system. We conclude that measuring one inter-row is enough to get an overview of soil erosion processes in vineyards when the vines are under the same intense tillage management and topographical conditions. Moreover, we demonstrated the high erosion rates in a vineyard within the viticultural region of the Tierra de Barros, which could be representative for similar vineyards with similar topographical conditions, soil properties, and a possible non-sustainable soil management system.
Collapse
|
21
|
Determining Land Management Zones Using Pedo-Geomorphological Factors in Potential Degraded Regions to Achieve Land Degradation Neutrality. LAND 2019. [DOI: 10.3390/land8060092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The proper delineation of site-specific management zones is very important in the agricultural land management of potentially degraded areas. There is a necessity for the development of prospective tools in management plans to correctly understand the land degradation processes. In order to accomplish this, we present a pedo-geomorphological approach using soil texture, land elevation and flow vector aspects to distinguish different management zones and to discretize soil micronutrients. To achieve this goal, we conducted the study in the Neyshabur plain, Northeast Iran. For data collection, grid sampling (500 × 500 m) was used with 70 specific points. Soil samples were collected in triplicates from various sites as composite samples (0–30 cm) to analyse clay, Zn, Mn, Cu and Fe. Using the altitude information (obtained with GPS at each sampling point), flow vectors were also modelled for all selected points. Based on the values of altitude, flow vectors and clay, management zones were delimited using geographic information systems. The best data organization was obtained from the combination of clay + elevation + flow vector attributes, generating two different management zones. In this circumstance, the lowest fuzzy performance index (FPI) and modified partition entropy (MPE) values were generated. It can be observed that the management zone 1 (MZ1) is located in the areas with a lower elevation and higher content of clay. On the other hand, the MZ2 was characterized by areas with a higher elevation and lower clay content. This study concluded that the design of management zones, using pedo-geomorphological information could reduce the time and cost of sampling necessary to assess potentially degraded areas of land.
Collapse
|
22
|
Distribution of Shrubland and Grassland Soil Erodibility on the Loess Plateau. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061193. [PMID: 29875335 PMCID: PMC6025177 DOI: 10.3390/ijerph15061193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/20/2018] [Accepted: 06/04/2018] [Indexed: 11/23/2022]
Abstract
Soil erosion is one of the most severe problems facing environments and has increased throughout the 20th century. Soil erodibility (K-factor) is one of the important indicators of land degradation, and many models have been used to estimate K values. Although soil erodibility has been estimated, the comparison of different models and their usage at a regional scale and, in particular, for different land use types, need more research. Four of the most widely distributed land use types were selected to analyze, including introduced and natural grassland, as well as introduced and natural shrubland. Soil particle size, soil organic matter and other relevant soil properties were measured to estimate soil erodibility in the Loess Plateau. The results show that: (1) the erosion productivity impact calculator (EPIC) model and SHIRAZI model are both suitable for the Loess Plateau, while the SHIRAZI model has the advantage of fewer parameters; (2) introduced grassland has better ability to protect both the 0–5 cm soils and 5–20 cm soils, while the differences between introduced and natural shrubland are not obvious at a catchment scale; (3) the K values of introduced grassland, natural grassland, introduced shrubland and natural shrubland in the 0–5 cm layer vary from 0.008 to 0.037, 0.031 to 0.046, 0.012 to 0.041 and 0.008 to 0.045 (t·hm2·h/(MJ·mm·hm2)), while the values vary from 0.009 to 0.039, 0.032 to 0.046, 0.012 to 0.042 and 0.008 to 0.048 (t·hm2·h/(MJ·mm·hm2)) in the 5–20 cm layer. The areas with a mean multiyear precipitation of 370–440 mm are the most important places for vegetation restoration construction management at a regional scale. A comprehensive balance between water conservation and soil conservation is needed and important when selecting the species used to vegetation restoration. This study provides suggestions for ecological restoration and provides a case study for the estimate of soil erodibility in arid and semiarid areas.
Collapse
|