1
|
Mu D, Li P, De Baets B, Li D, Li Z, He S. A multi-perspective exploration of the salinization mechanisms of groundwater in the Guanzhong Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177421. [PMID: 39521077 DOI: 10.1016/j.scitotenv.2024.177421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
A comprehensive understanding of the salinization of groundwater in the Guanzhong Basin, China, is crucial for ensuring sustainable groundwater development. However, the mechanism driving salinization in different regions of the basin remains unclear. Therefore, this study employed multivariate statistical methods, hydrochemical analysis, isotope studies, and hydrochemical modeling to uncover the factors and processes influencing groundwater salinization. The results indicate significant regional variations in total dissolved solids (TDS), with concentrations exceeding 1000 mg/L predominantly occurring to the north of the Weihe River and the east of the Jinghe River. The correlations of groundwater chloride (Cl-) with Cl/Br molar ratio and stable isotopes show that groundwater salinity in the Guanzhong Basin is mainly controlled by mineral dissolution, and evaporation. In addition, human activities, such as vertical irrigation recharge and excessive fertilizer use, exacerbate local salinity levels. Irrigation activities worsen the shallow groundwater salt enrichment in the runoff zone of the central basin, revealed by the high salinity (TDS>3000 mg/L), high Cl/Br ratios (>2000), moderate δ2H (-57.5 to -67.5 ‰) and moderate δ18O (-8.1 to -8.9 ‰). High salinity (TDS>1000 mg/L), high nitrate concentration (>100 mg/L), and moderate Cl- (100 to 500 mg/L) indicate the impact of excessive fertilizer use. It is worth noting that intensive groundwater withdrawal disrupts the dynamic balance within the aquifer, causing shallow high-saline groundwater to percolate downward, thereby increasing the risk of deep groundwater pollution. The research enhances the understanding of groundwater salinity transport and provides insights into the effects of groundwater salinization in the irrigation area.
Collapse
Affiliation(s)
- Dawei Mu
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China.
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Dongfeng Li
- PowerChina Sinohydro Bureau 3 Co., LTD., No. 4069 Expo Avenue, Chanba Ecological District, Xi'an 710024, Shaanxi, China
| | - Zhaoyu Li
- PowerChina Sinohydro Bureau 3 Co., LTD., No. 4069 Expo Avenue, Chanba Ecological District, Xi'an 710024, Shaanxi, China
| | - Song He
- PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an 710065, Shaanxi, China
| |
Collapse
|
2
|
Abidi JH, Elzain HE, Sabarathinam C, El Fehri RM, Farhat B, Ben Mammou A, Waterloo MJ, Yassin MA, Senapathi V. Integrated approach to understand the multiple natural and anthropogenic stresses on intensively irrigated coastal aquifer in the Mediterranean region. ENVIRONMENTAL RESEARCH 2024; 252:118757. [PMID: 38537744 DOI: 10.1016/j.envres.2024.118757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Understanding the major factors influencing groundwater chemistry and its evolution in irrigation areas is crucial for efficient irrigation management. Major ions and isotopes (δD-H2O together with δ18O-H2O) were used to identify the natural and anthropogenic factors contributing to groundwater salinization in the shallow aquifer of the Wadi Guenniche Plain (WGP) in the Mediterranean region of Tunisia. A comprehensive geochemical investigation of groundwater was conducted during both the low irrigation season (L-IR) and the high irrigation season (H-IR). The results show that the variation range and average concentrations of almost all the ions in both the L-IR and H-IR seasons are high. The groundwater in both seasons is characterized by high electrical conductivity and CaMgCl/SO4 and NaCl types. The dissolution of halite and gypsum, the precipitation of calcite and dolomite, and Na-Ca exchange are the main chemical reactions in the geochemical evolution of groundwater in the Wadi Guenniche Shallow Aquifer (WGSA). Stable isotopes of hydrogen and oxygen (δ18O-H2O and δD-H2O) indicate that groundwater in WGSA originated from local precipitation. In the H-IR season, the δ18O-H2O and δD-H2O values indicate that the groundwater experienced noticeable evaporation. The enriched isotopic signatures reveal that the WGSA's groundwater was influenced by irrigation return flow and seawater intrusion. The proportions of mixing with seawater were found to vary between 0.12% and 5.95%, and between 0.13% and 8.42% during the L-IR and H-IR seasons, respectively. Irrigation return flow and the associated evaporation increase the dissolved solids content in groundwater during the irrigation season. The long-term human activities (fertilization, irrigation, and septic waste infiltration) are the main drives of the high nitrate-N concentrations in groundwater. In coastal irrigation areas suffering from water scarcity, these results can help planners and policy makers understand the complexities of groundwater salinization to enable more sustainable management and development.
Collapse
Affiliation(s)
- Jamila Hammami Abidi
- Laboratory of Mineral Resources and Environment, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Hussam Eldin Elzain
- Water Research Center, Sultan Qaboos University, PO Box 50, AlKhoud 123, Oman.
| | | | - Rihem Mejdoub El Fehri
- Laboratory of Geotechnical Engineering and Georisk, High National School of Engineering of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Boutheina Farhat
- Laboratory of Mineral Resources and Environment, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Abdallah Ben Mammou
- Laboratory of Mineral Resources and Environment, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | | | - Mohamed A Yassin
- Interdisciplinary Research Center for Membranes and Water Security, KFUPM, 31261, Saudi Arabia; Department of Geosciences, College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Venkatramanan Senapathi
- PG and Research Department of Geology, National College (Autonomous), Tiruchirappalli - 620001, Tamil Nadu, India
| |
Collapse
|
3
|
Das CR, Das S. Coastal groundwater quality prediction using objective-weighted WQI and machine learning approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19439-19457. [PMID: 38355860 DOI: 10.1007/s11356-024-32415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The water quality index (WQI) is a globally accepted guideline to indicate the water quality standard of any groundwater resource. Water levels in existing groundwater sources are declining in several coastal zones. Therefore, for monitoring water quality and improving water management, the prediction and identification of groundwater status by an effective technique with higher accuracy is urgently needed. Therefore, this research aims to find an effective model for WQI prediction by comparing entropy and critic weight-based WQI (ENW-WQI and CRITIC-WQI) with multi-layer perceptron artificial neural network (MLP-ANN) technique and also to identify contaminated zones using GIS. Initially, 1000 water sampling datasets with concentrations of several water quality parameters of different coastal blocks of eastern India during 2018 to 2022 are considered for the estimation of ENW-WQI and CRITIC-WQI. It shows 65% and 67% of the samples are excellent to good for drinking. ENW-WQI and CRITIC-WQI-based MLP-ANN models have been established considering different data portioning and hidden neuron numbers. Input variables and appropriate dataset partitioning with hidden neurons for models obtained from correlation and trial-error analysis. Spatial distribution maps are also produced for calculated WQIs using inverse distance weighted interpolation approaches. Three fitting models are obtained: ENW-WQI-MLP-ANN, CRITIC-WQI-MLP-ANN-I and CRITIC-WQI-MLP-ANN-II. CRITIC-WQI-MLP-ANN-II model (data ratio 85:15, network structure 6-12-1, R2 = 0.986, NSE = 0.98, and error rate 0.49%) provides the best accuracy in WQI prediction. The GIS-based WQI maps record several areas related to drinking water quality. The results of this research can help in planning the provision of safe drinking water in the future.
Collapse
Affiliation(s)
- Chinmoy Ranjan Das
- School of Water Resources Engineering, Jadavpur University, Kolkata, India
- Civil Engineering Department, Global Institute of Science & Technology, Purba Medinipur 721657, Haldia, West Bengal, India
| | - Subhasish Das
- School of Water Resources Engineering, Jadavpur University, Kolkata, India.
| |
Collapse
|
4
|
Zhang Q, Qian H, Ren W, Xu P, Li W, Yang Q, Shang J. Salinization of shallow groundwater in the Jiaokou Irrigation District and associated secondary environmental challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168445. [PMID: 37949127 DOI: 10.1016/j.scitotenv.2023.168445] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Understanding groundwater salinization of irrigation areas and related secondary environmental challenges is important for ensuring sustainable development. However, the mechanism under which groundwater salinization forms under the influence of long-term anthropogenic activities remains unclear. Therefore, this study analyzed the spatiotemporal variation in groundwater salinization and the underlying mechanism, and discussed the secondary environmental challenges in an irrigation area. The Jiaokou Irrigation District, North China, was adopted as a case study. The results showed a slight downward trend in groundwater salinity over the past two decades at a rate of 0.0229 g/L/y. Higher groundwater salinity was observed in areas with shallow groundwater depth. This correlation was mainly attributed to evaporative concentration, with secondary processes including natural weathering, depth of water-table, and fertilizer leaching. Drainage ditches may reduce groundwater salinity. Groundwater was transformed from freshwater to salt water and then to brackish water during the runoff process. The former transformation is mainly related to evaporation and fertilization. The latter transformation could be related to the inverse relationship between the distance to the Wei River and sediment permeability, with sediment permeability positively related to groundwater flow and leading to the discharge of salt into the Wei River. The secondary environmental challenges related to groundwater salinization in irrigation areas, mainly manifested in deterioration of irrigation water quality, soil salinization, and increased fluorine concentration. This study can act as a theoretical and practical reference for the development and utilization of water resources, ecological protection, and soil salinization in typical irrigation districts.
Collapse
Affiliation(s)
- Qiying Zhang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China.
| | - Hui Qian
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China.
| | - Wenhao Ren
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Panpan Xu
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Weiqing Li
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Qiaoyang Yang
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Jiatao Shang
- Wugong County Water Conservancy Bureau, Xianyang City, Shaanxi Province, China
| |
Collapse
|
5
|
Biswas T, Chandra Pal S, Saha A, Ruidas D. Arsenic and fluoride exposure in drinking water caused human health risk in coastal groundwater aquifers. ENVIRONMENTAL RESEARCH 2023; 238:117257. [PMID: 37775015 DOI: 10.1016/j.envres.2023.117257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Groundwater (GW) is a precious resource for human beings as we depend on it as a source of fresh drinking water, agricultural practices, industrial and domestic uses, etc. Extreme exposure of arsenic (As) and fluoride (F-) concentrations along the coastal GW aquifers of "South 24 Parganas and East Medinipur" diluted the quality of GW and created serious health issues. Various chronic health disorders such as - black foot disease, fluorosis skin cancer, cardiac problems, and other water borne diseases have been noticed in these two coastal districts. The comprehensive entropy-weighted water quality index (EWQI) and health risk assessment (HRA) were applied to evaluate the quality of GW and probable health risks in the coastal districts. Monte Carlo simulation and sensitivity analysis methods were simultaneously adopted to identify the non-carcinogenic health risk assessment due to regular ingestion of contaminated GW. As the study region is densely populated and part of the Sundarbans Ramsar site, it has greater importance at the international level along with regional importance to address the GWQ of this region. The major findings of the present study highlight that almost 55% of the study area is confronting serious GW quality issues and associated probable health risk (HR) due to the intense accumulation of As and F- in the GW aquifers of the study area. Children's health is more vulnerable due to the consumption of As containing GW, and adults are highly affected due to the intake of F- bearing GW in the coastal districts. The findings of the current study will draw the attention of hydrologists, groundwater management authorities, government bodies, and NGOs to regulate and monitor the GW aquifers routinely, enhance GW quality, minimizing the health hazards and sustainable water management in a more scientific and sustainable way which must be advantageous for coastal people.
Collapse
Affiliation(s)
- Tanmoy Biswas
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India.
| | - Asish Saha
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Dipankar Ruidas
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| |
Collapse
|
6
|
Mahammad S, Islam A, Shit PK. Geospatial assessment of groundwater quality using entropy-based irrigation water quality index and heavy metal pollution indices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116498-116521. [PMID: 35588033 DOI: 10.1007/s11356-022-20665-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Groundwater contamination has become a serious environmental threat throughout the world in the era of Anthropocene. Thus, the present study examined the groundwater quality for irrigation purposes based on the entropy method and heavy metal pollution indices. To compute the entropy-based groundwater irrigation quality index (EIWQI), physicochemical parameters such as pH, chloride (Cl-) and nitrate (NO3-), irrigation indices including electrical conductivity (EC), sodium absorption ratio (SAR), sodium percentage (%Na), soluble sodium percentage (SSP), residual sodium carbonate (RSC), magnesium hazard (MH), Kelley's ration (KR), permeability index (PI) and heavy metals such as manganese (Mn), iron (Fe), zinc (Zn) and arsenic (As) have been employed for the 37 sample wells of the Damodar fan delta (DFD), India, which is a semi-critical agriculture-dominated region. Shannon's entropy method has been used to assign the weights of the different parameters for constructing the EIWQI. The results portray a spatial variation of the irrigation water quality in the DFD. The EIWQI revealed that 27.03%, 59.46%, 8.11%, 2.7% and 2.7% of the sample wells, respectively, contain excellent, good, moderate, poor and very poor quality of irrigation water. On the other hand, heavy metal pollution indices (modified degree of contamination, pollution load index, Nemerow index and modified heavy metal pollution index) show that 15-20% of sample wells of the DFD are contaminated by heavy metal pollution. The pockets of pollution are concentrated in the southwestern, northeastern and central parts of the DFD. The study found that the spatial variation in groundwater quality is controlled by the higher sodium concentration, carbonate weathering and expansion of agricultural and urban-industrial areas.
Collapse
Affiliation(s)
- Sadik Mahammad
- Department of Geography, Aliah University, 17 Gora Chand Road, Kolkata, 700014, India
| | - Aznarul Islam
- Department of Geography, Aliah University, 17 Gora Chand Road, Kolkata, 700014, India.
| | - Pravat Kumar Shit
- PG Department of Geography, Raja NL Khan Women's College, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
7
|
Das CR, Das S, Panda S. MLR index-based principal component analysis to investigate and monitor probable sources of groundwater pollution and quality in coastal areas: a case study in East India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1158. [PMID: 37673826 DOI: 10.1007/s10661-023-11804-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Identifying groundwater contamination sources and supervising groundwater quality conditions are urgently needed to protect the groundwater resources of coastal areas like Contai of India, as communities here are heavily relying on groundwater which deteriorates progressively. So current research aims to address in detail about origins and influencing factors of groundwater contamination, status, and monitoring water quality by employing extremely useful leading technologies like principal component and factor analyses (PCA/FA), groundwater quality index (GWQI), and multiple linear regression (MLR) that helps to simplify complicated works instead of the conventional methods. Eight groundwater quality parameters were evaluated here, such as pH, TH (total hardness), Tur (turbidity), EC (electrical conductivity), TDS (total dissolved solids), Mn (manganese), Fe (iron), and Cl (chloride) for 38 sites. Three principal components with ~ 81% of the total variance were extracted from the PCA/FA analysis. The origin of maximum loadings of each factor is identified as a result of saline water, disintegration and leaching process, organic or else biogenic activities, and lithogenic or otherwise non-lithogenic links through percolating water. GWQI results show that ~ 87% of the samples fall into the good category and ~ 13% of the samples fall into the poor to very poor category. A model consisting of Tur, Fe, EC, Mn, TH, and Cl as independent parameters is more feasible and is proposed to predict GWQI obtained from MLR analysis. This MLR model also suggests that turbidity with the highest beta coefficient (0.820) is a key contributor relative to the entire groundwater class in this affected area. The findings relating to this research may support the designer and officials in monitoring and protecting coastal groundwater resources like selected areas.
Collapse
Affiliation(s)
- Chinmoy Ranjan Das
- School of Water Resources Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India
- Civil Engineering Department, Global Institute of Science & Technology, Purba Medinipur, Haldia, 721657, West Bengal, India
| | - Subhasish Das
- School of Water Resources Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Souvik Panda
- Ambuja Cement Ltd, Kolkata, 700019, West Bengal, India
| |
Collapse
|
8
|
Okoye HO, Bankole AO, Ayegbokiki AO, James AO, Bankole AR, Oluyege DE. Human health risks of metal contamination in Shallow Wells around waste dumpsites in Abeokuta Metropolis, Southwestern, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:881. [PMID: 37354291 DOI: 10.1007/s10661-023-11527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Metal contamination in shallow wells through solid waste leaching is a serious environmental problem with contribution to global cancer cases. This paper evaluated the health risks of metals in shallow wells around dumpsites in the Abeokuta metropolis, Nigeria. Five dumpsites were purposively selected to sample twenty-five shallow wells. In situ and laboratory analyses for physico-chemical parameters, copper, lead, cadmium, iron, and chromium were conducted following the APHA standard procedure. Carcinogenic and non-carcinogenic risks for oral and dermal routes were evaluated for adult males and females, children, and infants. Findings revealed that all wells were acidic (pH = 5.82-6.48), with Fe and Cd concentrations above the established limits. The wells around Obada, Obantoko, and Saje dumpsites had high EC (up to 1200 µS/cm), Cu, and Pb concentrations above the permissible limits. Non-carcinogenic risks for oral ingestion were significant for all age groups (hazard index: HI > 1), and the significance level across dumping areas increased in the order: Saje > Obantoko > Obada > Idi-aba > Lafenwa. All wells assessed in Saje and Obantoko recorded significant HI of dermal exposure for children and infants. Cancer risks were significant for all age groups (CR > 1.0E - 04), and metal contributions followed: Cd > Cr > Pb. The overall trend of significant risks for non-carcinogenic and carcinogenic via oral and dermal routes is in the order of infant > children > adult female > adult male. This suggests that groundwater users within the studied areas may experience diverse illnesses or cancer in their lifetime, particularly children and infants.
Collapse
Affiliation(s)
- Harvester O Okoye
- Institute of Food Security, Environmental Resources and Agricultural Research (IFSERAR), Federal University of Agriculture Abeokuta, Abeokuta, Nigeria.
| | - Abayomi O Bankole
- Department of Water Resources Management and Agrometeorology, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria.
- Department of Civil and Environmental Engineering, Faculty of Engineering, Sao Paulo State University (UNESP), Bauru Campus, Sao Paulo, Brazil.
| | - Adedayo O Ayegbokiki
- Institute of Food Security, Environmental Resources and Agricultural Research (IFSERAR), Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - Abraham O James
- Department of Civil and Environmental Engineering, Faculty of Engineering, Sao Paulo State University (UNESP), Bauru Campus, Sao Paulo, Brazil
- Department of Environmental Management and Toxicology, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - Afolashade R Bankole
- Department of Civil and Environmental Engineering, Faculty of Engineering, Sao Paulo State University (UNESP), Bauru Campus, Sao Paulo, Brazil
| | - Damilola E Oluyege
- Early Warning System and Geospatial Laboratory, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| |
Collapse
|
9
|
Puggioni G, Milia S, Unali V, Ardu R, Tamburini E, Balaguer MD, Pous N, Carucci A, Puig S. Effect of hydraulic retention time on the electro-bioremediation of nitrate in saline groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157236. [PMID: 35810909 DOI: 10.1016/j.scitotenv.2022.157236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) have proven their capability to treat nitrate-contaminated saline groundwater and simultaneously recover value-added chemicals (such as disinfection products) within a circular economy-based approach. In this study, the effect of the hydraulic retention time (HRT) on nitrate and salinity removal, as well as on free chlorine production, was investigated in a 3-compartment BES working in galvanostatic mode with the perspective of process intensification and future scale-up. Reducing the HRT from 30.1 ± 2.3 to 2.4 ± 0.2 h led to a corresponding increase in nitrate removal rates (from 17 ± 1 up to 131 ± 1 mgNO3--N L-1d-1), although a progressive decrease in desalination efficiency (from 77 ± 13 to 12 ± 2 %) was observed. Nitrate concentration and salinity close to threshold limits indicated by the World Health Organization for drinking water, as well as significant chlorine production were achieved with an HRT of 4.9 ± 0.4 h. At such HRT, specific energy consumption was low (6.8·10-2 ± 0.3·10-2 kWh g-1NO3--Nremoved), considering that the supplied energy supports three processes simultaneously. A logarithmic equation correlated well with nitrate removal rates at the applied HRTs and may be used to predict BES behaviour with different HRTs. The bacterial community of the bio-cathode under galvanostatic mode was dominated by a few populations, including the genera Rhizobium, Bosea, Fontibacter and Gordonia. The results provide useful information for the scale-up of BES treating multi-contaminated groundwater.
Collapse
Affiliation(s)
- Giulia Puggioni
- University of Cagliari, Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2-09123, Cagliari, Italy; Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Stefano Milia
- National Research Council of Italy, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2-09123, Cagliari, Italy.
| | - Valentina Unali
- National Research Council of Italy, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2-09123, Cagliari, Italy
| | - Riccardo Ardu
- University of Cagliari, Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2-09123, Cagliari, Italy; DiSB, Department of Biomedical Sciences, University of Cagliari, Cittadella universitaria, 09042 Monserrato, CA, Italy
| | - Elena Tamburini
- DiSB, Department of Biomedical Sciences, University of Cagliari, Cittadella universitaria, 09042 Monserrato, CA, Italy
| | - M Dolors Balaguer
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Alessandra Carucci
- University of Cagliari, Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2-09123, Cagliari, Italy; National Research Council of Italy, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2-09123, Cagliari, Italy
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| |
Collapse
|
10
|
Marghade D, Pethe RM, Patil PD, Tiwari MS. A unified multivariate statistical approach for the assessment of deep groundwater quality of rapidly growing city of Maharashtra Province, India, with potential health risk. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:891. [PMID: 36242649 DOI: 10.1007/s10661-022-10572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
The main aim of this research is to assess the consequences of natural and anthropogenic processes on the groundwater quality of 65 deep aquifers of Nagpur city, Maharashtra Province, India, using a unified multivariate statistical approach. The dominant groundwater type recognized is Ca-HCO3 (recharge waters) in 43.1 and 38.5% of groundwater samples of pre- and post-monsoon seasons, followed by mixed water types. The seasonal distribution of physicochemical parameters shows increase in the concentration of EC, TDS, TH, Mg2+, SO42-, and NO3- signifying the high mineralization and anthropogenic loading from pre- and post-monsoon season respectively. The entropy-weight water quality index categorizes the 84.6% and 75.4% of total samples from pre- and post-monsoon seasons into moderate quality. The multiple linear regression and PCA analysis reveal the masking of rock weathering mechanism by anthropogenic activities. The % of PCA Variance varies from 79 to 83.7% from pre- to post-monsoon season. The high contributions of EC (0.76, 0.72), TDS (0.79, 0.73), TH (0.97, 0.962), Ca2+ (0.84, 0.78), Mg2+ (0.79, 0.83), Cl- (0.73, 0.75), and NO3- (0.78, 0.68) in PC1 components expose high salinity and hardness in urban groundwater that signifies the consequences of urbanization on the groundwater regime. About 55.4 and 70.8% of children population as compared to the adult female (53.8%, 69.2%) and male (32.3%, 46.1%) population in PRM and POM respectively were at high non-carcinogenic health threat of NO3--enriched groundwater. The study is beneficial for understanding the variation in groundwater composition due to unplanned urbanization and is very useful for protecting groundwater resources in urban areas.
Collapse
Affiliation(s)
- Deepali Marghade
- Department of Applied Chemistry, Priyadarshini College of Engineering, Digdoh, Near CRPF, Higana, Nagpur, Maharashtra, 440019, India.
| | - Rahul M Pethe
- G. H. Raisoni Institute of Engineering & Technology, Nagpur, India
| | - Pravin D Patil
- Department of Basic Science and Humanities, Mukesh Patel School of Technology Management and Engineering, SVKM's NMIMS University, Mumbai, Maharashtra, 400056, India
| | - Manishkumar S Tiwari
- Department of Chemical Engineering, Mukesh Patel School of Technology Management and Engineering, SVKM's NMIMS University, Mumbai, Maharashtra, 400056, India
| |
Collapse
|
11
|
Arfaoui M, Aouiti S, Azaza FH, Zammouri M. Assessment of groundwater vulnerability in coastal zone using SI method and GIS: case study of Bouficha aquifer (northeast Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75699-75715. [PMID: 35657555 DOI: 10.1007/s11356-022-21053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, groundwater is under stress due to contamination, over-exploitation, seawater intrusion, climate change, etc. The groundwater contamination is the major problem which can engender the total deterioration of the aquifer. The groundwater vulnerability assessment may contribute to predicate and to delimitate the areas affected by contamination or any future pollution. This research aims to zoning the potential pollution of the Bouficha shallow aquifer, located in the northeast Tunisia, using the SI model and GIS. Five parameters are presented in the SI model: depth to groundwater (D), recharge (R), aquifer media (A), topography (T), and land use (LU). The different parameters were collected from diverse sources for assess groundwater vulnerability. The net recharge map was generated using GIS-based multi-criteria analysis method based on different parameters (slope, lithology, LU, soil, and drainage density). The generated vulnerability map shows three vulnerability classes: low vulnerability (< 45), moderate vulnerability (45-64), and high vulnerability (64-84) which represent 3.14%, 76.8%, and 20.06% of the total area, respectively. The SI vulnerability represent a moderate positive correlation with the measured nitrate concentrations (R2 = 0.76). The sensitivity analysis shows that the land use parameter is the most influential parameter for groundwater vulnerability in BFC.
Collapse
Affiliation(s)
- Madiha Arfaoui
- Faculty of Sciences of Tunis, Sedimentary Environments, Laboratory of Sedimentary Basins and Petroleum Geology (SBPG), LR18 ES07, 2092, Tunis, Tunisia
| | - Soumaya Aouiti
- Faculty of Sciences of Tunis, Sedimentary Environments, Laboratory of Sedimentary Basins and Petroleum Geology (SBPG), LR18 ES07, 2092, Tunis, Tunisia.
| | - Fadoua Hamzaoui Azaza
- Faculty of Sciences of Tunis, Sedimentary Environments, Laboratory of Sedimentary Basins and Petroleum Geology (SBPG), LR18 ES07, 2092, Tunis, Tunisia
| | - Mounira Zammouri
- Faculty of Sciences of Tunis, Sedimentary Environments, Laboratory of Sedimentary Basins and Petroleum Geology (SBPG), LR18 ES07, 2092, Tunis, Tunisia
| |
Collapse
|
12
|
Belhouchette H, Boughariou E, Larayedh O, Bouri S. Groundwater quality evaluation and human health risks assessment using the WQI, NPI and HQnitrate models: case of the Sfax intermediate aquifer, Sahel Tunisia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2629-2647. [PMID: 34382177 DOI: 10.1007/s10653-021-01053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/26/2021] [Indexed: 05/17/2023]
Abstract
Groundwater is a vital natural resource required to satisfy the domestic and agricultural needs. In general, human health is linked to the quality of the consumed water. For instance, long-term exposure to high nitrate levels in groundwater may cause problems. Hence, the present study was conducted to assess the nitrate contamination of groundwater as well as its related health risks for the inhabitants of the Sfax region, Sahel Tunisia. Irrigation groundwater suitability has been evaluated with sodium content (%Na), electrical conductivity (EC), magnesium hazard (MH), sodium adsorption ratio (SAR), permeability index (PI), Kelly's ratio (KR) and soluble sodium percent (SSP). The results indicate that the selected groundwater is characterized by low to moderate quality for irrigation. Furthermore, the drinking water quality index (DWQI) was assessed using potential of hydrogen (pH), total dissolved solids (TDS), magnesium (Mg2+), calcium (Ca2+), sodium (Na+), chloride (Cl-), sulfate (SO42-), potassium (K+), bicarbonate (HCO3-) and nitrate (NO3-). The results indicate that 3.63% of samples have good quality of water, while 41.82% have poor to very poor water quality and the rest (54.55%) are unfit for drinking. The nitrate pollution index (NPI) model revealed that about 42% of the samples present significant to very significant type of pollution. Based on human health risk assessment, the children are at higher risks compared to the other affected groups. The obtained results could be used as a basic document for realistic management of groundwater quality and to provide an overview for decision-making authorities to take necessary actions.
Collapse
Affiliation(s)
- Hanen Belhouchette
- Water, Energy and Environment Laboratory (LR3E), National Engineering School, University of Sfax, Sfax, Tunisia
| | - Emna Boughariou
- Water, Energy and Environment Laboratory (LR3E), National Engineering School, University of Sfax, Sfax, Tunisia
| | | | - Salem Bouri
- Water, Energy and Environment Laboratory (LR3E), National Engineering School, University of Sfax, Sfax, Tunisia.
| |
Collapse
|
13
|
Troudi N, Tzoraki O, Hamzaoui-Azaza F, Melki F, Zammouri M. Estimating adults and children's potential health risks to heavy metals in water through ingestion and dermal contact in a rural area, Northern Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56792-56813. [PMID: 35347609 DOI: 10.1007/s11356-022-19667-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
High concentrations of heavy metals (HMs) in water (e.g., As, Cr, and Cd) are harmful to human health, especially to children. HMs' (As, Cd, Mn, Fe, Cu, Hg, Zn, Cr, and Se) values have been determined from the water of the Guenniche plain (Tunisia); then the carcinogenic risk (CR) and non-carcinogenic Risk (N-CR) were estimated through ingestion and dermal contact for adults and children. The analysis results show that the Hg, As, and Cd in 50% of the ephemeral streams (ESs) exceeded one of the WHO and NT guidelines for safe water, as is the case with Hg and Cd in 25% of the shallow groundwater wells (SGW). In all samples, the N-CR of all HMs, and the CR due to the dermal contact controlled by As, for both age brackets, are deemed to fall far short of the threshold set by USEPA. The CR due to the ingestion pathway caused by As, Cr, and Cd contamination indicates a "high" to "very high" risk on its users in roughly 50% of all the samples (ESs and SGW) for both age brackets by exceeding 10-5. Overall, the SGW samples close to the floodplain area of the ESs pose a real CR to both age groups, which is more serious for children. Therefore, the SGW are not recommended for drinking use, with an urgent call for a solution by the policy-makers to improve the water quality of the region.
Collapse
Affiliation(s)
- Nizar Troudi
- Laboratory of Sedimentary Basins and Petroleum Geology (SBPG), Geology Department, Faculty of Sciences of Tunis, University of Tunis El Manar, LR18 ES07, 1060, Tunis, Tunisia.
| | - Ourania Tzoraki
- Department of Marine Sciences, University of the Aegean, 81100, Mytilene, Greece
| | - Fadoua Hamzaoui-Azaza
- Laboratory of Sedimentary Basins and Petroleum Geology (SBPG), Geology Department, Faculty of Sciences of Tunis, University of Tunis El Manar, LR18 ES07, 1060, Tunis, Tunisia
| | - Fatheddine Melki
- Laboratory of Geodynamics, Geo-Digital and Geomaterials (GGSA) Lab3G, Faculty of Sciences of Tunis, University of Tunis El Manar, 1060, Tunis, Tunisia
| | - Mounira Zammouri
- Laboratory of Sedimentary Basins and Petroleum Geology (SBPG), Geology Department, Faculty of Sciences of Tunis, University of Tunis El Manar, LR18 ES07, 1060, Tunis, Tunisia
| |
Collapse
|
14
|
Gupta PK, Singh A, Vaish B, Singh P, Kothari R, Singh RP. A comprehensive study on aquatic chemistry, health risk and remediation techniques of cadmium in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151784. [PMID: 34808189 DOI: 10.1016/j.scitotenv.2021.151784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/01/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), a non-essential trace element, it's intrusion in groundwater has ubiquitous implications on the environment and human health. This review is an approach to comprehensively emphasize on i) chemistry and occurrence of Cd in groundwater and its concomitant response on human health ii) sustainable Cd remediation techniques, iii) and associated costs. Current study is depending on meta-analysis of Cd contaminations in groundwater and discusses its distributions around the globe. Literature review primarily comprises from the last three decades online electronic published database, which mainly includes i) research literatures, ii) government reports. On the basis of meta-data, it was concluded that Cd mobility depends on multiple factors: such as pH, redox state, and ionic strength, dissolved organic (DOC) and inorganic carbon (DIC). A substantially high Cd concentration has been reported in Lagos, Nigeria (0.130 mg/L). In India, groundwater is continuing to be contaminated by Cd in the proximity of industrial, agricultural areas, high concentrations (>8.20 mg/L) were reported in Tamil Nadu and Maharashtra. Depending on chemical behavior and ionic radius cadmium disseminate into the food chain and ultimately cause health hazard that can be measured by various index-based assessment tools. Instead of chemical adsorbents, nanoparticles, phytoextraction, and bioremediation techniques can be very useful in the remediation and management of Cd polluted groundwater at a low-cost. For Cd pollution, the development of a comprehensive framework that links the hydro-geological, bio-geochemical processes to public health is important and need to be further studied.
Collapse
Affiliation(s)
- Pankaj Kumar Gupta
- Faculty of Environment, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Anita Singh
- Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Barkha Vaish
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Pooja Singh
- Department of Science, Society for Higher Education & Practical Applications (SHEPA), Varanasi, India
| | - Richa Kothari
- Department of Environmental Science, Central University of Jammu, Rahya Suchani (Bagla) Samba, Jammu, Jammu and Kashmir 181143, India
| | - Rajeev Pratap Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
15
|
Bonell A, Badjie J, Jammeh S, Ali Z, Hydara M, Davies A, Faal M, Ahmed AN, Hand W, Prentice AM, Murray KA, Scheelbeek P. Grassroots and Youth-Led Climate Solutions From The Gambia. Front Public Health 2022; 10:784915. [PMID: 35462834 PMCID: PMC9021377 DOI: 10.3389/fpubh.2022.784915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Climate change and environmental degradation are among the greatest threats to human health. Youth campaigners have very effectively focused global attention on the crisis, however children from the Global South are often under-represented (sometimes deliberately) in the dialogue. In The Gambia, West Africa, the impacts of climate change are already being directly experienced by the population, and this will worsen in coming years. There is strong government and community commitment to adapt to these challenges, as evidenced by The Gambia currently being the only country on target to meet the Paris agreement according to the Nationally Determined Contributions, but again children's voices are often missing-while their views could yield valuable additional insights. Here, we describe a "Climate Change Solutions Festival" that targeted and engaged school children from 13 to 18 years, and is to our knowledge, the first peer-to-peer (and student-to-professional) learning festival on climate change solutions for students in The Gambia. The event gave a unique insight into perceived climate change problems and scalable, affordable and sometimes very creative solutions that could be implemented in the local area. Logistical and practical methods for running the festival are shared, as well as details on all solutions demonstrated in enough detail to be duplicated. We also performed a narrative review of the most popular stalls to explore the scientific basis of these solutions and discuss these in a global context. Overall, we find extremely strong, grass-roots and student engagement in the Gambia and clear evidence of learning about climate change and the impacts of environmental degradation more broadly. Nevertheless, we reflect that in order to enact these proposed local solutions further steps to evaluate acceptability of adoption, feasibility within the communities, cost-benefit analyses and ability to scale solutions are needed. This could be the focus of future experiential learning activities with students and partnering stakeholders.
Collapse
Affiliation(s)
- Ana Bonell
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jainaba Badjie
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Sariba Jammeh
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Zakari Ali
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | | | | | - Aliyu Nuhu Ahmed
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - William Hand
- Banjul American International School, Fajara, The Gambia
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Kris A. Murray
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Pauline Scheelbeek
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
16
|
Puggioni G, Milia S, Dessì E, Unali V, Pous N, Balaguer MD, Puig S, Carucci A. Combining electro-bioremediation of nitrate in saline groundwater with concomitant chlorine production. WATER RESEARCH 2021; 206:117736. [PMID: 34656821 DOI: 10.1016/j.watres.2021.117736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Groundwater pollution and salinization have increased steadily over the years. As the balance between water demand and availability has reached a critical level in many world regions, a sustainable approach for the management (including recovery) of saline water resources has become essential. A 3-compartment cell configuration was tested for a new application based on the simultaneous denitrification and desalination of nitrate-contaminated saline groundwater and the recovery of value-added chemicals. The cells were initially operated in potentiostatic mode to promote autotrophic denitrification at the bio-cathode, and then switched to galvanostatic mode to improve the desalination of groundwater in the central compartment. The average nitrate removal rate achieved was 39±1 mgNO3--N L-1 d-1, and no intermediates (i.e., nitrite and nitrous oxide) were observed in the effluent. Groundwater salinity was considerably reduced (average chloride removal was 63±5%). Within a circular economy approach, part of the removed chloride was recovered in the anodic compartment and converted into chlorine, which reached a concentration of 26.8±3.4 mgCl2 L-1. The accumulated chlorine represents a value-added product, which could also be dosed for disinfection in water treatment plants. With this cell configuration, WHO and European legislation threshold limits for nitrate (11.3 mgNO3--N L-1) and salinity (2.5 mS cm-1) in drinking water were met, with low specific power consumptions (0.13±0.01 kWh g-1NO3--Nremoved). These results are promising and pave the ground for successfully developing a sustainable technology to tackle an urgent environmental issue.
Collapse
Affiliation(s)
- Giulia Puggioni
- University of Cagliari - Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2 - 09123, Cagliari, Italy; Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Stefano Milia
- National Research Council of Italy - Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2 - 09123, Cagliari, Italy.
| | - Emma Dessì
- University of Cagliari - Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2 - 09123, Cagliari, Italy
| | - Valentina Unali
- National Research Council of Italy - Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2 - 09123, Cagliari, Italy
| | - Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - M Dolors Balaguer
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Alessandra Carucci
- University of Cagliari - Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2 - 09123, Cagliari, Italy; National Research Council of Italy - Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2 - 09123, Cagliari, Italy
| |
Collapse
|
17
|
Chen X, Jiang C, Zheng L, Zhang L, Fu X, Chen S, Chen Y, Hu J. Evaluating the genesis and dominant processes of groundwater salinization by using hydrochemistry and multiple isotopes in a mining city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117381. [PMID: 34034018 DOI: 10.1016/j.envpol.2021.117381] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The increasing salinization of groundwater renders it challenging to maintain the water quality. Moreover, knowledge regarding the characteristics and mechanism of groundwater salinization in mining areas remains limited. This study represents the first attempt of combining the hydrochemical, isotope (δD, δ18O, δ37Cl, and 87Sr/86Sr) and multivariate statistical analysis methods to explore the origin, control, and influence of fluoride enrichment in mining cities. The TDS content of groundwater ranged from 275.9 mg/L to 2452.0 mg/L, and 54% of the groundwater samples were classified as class IV water according to China's groundwater quality standards (GB/T 14848-2017), indicating a decline in the water quality of the study area. The results of the groundwater ion ratio and isotope discrimination analysis showed that dissolution and evaporation involving water-rock interactions and halite were the main driving processes for groundwater salinization in the study area. In addition to the hydrogeological and climatic conditions, mine drainage inputs exacerbated the increasing salinity of the groundwater in local areas. The mineral dissolution, cation exchange, and evaporation promoted the F- enrichment, while excessive evaporation and salinity inhibited the F- enrichment. Gangue accumulation and infiltration likely led to considerable F- enrichment in individual groundwater regions. Extensive changes in the groundwater salinity indicated differences in the geochemical processes that controlled the groundwater salinization. Given the particularity of the study area, the enrichment of salinization and fluoride triggered by mining activities cannot be ignored.
Collapse
Affiliation(s)
- Xing Chen
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China.
| | - Liqun Zhang
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Xianjie Fu
- Pingan Mining Engineering Technology Research Institute Co., Ltd., Huainan, 232001, Anhui, China
| | - Shigui Chen
- Pingan Mining Engineering Technology Research Institute Co., Ltd., Huainan, 232001, Anhui, China
| | - Yongchun Chen
- National Engineering Laboratory of Coal Mine Ecological Environment Protection, Huainan, 232001, Anhui, China
| | - Jie Hu
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| |
Collapse
|
18
|
Abstract
Nitrate pollution in groundwater is a serious problem in Shimabara Peninsula, Nagasaki, Japan. A better understanding of the hydrogeochemical evolution of groundwater in vulnerable aquifers is important for health and environment. In this study, groundwater samples were collected at 12 residential and 57 municipal water supply wells and springs in July and August 2018. Nitrate (NO3−N) concentration at eight sampling sites (12%) exceeded Japanese drinking water standard for NO3 + NO2−N (10 mg L−1). The highest nitrate concentration was 19.9 mg L−1. Polluted groundwater is distributed in northeastern, northwestern, and southwestern areas, where land is used for intensive agriculture. Correlation analysis suggests that nitrate sources are agricultural fertilizers and livestock waste. Dominant groundwater chemistry is (Ca+Mg)−HCO3 or (Ca+Mg)−(SO4+NO3) type. Groundwater with higher nitrate concentration is of (Ca+Mg)−(SO4+NO3) type, indicating nitrate pollution affecting water chemistry. Principal component analysis extracted two important factors controlling water chemistry. The first principal component explained dissolved ions through water–rock interaction and agricultural activities. The second principal component explained cation exchange and dominant agricultural effects from fertilizers. Hierarchical cluster analysis classified groundwater into four groups. One of these is related to the dissolution of major ions. The other three represent nitrate pollution.
Collapse
|
19
|
Evaluation of Seasonal Groundwater Quality Changes Associated with Groundwater Pumping and Level Fluctuations in an Agricultural Area, Korea. WATER 2020. [DOI: 10.3390/w13010051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was conducted to evaluate seasonal groundwater quality due to groundwater pumping and hydrochemical characteristics with groundwater level fluctuations in an agricultural area in Korea. Groundwater levels were observed for about one year using automatic monitoring sensors, and groundwater uses were estimated based on the monitoring data. Groundwater use in the area is closely related to irrigation for rice farming, and rising groundwater levels occur during the pumping, which may be caused by the irrigation water of rice paddies. Hydrochemical analysis results for two separate times (17 July and 1 October 2019) show that the dissolved components in groundwater decreased overall due to dilution, especially at wells in the alluvial aquifer and shallow depth. More than 50% of the samples were classified as CaHCO3 water type, and changes in water type occurred depending on the well location. Water quality changes were small at most wells, but changes at some wells were evident. In addition, the groundwater quality was confirmed to have the effect of saltwater supplied during the 2018 drought by comparison with seawater. According to principal component analysis (PCA), the water quality from July to October was confirmed to have changed due to dilution, and the effect was strong at shallow wells. In the study areas where rice paddy farming is active in summer, irrigation water may be one of the important factors changing the groundwater quality. These results provide a qualitative and quantitative basis for groundwater quality change in agricultural areas, particularly rice paddies areas, along with groundwater level and usage.
Collapse
|