1
|
Panwar M, Smiti K, Khatri R, Sailo FL, Tripathi A, Mina U. Optimizing plant species selection for alleviating air pollution: Modified Anticipated Performance Index-based evaluation in Delhi, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:566. [PMID: 40257500 DOI: 10.1007/s10661-025-13947-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Urban green spaces are crucial in mitigating air pollution and enhancing environmental quality. The Anticipated Performance Index (API) screens plant species based on ecological, economic, and biochemical/Air Pollution Tolerance Index (APTI) parameters. However, it assigns equal weight to all components and excludes key biophysical traits affecting plant stress and pollution tolerance. This study evaluated 25 plant species (20 trees, 4 shrubs/small trees, and 1 herb) across eight urban parks and four vertical gardens in Delhi using weighted API and Modified Anticipated Performance Index (M-API). M-API was formulated by integrating five key biophysical traits-leaf weight, leaf area, specific leaf area, width/length ratio, and vein density. Results showed higher weighted API and M-API scores than the conventional API scores reported in literature. M-API scores classified none of the species as 'Poor' or 'Very Poor', with three shifting to 'Moderate,' one shifting from 'Best' to 'Excellent,' six from 'Very Good' to 'Excellent,' and five from 'Moderate' to 'Good'. Pearson correlation analysis showed a stronger correlation between dust load and M-API (0.31) than with API (0.21) or APTI (0.09), demonstrating M-API's effectiveness in capturing relevant plant traits. Among park species, Ficus benghalensis had the highest M-API score (7), whereas Syngonium podophyllum and Ficus benjamina scored highest (4) in vertical gardens. The study demonstrates M-API's better applicability in assessing plant potential under air pollution stress. By resolving API's limitations, M-API can help stakeholders choose optimal plant species for urban greening initiatives.
Collapse
Affiliation(s)
- Manjul Panwar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kakul Smiti
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Riddhi Khatri
- School of Environmental Science and Sustainable Development, Central University of Gujarat, Gandhinagar, 382030, India
| | | | - Ashutosh Tripathi
- Department of Environmental Science, Nagaland University, Nagaland, 798627, India
| | - Usha Mina
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
2
|
Rodríguez-Rodríguez I, Pérez-Vázquez L, de Pablos-Pons F, Fernández-Espinosa AJ. Toxic metals from atmospheric particulate matter in food species of tomato (Solanum lycopersicum) and strawberry (Fragaria x ananassa) used in urban gardening. A closed chamber study. CHEMOSPHERE 2023; 340:139921. [PMID: 37619746 DOI: 10.1016/j.chemosphere.2023.139921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/16/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
In this work, two plant foods, strawberry and tomato, were subjected to exposure to metals from synthetic airborne particles in a closed chamber experiment. The synthetic particles were obtained in the laboratory. Within the closed chamber, particles were added and recirculated for 4 days in a turbulent air stream, causing deposition on the different parts of the plants. They were evaluated because of their increasingly frequent cultivation in urban gardens of cities. The main objectives were to determine whether the species accumulate metals significantly, which species accumulate the most, and in which parts of the plant. Finally, an attempt was made to differentiate the accumulation of pollutants by surface deposition on leaves and fruits from the adsorbed metals into the leaf or the fruit by their stomata or cuticles. The concentration of heavy metals was quantified in fruits, leaves and the soil after exposure. Metals were evaluated as a whole and individually, both in dry and fresh weight basis. The decrease of particulate matter and metals in the air inside the chamber was also studied in order to evaluate the use of both food species as air purifier by vertical gardens. The concentration of metals in plants (mg kg-1) and airborne particles (mg m-3) was measured by microwave plasma optical emission spectroscopy (MP-AES). For the sake comparison of total amount of metals in the samples concentrations were normalized. Strawberries was the food species that accumulated the largest amount of metals. In a dry weight basis, tomato leaves and strawberry fruits were the parts of the plants with higher accumulation capacity of particles and metals. The potential toxic elements Cd, Ni and Cr in tomato leaves and in strawberry fruits had a higher presence in the interior of the plant system. In a fresh weight basis, the strawberry fruit had the most accumulation capacity for metals.
Collapse
Affiliation(s)
- Ismael Rodríguez-Rodríguez
- Department of Analytical Chemistry, Faculty of Chemistry, University of Sevilla, Profesor García González 1, 41012, Sevilla, Spain
| | - Laura Pérez-Vázquez
- Department of Analytical Chemistry, Faculty of Chemistry, University of Sevilla, Profesor García González 1, 41012, Sevilla, Spain
| | - Fernando de Pablos-Pons
- Department of Analytical Chemistry, Faculty of Chemistry, University of Sevilla, Profesor García González 1, 41012, Sevilla, Spain; Applied Analysis' FQM347 research Group, Andalucia, Spain
| | - Antonio José Fernández-Espinosa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Sevilla, Profesor García González 1, 41012, Sevilla, Spain; Environmental Analytical Chemistry' RNM294 research Group, Andalucia, Spain.
| |
Collapse
|
3
|
Agathokleous E, Frei M, Knopf OM, Muller O, Xu Y, Nguyen TH, Gaiser T, Liu X, Liu B, Saitanis CJ, Shang B, Alam MS, Feng Y, Ewert F, Feng Z. Adapting crop production to climate change and air pollution at different scales. NATURE FOOD 2023; 4:854-865. [PMID: 37845546 DOI: 10.1038/s43016-023-00858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Air pollution and climate change are tightly interconnected and jointly affect field crop production and agroecosystem health. Although our understanding of the individual and combined impacts of air pollution and climate change factors is improving, the adaptation of crop production to concurrent air pollution and climate change remains challenging to resolve. Here we evaluate recent advances in the adaptation of crop production to climate change and air pollution at the plant, field and ecosystem scales. The main approaches at the plant level include the integration of genetic variation, molecular breeding and phenotyping. Field-level techniques include optimizing cultivation practices, promoting mixed cropping and diversification, and applying technologies such as antiozonants, nanotechnology and robot-assisted farming. Plant- and field-level techniques would be further facilitated by enhancing soil resilience, incorporating precision agriculture and modifying the hydrology and microclimate of agricultural landscapes at the ecosystem level. Strategies and opportunities for crop production under climate change and air pollution are discussed.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | - Oliver M Knopf
- Institute of Bio- and Geoscience 2: plant sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Onno Muller
- Institute of Bio- and Geoscience 2: plant sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Yansen Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | | | | | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Athens, Greece
| | - Bo Shang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | - Muhammad Shahedul Alam
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | - Yanru Feng
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | | | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China.
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China.
| |
Collapse
|
4
|
Madronich S, Sulzberger B, Longstreth JD, Schikowski T, Andersen MPS, Solomon KR, Wilson SR. Changes in tropospheric air quality related to the protection of stratospheric ozone in a changing climate. Photochem Photobiol Sci 2023; 22:1129-1176. [PMID: 37310641 PMCID: PMC10262938 DOI: 10.1007/s43630-023-00369-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV) radiation drives the net production of tropospheric ozone (O3) and a large fraction of particulate matter (PM) including sulfate, nitrate, and secondary organic aerosols. Ground-level O3 and PM are detrimental to human health, leading to several million premature deaths per year globally, and have adverse effects on plants and the yields of crops. The Montreal Protocol has prevented large increases in UV radiation that would have had major impacts on air quality. Future scenarios in which stratospheric O3 returns to 1980 values or even exceeds them (the so-called super-recovery) will tend to ameliorate urban ground-level O3 slightly but worsen it in rural areas. Furthermore, recovery of stratospheric O3 is expected to increase the amount of O3 transported into the troposphere by meteorological processes that are sensitive to climate change. UV radiation also generates hydroxyl radicals (OH) that control the amounts of many environmentally important chemicals in the atmosphere including some greenhouse gases, e.g., methane (CH4), and some short-lived ozone-depleting substances (ODSs). Recent modeling studies have shown that the increases in UV radiation associated with the depletion of stratospheric ozone over 1980-2020 have contributed a small increase (~ 3%) to the globally averaged concentrations of OH. Replacements for ODSs include chemicals that react with OH radicals, hence preventing the transport of these chemicals to the stratosphere. Some of these chemicals, e.g., hydrofluorocarbons that are currently being phased out, and hydrofluoroolefins now used increasingly, decompose into products whose fate in the environment warrants further investigation. One such product, trifluoroacetic acid (TFA), has no obvious pathway of degradation and might accumulate in some water bodies, but is unlikely to cause adverse effects out to 2100.
Collapse
Affiliation(s)
- S Madronich
- National Center for Atmospheric Research, Boulder, USA.
- USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, USA.
| | - B Sulzberger
- Academic Guest after retirement from Eawag: Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Duebendorf, Switzerland
| | - J D Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, USA
| | - T Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
| | - M P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University, Northridge, USA
| | - K R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
5
|
Yadav P, Mina U, Bhatia A, Singh B. Cultivar assortment index (CAI): a tool to evaluate the ozone tolerance of Indian Amaranth (Amaranthus hypochondriacus L.) cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30819-30833. [PMID: 36441328 DOI: 10.1007/s11356-022-24327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The adverse impact of climate change on crop yield has accelerated the need for identification of crop cultivars resistant to abiotic stress. In the present study, a cultivar assortment index (CAI) was generated for the evaluation of forty Amaranthus hypochondriacus cultivars response to elevated ozone (EO) concentrations (AO + 30 ppb) in Free Air Ozone Enrichment (FAOE) facility using the parameters viz. foliar injury, gaseous exchange attributes, namely, net photosynthetic rate, stomatal conductance, transpiration rate, intercellular carbon dioxide, and water use efficiency along with above ground biomass and grain yield attributes. The dataset was used to identify key indicator parameters responsive to EO through principal component analysis (PCA) and further transformed to obtain linear score and weighted score. The CAI varied from 70.49 to 193.43. Cultivars having CAI value less than 151 were ozone tolerant (OT) whereas cultivars with CAI values between 150 and 170 were moderately tolerant (MOT). The cultivars exhibiting CAI values above 170 were ozone sensitive (OS). The cultivars exhibited differential sensitivity to EO with IC-5994 (CAI = 187.26) being the most affected cultivar whereas IC-5576 (CAI = 83.38) and IC-5916 (CAI = 70.49) being the least affected ones. The CAI, based on linear score and weighted score, offers easy identification of ozone sensitive (OS) and ozone tolerant (OT) cultivars. This index could help researchers to define a clear and strong basis for identification of OT cultivars which will reduce the time required for preliminary screening and further evaluation of crop cultivars for the development of climate smart crops.
Collapse
Affiliation(s)
- Prachi Yadav
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi, 110067, India
| | - Usha Mina
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi, 110067, India.
| | - Arti Bhatia
- Centre for Environment Science and Climate Resilient Agriculture (CESCRA), ICAR-IARI, New Delhi, 110012, India
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture (CESCRA), ICAR-IARI, New Delhi, 110012, India
| |
Collapse
|
6
|
Mina U, Kandpal A, Bhatia A, Ghude S, Bisht DS, Kumar P. Wheat Cultivar Growth, Biochemical, Physiological and Yield Attributes Response to Combined Exposure to Tropospheric Ozone, Particulate Matter Deposition and Ascorbic Acid Application. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:938-945. [PMID: 34519835 DOI: 10.1007/s00128-021-03373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
In the present study wheat (Triticum aestivum) cultivar HD 2967 was exposed to ambient and elevated levels of O3 and PM deposition, with and without exogenous application of ascorbic acid (AA). Cultivar HD 2967 exposed to eight treatments in free air O3 enrichment facility and the assessed results showed that wheat cultivar, growth, biochemical, physiological and yield attributes were variably but adversely affected by combined exposure to O3 and PM deposition. PM deposition clogged stomata and enhanced leaf temperature. However, plants exposed to O3 and PM deposition and treated with AA exhibited less reduction in yield as compared to plants exposed to O3 and PM deposition without AA treatment. The decline in grain yield of HD 2967 due to combined exposure of O3 and PM deposition were in the range of 4%-17%. AA spray partially mitigated ozone and PM deposition adverse impact and enhanced wheat yield by 16%.
Collapse
Affiliation(s)
- Usha Mina
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
- Centre for Environmental Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Anjali Kandpal
- Centre for Environmental Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arti Bhatia
- Centre for Environmental Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sachin Ghude
- Indian Institute of Tropical Meteorology, Pune, Maharashtra, India
| | - D S Bisht
- Indian Institute of Tropical Meteorology (Delhi Branch), New Delhi, India
| | - Pramod Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
- Sri Aurobindo College, University of Delhi, New Delhi, India
| |
Collapse
|
7
|
Chen X, Xu P, Zhang H, Su X, Guo L, Zhou X, Wang J, Huang P, Zhang Q, Sun R. EGFR and ERK activation resists flavonoid quercetin-induced anticancer activities in human cervical cancer cells in vitro. Oncol Lett 2021; 22:754. [PMID: 34539858 PMCID: PMC8436358 DOI: 10.3892/ol.2021.13015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
In the present study, due to the complex and numerous targets of Sarcandrae Herb (also known as Zhong Jie Feng), network pharmacology was performed to analyze its therapeutic effect on 2 cervical cancer cell lines, which could assist with the development of novel therapies. The results suggested that the natural flavonoid quercetin (Que), the effective antitumor ingredient in SH, which is widely present in a variety of plants, may depend on the target, EGFR. Previous studies have shown that EGFR serves a crucial role in the occurrence and development of cervical cancer, but its downstream molecules and regulatory mechanisms remain unknown. The anti-cervical cancer cell properties of Que, which are present in ubiquitous plants, were examined in vitro to identify the association between Que and its underlying pathway using MTT assays, flow cytometry, western blot analysis and Transwell assays. It was found that Que reduced cervical cancer cell viability, promoted G2/M phase cell cycle arrest and cell apoptosis, as well as inhibited cell migration and invasion. The Tyr1068 phosphorylation site of EGFR and the corresponding ERK target were also examined and the 2 kinases were markedly activated by Que. Furthermore, the EGFR inhibitor, afatinib and the ERK inhibitor, U0126 blocked the increase of EGFR and ERK phosphorylation, and resulted in a notable enhancement of apoptosis and cell cycle arrest. Therefore, to the best of our knowledge, the current results provided the first evidence that EGFR and ERK activation induced by Que could resist Que-induced anticancer activities. On this basis, the present study determined the role of EGFR and the underlying signaling pathways involved in the anti-cervical cancer malignant behavior induced by Que and identified the negative regulatory association.
Collapse
Affiliation(s)
- Xin Chen
- Molecular Biology Laboratory, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Pengli Xu
- Collaborative Innovation Center, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Huijun Zhang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai 200030, P.R. China
| | - Xiaosan Su
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| | - Lihua Guo
- Department of Oncology, Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Xuhong Zhou
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| | - Junliang Wang
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tokyo 163-8001, Japan
| | - Qingzhi Zhang
- Molecular Biology Laboratory, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Ruifen Sun
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|