1
|
Mason C, Tschirren B, Hemmings N. Effects of female-specific selection for reproductive investment on male fertility traits. J Evol Biol 2024; 37:1113-1124. [PMID: 39110095 DOI: 10.1093/jeb/voae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Despite sharing an autosomal genome, the often divergent reproductive strategies of males and females cause the selection to act in a sex-specific manner. Selection acting on one sex can have negative, positive, or neutral fitness consequences on the opposite sex. Here, we test how female-limited selection on reproductive investment in Japanese quail (Coturnix japonica) affects male fertility-related traits. Despite there being no difference in the size of males' testes from lines selected for high female reproductive investment (H-line) or low female reproductive investment (L-line), in both lines, the left testis had a greater volume of sperm-producing tissue. Since H-line females have a larger left-side restricted oviduct, this suggests a positive genetic correlation between male and female gonad function and that internal testis structure is a target of sexual selection. However, despite H-line males having previously been found to have greater fertilization success in a competitive scenario, we found little evidence of a difference between the lines in sperm number, motility, velocity, length, or the number of sperm that reached the ova. Precopulatory cues and/or the role of seminal fluid in sperm motility may thus be more likely to contribute to the H-line male fertilization advantage in this species.
Collapse
Affiliation(s)
- Chloe Mason
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Nicola Hemmings
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
2
|
Yahong Z, Lingping S, Jing Z, Huixia L, Lingli W, Qian Z. Plasticity in moth mating behavior and ejaculate proteomic diversity induced by male competition. JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104673. [PMID: 38977260 DOI: 10.1016/j.jinsphys.2024.104673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In male competition, large and costly ejaculates are advantageous. Prior research on male accessory gland secretions in Plutella xylostella left open questions about how males modulate their mating behaviors and ejaculate composition allocation in response to varying levels of competition. The current study aimed to delve deeper into these unexplored facets. A totally of 928 ejaculate proteins were identified across males exposed to different competition conditions. Notably, males courting under non-, low-, and high-competition scenarios exhibited 867, 635, and 858 ejaculate proteins, respectively. Approximately 10% of these ejaculate proteins displayed variations that aligned with changes in competition intensity. Subsequent analyses focused on the proteins transferred to females, revealing that 44% of ejaculate proteins were transferred, with 37 proteins exhibiting differential expression. Functional analyses uncovered their crucial roles in sperm maturation, motility, and capacitation. Our findings reveal adaptive adjustments in ejaculate protein abundance and transmission in P. xylostella as a response to varying competition levels. Moreover, fluorescent sperm labeling indicated higher sperm transfer during low competition correlated with shorter sperm length. Furthermore, evidence suggests that males shorten their courtship duration and extend their mating duration when faced with competition. These results illustrate how competition drives ejaculate investment and behavioral plasticity, offering valuable insights for advancements in assisted reproductive technologies and pest management strategies.
Collapse
Affiliation(s)
- Zheng Yahong
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shi Lingping
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhang Jing
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Huixia
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wu Lingli
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhao Qian
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Giudice LA, Díaz V, Moyano A, Pérez-Staples D, Abraham S. Methoprene treatment and its effect on male reproductive organ size and female remating in a fruit fly. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:347-354. [PMID: 36660924 DOI: 10.1017/s0007485322000621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Methoprene, a juvenile hormone analog, is used to accelerate sexual maturation in males of species of economic importance in support to the sterile insect technique (SIT). In the SIT, mass-reared sterile males are released into the field and need to survive until they reach sexual maturation, find a wild female, mate with her and then induce female sexual refractoriness, so she will not remate with a wild counterpart. The use of methoprene shortens the time between release and copulation. However, in South American fruit flies, Anastrepha fraterculus, the ability of methoprene-treated males to inhibit female remating has been shown to be lower than wild males, when methoprene was applied by pupal immersion or topical application. Here we evaluated the possibility of incorporating methoprene into the male diet at different doses and the ability of those males to inhibit female remating, as well as the effect of methoprene on male reproductive organ size, due to the possible correlation between male accessory gland size and their content, and the role of male accessory gland proteins in female inhibition. We found that A. fraterculus males fed with methoprene in the adult protein diet at doses as high as 1% were less likely to inhibit female remating, however, at all other lower doses males had the same ability as untreated males to inhibit female remating. Males fed with methoprene had bigger male accessory glands and testes compared to methoprene-deprived males. We demonstrate that the incorporation of methoprene in adult male diets is possible in this species and potentially useful as a post-teneral, pre-release supplement at doses as low as 0.01%. Even at higher doses, the percentage of females remating after 48 h from the first copulation is sufficiently low in this species so as not compromise the efficiency of the SIT.
Collapse
Affiliation(s)
- L A Giudice
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), PROIMI-Biotecnología, CONICET, Tucumán CP 4000, Argentina
| | - V Díaz
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), PROIMI-Biotecnología, CONICET, Tucumán CP 4000, Argentina
| | - A Moyano
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), PROIMI-Biotecnología, CONICET, Tucumán CP 4000, Argentina
| | - D Pérez-Staples
- INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, Col. E. Zapata, Xalapa, Veracruz CP 91090, Mexico
| | - S Abraham
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), PROIMI-Biotecnología, CONICET, Tucumán CP 4000, Argentina
| |
Collapse
|
4
|
Firman RC, André GI, Hadlow JH, Simmons LW. Intergenerational response to sperm competition risk in an invasive mammal. Proc Biol Sci 2023; 290:20222452. [PMID: 37122257 PMCID: PMC10130712 DOI: 10.1098/rspb.2022.2452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Studies of socially mediated phenotypic plasticity have demonstrated adaptive male responses to the 'competitive' environment. Despite this, whether variation in the paternal social environment also influences offspring reproductive potential in an intergenerational context has not yet been examined. Here, we studied the descendants of wild-caught house mice, a destructive pest species worldwide, to address this knowledge gap. We analysed traits that define a 'competitive' phenotype in the sons of males (sires) that had been exposed to either a high-male density (competitive) or high-female density (non-competitive) environment. We report disparate reproductive strategies among the sires: high-male density led to a phenotype geared for competition, while high-female density led to a phenotype that would facilitate elevated mating frequency. Moreover, we found that the competitive responses of sires persisted in the subsequent generation, with the sons of males reared under competition having elevated sperm quality. As all sons were reared under common-garden conditions, variation in their reproductive phenotypes could only have arisen via nongenetic inheritance. We discuss our results in relation to the adaptive advantage of preparing sons for sperm competition and suggest that intergenerational plasticity is a previously unconsidered aspect in invasive mammal fertility control.
Collapse
Affiliation(s)
- Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Gonçalo Igreja André
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Jessica H Hadlow
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
5
|
Aguilar P, Dag B, Carazo P, Sultanova Z. Sex-specific paternal age effects on offspring quality in Drosophila melanogaster. J Evol Biol 2023; 36:720-729. [PMID: 36946550 DOI: 10.1111/jeb.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 03/23/2023]
Abstract
Advanced paternal age has been repeatedly shown to modulate offspring quality via male- and/or female-driven processes, and there are theoretical reasons to expect that some of these effects can be sex-specific. For example, sex allocation theory predicts that, when mated with low-condition males, mothers should invest more in their daughters compared to their sons. This is because male fitness is generally more condition-dependent and more variable than female fitness, which makes it less risky to invest in female offspring. Here, we explore whether paternal age can affect the quality and quantity of offspring in a sex-specific way using Drosophila melanogaster as a model organism. In order to understand the contribution of male-driven processes on paternal age effects, we also measured the seminal vesicle size of young and older males and explored its relationship with reproductive success and offspring quality. Older males had lower competitive reproductive success, as expected, but there was no difference between the offspring sex ratio of young and older males. However, we found that paternal age caused an increase in offspring quality (i.e., offspring weight), and that this increase was more marked in daughters than sons. We discuss different male- and female-driven processes that may explain such sex-specific paternal age effects.
Collapse
Affiliation(s)
- Prem Aguilar
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Berfin Dag
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey
| | - Pau Carazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Valencia, Spain
| | - Zahida Sultanova
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
6
|
Testing the Role of Natural and Sexual Selection on Testes Size Asymmetry in Anurans. BIOLOGY 2023; 12:biology12020151. [PMID: 36829429 PMCID: PMC9952133 DOI: 10.3390/biology12020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Directional asymmetry in testes size is commonly documented in vertebrates. The degree of testes size asymmetry has been confirmed to be associated with natural and sexual selection. However, the role of natural and sexual selection driving variations in testes size asymmetry among species of anurans are largely unknown. Here, we studied the patterns of variations in testes size asymmetry and the factors shaping its variations among 116 anuran species. The results indicated that the left size-biased testes in 110 species (94.83% of 116 species) is more common than the right size-biased testes in six species. For all studied species, the degree of testes size asymmetry was positively associated with relative livers and body fat mass, following the prediction of the packaging hypothesis. We also found that the postcopulatory sperm competition (e.g., residual testes size) was positively associated with the degree of testes asymmetry. However, environmental stress (e.g., high latitude, precipitation seasonality and temperature seasonality) did not promote more symmetrical testes for all species. Our findings suggest that both natural selection for larger livers in body space and sexual selection for rapid increase in testis mass for most species during the breeding season can play key roles in driving in testes size asymmetry across anuran species.
Collapse
|
7
|
Singh P, Schärer L. Evolution of sex allocation plasticity in a hermaphroditic flatworm genus. J Evol Biol 2022; 35:817-830. [PMID: 35583959 PMCID: PMC9321609 DOI: 10.1111/jeb.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Sex allocation theory in simultaneous hermaphrodites predicts that optimal sex allocation is influenced by local sperm competition, which occurs when related sperm compete to fertilize a given set of eggs. Different factors, including the mating strategy and the ability to self‐fertilize, are predicted to affect local sperm competition and hence the optimal SA. Moreover, since the local sperm competition experienced by an individual can vary temporally and spatially, this can favour the evolution of sex allocation plasticity. Here, using seven species of the free‐living flatworm genus Macrostomum, we document interspecific variation in sex allocation, but neither their mating strategy nor their ability to self‐fertilize significantly predicted sex allocation among these species. Since we also found interspecific variation in sex allocation plasticity, we further estimated standardized effect sizes for plasticity in response to (i) the presence of mating partners (i.e. in isolation vs. with partners) and (ii) the strength of local sperm competition (i.e. in small vs. large groups). We found that self‐fertilization predicted sex allocation plasticity with respect to the presence of mating partners, with plasticity being lower for self‐fertilizing species. Finally, we showed that interspecific variation in sex allocation is higher than intraspecific variation due to sex allocation plasticity. Our study suggests that both sex allocation and sex allocation plasticity are evolutionarily labile, with self‐fertilization predicting the latter in Macrostomum.
Collapse
Affiliation(s)
- Pragya Singh
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Gascoigne SJL, Uwera Nalukwago DI, Barbosa F. Larval Density, Sex, and Allocation Hierarchy Affect Life History Trait Covariances in a Bean Beetle. Am Nat 2022; 199:291-301. [DOI: 10.1086/717639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Samuel J. L. Gascoigne
- Department of Biology, Lake Forest College, Lake Forest, Illinois 60045
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom
| | | | - Flavia Barbosa
- Department of Biology, Lake Forest College, Lake Forest, Illinois 60045
| |
Collapse
|
9
|
Strategic adjustment of ejaculate quality in response to variation of the socio-sexual environment. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03032-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Ramm SA. Seminal fluid and accessory male investment in sperm competition. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200068. [PMID: 33070740 DOI: 10.1098/rstb.2020.0068] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sperm production and allocation strategies have been a central concern of sperm competition research for the past 50 years. But during the 'sexual cascade' there may be strong selection for alternative routes to maximizing male fitness. Especially with the evolution of internal fertilization, a common and by now well-studied example is the accessory ejaculate investment represented by seminal fluid, the complex mixture of proteins, peptides and other components transferred to females together with sperm. How seminal fluid investment should covary with sperm investment probably depends on the mechanism of seminal fluid action. If seminal fluid components boost male paternity success by directly enhancing sperm function or use, we might often expect a positive correlation between the two forms of male investment, whereas trade-offs seem more likely if seminal fluid acts independently of sperm. This is largely borne out by a broad taxonomic survey to establish the prevailing patterns of seminal fluid production and allocation during animal evolution, in light of which I discuss the gaps that remain in our understanding of this key ejaculate component and its relationship to sperm investment, before outlining promising approaches for examining seminal fluid-mediated sperm competitiveness in the post-genomic era. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Steven A Ramm
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
11
|
Magris M, Chimetto G, Pilastro A. Strategic ejaculate adjustments and mismatches: are males paying sperm senescence costs? ETHOL ECOL EVOL 2020. [DOI: 10.1080/03949370.2020.1737577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Martina Magris
- Department of Biology, University of Padua, Padua 35131, Italy
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu 80100, Finland
| | | | - Andrea Pilastro
- Department of Biology, University of Padua, Padua 35131, Italy
| |
Collapse
|
12
|
Kaufmann P, Schärer L. Is the initiation of selfing linked to a hermaphrodite's female or male reproductive function? Behav Ecol Sociobiol 2020; 74:41. [PMID: 32214615 PMCID: PMC7080307 DOI: 10.1007/s00265-020-2816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 11/30/2022]
Abstract
ABSTRACT There is an ongoing debate about whether simultaneous hermaphrodites capable of selfing should prefer selfing over outcrossing or vice versa. While many theoretical models predict a transmission advantage for alleles that favour selfing, empirical studies often reveal low selfing rates. Despite these considerations, the underlying mechanisms that determine reproductive strategies in simultaneously hermaphroditic animals are poorly understood. In our study on the facultatively selfing free-living flatworm, Macrostomum hystrix, we ask whether the initiation of selfing, as inferred from the differential spatial distribution of received sperm, is linked to an individual's female or male reproductive function. Specifically, the initiation of selfing could (i) be linked to the male function, when an individual is unable to donate sperm to others and hence donates sperm to self, or it could (ii) be linked to the female function, when an individual fails to receive sperm from others-and hence is unable to fertilize its eggs via outcrossing-thus inducing it to self-fertilize. We experimentally created a social environment that allowed focals to outcross via sperm donation, but simultaneously prevented them from receiving sperm-by pairing them with a partner lacking the male copulatory organ-so that fertilization of the focal's eggs was restricted to selfing. Our results suggest that such focals generally do not initiate selfing, while we readily observe selfing in isolated worms. This suggests that in isolated M. hystrix, it is the male function that is linked to the initiation of selfing, likely due to a lack of opportunities for sperm donation. SIGNIFICANCE STATEMENT A variety of simultaneously hermaphroditic animals are capable of reproducing via both selfing and outcrossing. While the reproductive choices of such animals can be modelled by the joint action of genetic (e.g. inbreeding depression) and ecological factors (e.g. partner availability), experimental evaluation of theoretical results is often lacking. By manipulating the social environment of focal individuals, we here provide evidence that explores the respective role that the co-occurring male and female sex functions have on the initiation of selfing in a simultaneously hermaphroditic flatworm species. Specifically, our results suggest that the initiation of selfing is linked to the worm's male function. Insights about which function is linked to the initiation of selfing may ultimately help to better understand reproductive decisions in simultaneous hermaphrodites.
Collapse
Affiliation(s)
- Philipp Kaufmann
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
- Present Address: Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| |
Collapse
|
13
|
Singh P, Vellnow N, Schärer L. Variation in sex allocation plasticity in three closely related flatworm species. Ecol Evol 2020; 10:26-37. [PMID: 31988714 PMCID: PMC6972800 DOI: 10.1002/ece3.5566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/28/2019] [Indexed: 01/15/2023] Open
Abstract
Sex allocation (SA) theory for simultaneous hermaphrodites predicts an influence of group size on SA. Since group size can vary within an individual's lifetime, this can favor the evolution of phenotypically plastic SA. In an emerging comparative context, we here report on SA plasticity in three closely related Macrostomum flatworm species, namely Macrostomum janickei, Macrostomum cliftonensis, and Macrostomum mirumnovem. For each species, we experimentally raised worms in three group sizes (isolated, pairs, and octets) and two enclosure sizes (small and large) in all factorial combinations and studied the effects of these factors on different estimates of SA. In addition, we also evaluated whether isolated worms engage in self-fertilization. We found that all species have plastic SA, with M. cliftonensis being more plastic than the other two species, as assessed by comparing standardized effect sizes of (a) the presence/absence of mating partners and (b) the strength of sexual competition. Moreover, we found that sperm production rate-but not sperm morphology-is plastic in M. cliftonensis, and that only M. mirumnovem self-fertilized during our observation period. Our study suggests that both SA and SA plasticity can diverge even between closely related species.
Collapse
Affiliation(s)
- Pragya Singh
- Evolutionary BiologyZoological InstituteUniversity of BaselBaselSwitzerland
| | - Nikolas Vellnow
- Evolutionary BiologyZoological InstituteUniversity of BaselBaselSwitzerland
- Evolutionary Biology DepartmentBielefeld UniversityBielefeldGermany
| | - Lukas Schärer
- Evolutionary BiologyZoological InstituteUniversity of BaselBaselSwitzerland
| |
Collapse
|
14
|
Patlar B, Weber M, Temizyürek T, Ramm SA. Seminal Fluid-Mediated Manipulation of Post-mating Behavior in a Simultaneous Hermaphrodite. Curr Biol 2020; 30:143-149.e4. [DOI: 10.1016/j.cub.2019.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/25/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
|
15
|
Greenway EVG, Cirino LA, Wilner D, Somjee U, Anagnostou ME, Hepple RT, Miller CW. Extreme variation in testes size in an insect is linked to recent mating activity. J Evol Biol 2019; 33:142-150. [PMID: 31765505 DOI: 10.1111/jeb.13574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/23/2022]
Abstract
Ample sperm production is essential for successful male reproduction in many species. The amount of sperm a male can produce is typically constrained by the size of his testes, which can be energetically expensive to grow and maintain. Although the economics of ejaculate allocation has been the focus of much theoretical and empirical literature, relatively little attention has been paid to individual adult variation and plasticity at the source of sperm production, the testes themselves. We experimentally address this issue using the insect Narnia femorata Stål (Hemiptera: Coreidae). We established the metabolic cost of testicular tissue and then quantified variation in individual testes mass in response to multiple mate quality and quantity treatments. We uncovered extreme variation across individuals and considerable short-term effects of mating activity on testes dry mass. Importantly, the observed variation in testes mass was associated with notable fitness consequences; females paired with males with larger testes had greater hatching success. Overall, pairing with a female resulted in a 11% reduction in dry testes mass. Despite this apparent considerable mating investment, we found no evidence of strategic allocation to higher quality females or longer-term changes in testes mass. The dynamic nature of testes mass and its metabolic cost is vital to consider in the context of re-mating rates, polyandry benefits and general mating system dynamics both in this species and more broadly.
Collapse
Affiliation(s)
- E V Ginny Greenway
- Entomology and Nematology Department, University of Florida, Gainesville, Florida
| | - Lauren A Cirino
- Entomology and Nematology Department, University of Florida, Gainesville, Florida
| | - Daniela Wilner
- Entomology and Nematology Department, University of Florida, Gainesville, Florida
| | - Ummat Somjee
- Entomology and Nematology Department, University of Florida, Gainesville, Florida.,Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| | | | - Russell T Hepple
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Christine W Miller
- Entomology and Nematology Department, University of Florida, Gainesville, Florida
| |
Collapse
|
16
|
Patlar B, Ramm SA. Genotype‐by‐environment interactions for seminal fluid expression and sperm competitive ability. J Evol Biol 2019; 33:225-236. [DOI: 10.1111/jeb.13568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Bahar Patlar
- Evolutionary Biology Bielefeld University Bielefeld Germany
| | - Steven A. Ramm
- Evolutionary Biology Bielefeld University Bielefeld Germany
| |
Collapse
|
17
|
Carlitz EHD, Runge JN, König B, Winkler L, Kirschbaum C, Gao W, Lindholm AK. Steroid hormones in hair reveal sexual maturity and competition in wild house mice (Mus musculus domesticus). Sci Rep 2019; 9:16925. [PMID: 31729421 PMCID: PMC6858357 DOI: 10.1038/s41598-019-53362-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/24/2019] [Indexed: 01/31/2023] Open
Abstract
Endocrine data from wild populations provide important insight into social systems. However, obtaining samples for traditional methods involves capture and restraint of animals, and/or pain, which can influence the animal’s stress level, and thereby undesirable release of hormones. Here, we measured corticosterone, testosterone and progesterone in the hair of 482 wild-derived house mice that experienced sexual competition while living under semi-natural conditions. We tested whether sex, age, weight and indicators of sexual maturity, reproduction and social conflicts predict hormone concentrations measured in hair (sampling at endpoint). We show that body weight, sex and age significantly predict cumulative testosterone and progesterone levels, allowing the differentiation between subadults and adults in both sexes. Corticosterone was only slightly elevated in older males compared to older females and increased with the level of visible injuries or scars. Testosterone in males positively correlated with body weight, age, testes size, and sperm number. Progesterone in females significantly increased with age, body weight, and the number of embryos implanted throughout life, but not with the number of litters when controlled for age and weight. Our results highlight the biological validity of hair steroid measurements and provide important insight into reproductive competition in wild house mice.
Collapse
Affiliation(s)
- Esther H D Carlitz
- Department of Psychology, Biological Psychology, Technical University of Dresden, Dresden, Germany.
| | - Jan-Niklas Runge
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Barbara König
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Lennart Winkler
- Department of Applied Zoology, Technical University of Dresden, Dresden, Germany
| | - Clemens Kirschbaum
- Department of Psychology, Biological Psychology, Technical University of Dresden, Dresden, Germany
| | - Wei Gao
- Department of Psychology, Biological Psychology, Technical University of Dresden, Dresden, Germany
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
18
|
Ramm SA, Lengerer B, Arbore R, Pjeta R, Wunderer J, Giannakara A, Berezikov E, Ladurner P, Schärer L. Sex allocation plasticity on a transcriptome scale: Socially sensitive gene expression in a simultaneous hermaphrodite. Mol Ecol 2019; 28:2321-2341. [PMID: 30891857 DOI: 10.1111/mec.15077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Phenotypic plasticity can enable organisms to produce optimal phenotypes in multiple environments. A crucial life history trait that is often highly plastic is sex allocation, which in simultaneous hermaphrodites describes the relative investment into the male versus female sex functions. Theory predicts-and morphological evidence supports-that greater investment into the male function is favoured with increasing group size, due to the increasing importance of sperm competition for male reproductive success. Here, we performed a genome-wide gene expression assay to test for such sex allocation plasticity in a model simultaneous hermaphrodite, the free-living flatworm Macrostomum lignano. Based on RNA-Seq data from 16 biological replicates spanning four different group size treatments, we demonstrate that at least 10% of the >75,000 investigated transcripts in M. lignano are differentially expressed according to the social environment, rising to >30% of putative gonad-specific transcripts (spermatogenesis and oogenesis candidates) and tail-specific transcripts (seminal fluid candidates). This transcriptional response closely corresponds to the expected shift away from female and towards male reproductive investment with increasing sperm competition level. Using whole-mount in situ hybridization, we then confirm that many plastic transcripts exhibit the expected organ-specific expression, and RNA interference of selected testis- and ovary-specific candidates establishes that these indeed function in gametogenesis pathways. We conclude that a large proportion of sex-specific transcripts in M. lignano are differentially expressed according to the prevailing ecological conditions and that these are functionally relevant to key reproductive phenotypes. Our study thus begins to bridge organismal and molecular perspectives on sex allocation plasticity.
Collapse
Affiliation(s)
- Steven A Ramm
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany.,Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
| | - Birgit Lengerer
- Institute of Zoology & CMBI, University of Innsbruck, Innsbruck, Austria
| | - Roberto Arbore
- Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
| | - Robert Pjeta
- Institute of Zoology & CMBI, University of Innsbruck, Innsbruck, Austria
| | - Julia Wunderer
- Institute of Zoology & CMBI, University of Innsbruck, Innsbruck, Austria
| | | | - Eugene Berezikov
- ERIBA, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Ladurner
- Institute of Zoology & CMBI, University of Innsbruck, Innsbruck, Austria
| | - Lukas Schärer
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
19
|
Patlar B, Weber M, Ramm SA. Genetic and environmental variation in transcriptional expression of seminal fluid proteins. Heredity (Edinb) 2019; 122:595-611. [PMID: 30356222 PMCID: PMC6461930 DOI: 10.1038/s41437-018-0160-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Seminal fluid proteins (SFPs) are crucial mediators of sexual selection and sexual conflict. Recent studies have chiefly focused on environmentally induced plasticity as one source of variation in SFP expression, particularly in response to differing sperm competition levels. However, understanding the evolution of a trait in heterogenous environments requires estimates of both environmental and genetic sources of variation, as well as their interaction. Therefore, we investigated how environment (specifically mating group size, a good predictor of sperm competition intensity), genotype and genotype-by-environment interactions affect seminal fluid expression. To do so, we reared 12 inbred lines of a simultaneously hermaphroditic flatworm Macrostomum lignano in groups of either two or eight worms and measured the expression levels of 58 putative SFP transcripts. We then examined the source of variation in the expression of each transcript individually and for multivariate axes extracted from a principal component analysis. We found that mating group size did not affect expression levels according to the single transcript analyses, nor did it affect the first principal component (presumably representing overall investment in seminal fluid production). However, mating group size did affect the relative expression of different transcripts captured by the second principal component (presumably reflecting variation in seminal fluid composition). Most transcripts were genetically variable in their expression level and several exhibited genotype-by-environment interactions; relative composition also showed high genetic variation. Collectively, our results reveal the tightly integrated nature of the seminal fluid transcriptome and provide new insights into the quantitative genetic basis of seminal fluid investment and composition.
Collapse
Affiliation(s)
- Bahar Patlar
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany.
| | - Michael Weber
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
20
|
Santi M, Picchi L, Lorenzi MC. Dynamic modulation of reproductive strategies in a simultaneous hermaphrodite and preference for the male role. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Cattelan S, Pilastro A. Sperm priming response to perceived mating opportunities is reduced in male guppies with high baseline sperm production. Curr Zool 2018; 64:205-211. [PMID: 30402061 PMCID: PMC5905511 DOI: 10.1093/cz/zoy008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Producing sperm is costly and males have been selected to strategically adjust their sperm production and/or expenditure according to the fitness return associated with a specific mating. For example, males respond to fluctuations in the mating opportunities by adjusting the number of "ready" sperm. This phenomenon is known as "sperm priming" and is interpreted as a strategy to economize the investment in sperm. The cost and benefits of the sperm priming response, however, are expected to depend on a male's baseline sperm production (BSP) in the absence of females, because of the different risk of sperm depletion and the nonlinearly increasing costs of sperm production. We tested this prediction in 2 replicated lines of male guppies Poecilia reticulata that were artificially selected for high and low BSP. BSP has a large genetic variance and a high sire heritability in guppies, and males respond to the perceived mating opportunities by increasing the number of "ready" sperm. We investigated whether males with a different BSP differed in their sperm priming response. We found that when the perceived mating opportunities increased, males from low-sperm lines had a stronger sperm priming response than those from high-sperm lines. This result suggests that adaptive plasticity in sperm priming has the potential to evolve in response to different levels of BSP. The comparison between guppy populations with different levels of sperm production would allow to test whether the pattern reported here is also observed at the interpopulation level.
Collapse
Affiliation(s)
- Silvia Cattelan
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Andrea Pilastro
- Department of Biology, University of Padova, Padova 35131, Italy
| | | |
Collapse
|
22
|
Vellnow N, Marie-Orleach L, Zadesenets KS, Schärer L. Bigger testes increase paternity in a simultaneous hermaphrodite, independently of the sperm competition level. J Evol Biol 2017; 31:180-196. [DOI: 10.1111/jeb.13212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/31/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Affiliation(s)
- N. Vellnow
- Zoological Institute, Evolutionary Biology; University of Basel; Basel Switzerland
| | | | | | - L. Schärer
- Zoological Institute, Evolutionary Biology; University of Basel; Basel Switzerland
| |
Collapse
|
23
|
Lengerer B, Wunderer J, Pjeta R, Carta G, Kao D, Aboobaker A, Beisel C, Berezikov E, Salvenmoser W, Ladurner P. Organ specific gene expression in the regenerating tail of Macrostomum lignano. Dev Biol 2017; 433:448-460. [PMID: 28757111 DOI: 10.1016/j.ydbio.2017.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 11/25/2022]
Abstract
Temporal and spatial characterization of gene expression is a prerequisite for the understanding of cell-, tissue-, and organ-differentiation. In a multifaceted approach to investigate gene expression in the tail plate of the free-living marine flatworm Macrostomum lignano, we performed a posterior-region-specific in situ hybridization screen, RNA sequencing (RNA-seq) of regenerating animals, and functional analyses of selected tail-specific genes. The in situ screen revealed transcripts expressed in the antrum, cement glands, adhesive organs, prostate glands, rhabdite glands, and other tissues. Next we used RNA-seq to characterize temporal expression in the regenerating tail plate revealing a time restricted onset of both adhesive organs and copulatory apparatus regeneration. In addition, we identified three novel previously unannotated genes solely expressed in the regenerating stylet. RNA interference showed that these genes are required for the formation of not only the stylet but the whole male copulatory apparatus. RNAi treated animals lacked the stylet, vesicula granulorum, seminal vesicle, false seminal vesicle, and prostate glands, while the other tissues of the tail plate, such as adhesive organs regenerated normally. In summary, our findings provide a large resource of expression data during homeostasis and regeneration of the morphologically complex tail regeneration and pave the way for a better understanding of organogenesis in M. lignano.
Collapse
Affiliation(s)
- Birgit Lengerer
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Giada Carta
- Division of Physiology, Medical University of Innsbruck, Schöpfstraße 41/EG, A-6020 Innsbruck, Austria.
| | - Damian Kao
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| | - Aziz Aboobaker
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands.
| | - Willi Salvenmoser
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| |
Collapse
|
24
|
Vellnow N, Vizoso DB, Viktorin G, Schärer L. No evidence for strong cytonuclear conflict over sex allocation in a simultaneously hermaphroditic flatworm. BMC Evol Biol 2017; 17:103. [PMID: 28427326 PMCID: PMC5397761 DOI: 10.1186/s12862-017-0952-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/10/2017] [Indexed: 01/31/2023] Open
Abstract
Background Cytoplasmic sex allocation distorters, which arise from cytonuclear conflict over the optimal investment into male versus female reproductive function, are some of the best-researched examples for genomic conflict. Among hermaphrodites, many such distorters have been found in plants, while, to our knowledge, none have been clearly documented in animals. Methods Here we provide a quantitative test for cytonuclear conflict over sex allocation in the simultaneously hermaphroditic flatworm Macrostomum lignano. We used a quantitative genetic breeding design, employing pair-wise crosses of 2 × 15 independent inbred lines, to partition the phenotypic variance in several traits (including sex allocation) into its nuclear and cytoplasmic components. Results Although the nuclear genetic background had a significant effect on all traits analyzed, we found significant cytoplasmic genetic variation only for ovary size, there explaining just 4.1% of the variance. A subsequent statistical power analysis showed that the experimental design had considerable power to detect cytonuclear interactions. Conclusion We conclude that there were no strong effects of cytonuclear conflict in the studied populations, possibly because the usually compact mitochondrial genomes in animals have a lower evolvability than the large mitochondrial genomes in plants or because the sampled populations currently do not harbor variation at putative distorter and/or the restorer loci. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0952-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikolas Vellnow
- University of Basel, Zoological Institute, Evolutionary Biology, Basel, Switzerland.
| | - Dita B Vizoso
- University of Basel, Zoological Institute, Evolutionary Biology, Basel, Switzerland.,University of Innsbruck, Institute of Zoology, Innsbruck, Austria
| | - Gudrun Viktorin
- University of Basel, Zoological Institute, Evolutionary Biology, Basel, Switzerland
| | - Lukas Schärer
- University of Basel, Zoological Institute, Evolutionary Biology, Basel, Switzerland.,University of Innsbruck, Institute of Zoology, Innsbruck, Austria
| |
Collapse
|
25
|
Marie-Orleach L, Vogt-Burri N, Mouginot P, Schlatter A, Vizoso DB, Bailey NW, Schärer L. Indirect genetic effects and sexual conflicts: Partner genotype influences multiple morphological and behavioral reproductive traits in a flatworm. Evolution 2017; 71:1232-1245. [PMID: 28252800 DOI: 10.1111/evo.13218] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/14/2017] [Accepted: 02/26/2017] [Indexed: 01/07/2023]
Abstract
The expression of an individual's phenotypic traits can be influenced by genes expressed in its social partners. Theoretical models predict that such indirect genetic effects (IGEs) on reproductive traits should play an important role in determining the evolutionary outcome of sexual conflict. However, empirical tests of (i) whether reproductive IGEs exist, (ii) how they vary among genotypes, and (iii) whether they are uniform for different types of reproductive traits are largely lacking. We addressed this in a series of experiments in the simultaneously hermaphroditic flatworm Macrostomum lignano. We found strong evidence for IGEs on both morphological and behavioral reproductive traits. Partner genotype had a significant impact on the testis size of focal individuals-varying up to 2.4-fold-suggesting that IGEs could mediate sexual conflicts that target the male sex function. We also found that time to first copulation was affected by a genotype × genotype interaction between mating partners, and that partner genotype affected the propensity to copulate and perform the postcopulatory suck behavior, which may mediate conflicts over the fate of received ejaculate components. These findings provide clear empirical evidence for IGEs on multiple behavioral and morphological reproductive traits, which suggests that the evolutionary dynamics of these traits could be altered by genes contained in the social environment.
Collapse
Affiliation(s)
- Lucas Marie-Orleach
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland.,Centre for Biological Diversity, School of Biology, University of St. Andrews, United Kingdom
| | - Nadja Vogt-Burri
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland
| | - Pierick Mouginot
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland.,General and Systematic Zoology, Museum and Zoological Institute, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Aline Schlatter
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland
| | - Dita B Vizoso
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St. Andrews, United Kingdom
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland
| |
Collapse
|
26
|
Giannakara A, Ramm SA. Self-fertilization, sex allocation and spermatogenesis kinetics in the hypodermically inseminating flatworm Macrostomum pusillum. ACTA ACUST UNITED AC 2017; 220:1568-1577. [PMID: 28183866 DOI: 10.1242/jeb.149682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/03/2017] [Indexed: 01/15/2023]
Abstract
The free-living flatworm genus Macrostomum is an emerging model system for studying the links between sex allocation, sexual selection and mating system evolution, as well as the underlying developmental and physiological mechanisms responsible for wide intra- and inter-specific variability in reproductive phenotypes. Despite compelling comparative morphological evidence of sexual diversity, detailed experimental work on reproductive behaviour and physiology in Macrostomum has so far been largely limited to just two species, M. lignano and M. hystrix, an obligate and a preferential outcrosser, respectively. In this study, we establish that a third species, M. pusillum, exhibits a combination of reproductive traits strikingly different from both of its congeners. Unlike M. lignano, we demonstrate that M. pusillum does not adjust sex allocation or the speed of spermatogenesis to the prevailing social group size. Macrostomumpusillum's relatively simple sperm morphology likely explains the short spermatogenesis duration we report, and is linked to a hypodermically inseminating mode of fertilization, which we show also means that these worms are capable of self-fertilization. Surprisingly, and unlike M. hystrix, selfing in isolated worms commences after only a short (if any) delay compared with the onset of reproduction in grouped individuals, with little evidence of differential inbreeding depression in 'isolated' progeny. These combined results suggest that, in nature, M. pusillum may be regularly selfing, in contrast to the congeners studied to date. Our findings highlight the rapid and correlated evolution of reproductive traits, and reinforce the utility of the genus Macrostomum for understanding the evolutionary and developmental mechanisms responsible for this diversity.
Collapse
Affiliation(s)
- Athina Giannakara
- Evolutionary Biology, Bielefeld University, Morgenbreede 45, Bielefeld 33615, Germany
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Morgenbreede 45, Bielefeld 33615, Germany
| |
Collapse
|
27
|
Tawes BR, Kelly CD. Sex-specific catch-up growth in the Texas field cricket, Gryllus texensis. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brittany R. Tawes
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; 251 Bessey Hall Ames IA USA
| | - Clint D. Kelly
- Département des Sciences Biologiques; Université du Québec à Montréal; CP-8888 succursale centre-ville Montréal QC Canada H3C 3P8
| |
Collapse
|
28
|
Ramm SA. Exploring the sexual diversity of flatworms: Ecology, evolution, and the molecular biology of reproduction. Mol Reprod Dev 2016; 84:120-131. [PMID: 27292123 DOI: 10.1002/mrd.22669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Flatworms exhibit huge diversity in their reproductive biology, making this group an excellent model system for exploring how differences among species in reproductive ecology are reflected in the physiological and molecular details of how reproduction is achieved. In this review, I consider five key "lifestyle choices" (i.e., alternative evolutionary/developmental outcomes) that collectively encompass much of flatworm sexual diversity, beginning with the decisions: (i) whether to be free-living or parasitic; (ii) whether to reproduce asexually or sexually; and (iii) whether to be gonochoristic (separate-sexed) or hermaphroditic. I then examine two further decisions involving hermaphroditism: (iv) outcrossing versus selfing and (v) the balance of investment into the male versus the female sex function (sex allocation). Collectively, these lifestyle choices set the basic rules for how reproduction occurs, but as I emphasize in the second part of the review, the reproductive biology of flatworms is also greatly impacted by the near-pervasive and powerful pressure of sexual selection, together with the related phenomena of sperm competition and sexual conflict. Exactly how this plays out, however, is strongly affected by the particular combination of reproductive strategies adopted by each species. Mol. Reprod. Dev. 84: 120-131, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven A Ramm
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
29
|
Janicke T, Sandner P, Ramm SA, Vizoso DB, Schärer L. Experimentally evolved and phenotypically plastic responses to enforced monogamy in a hermaphroditic flatworm. J Evol Biol 2016; 29:1713-27. [PMID: 27237934 DOI: 10.1111/jeb.12910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/07/2016] [Accepted: 05/19/2016] [Indexed: 01/13/2023]
Abstract
Sexual selection is considered a potent evolutionary force in all sexually reproducing organisms, but direct tests in terms of experimental evolution of sexual traits are still lacking for simultaneously hermaphroditic animals. Here, we tested how evolution under enforced monogamy affected a suite of reproductive traits (including testis area, sex allocation, genital morphology, sperm morphology and mating behaviour) in the outcrossing hermaphroditic flatworm Macrostomum lignano, using an assay that also allowed the assessment of phenotypically plastic responses to group size. The experiment comprised 32 independent selection lines that evolved under either monogamy or polygamy for 20 generations. While we did not observe an evolutionary shift in sex allocation, we detected effects of the selection regime for two male morphological traits. Specifically, worms evolving under enforced monogamy had a distinct shape of the male copulatory organ and produced sperm with shorter appendages. Many traits that did not evolve under enforced monogamy showed phenotypic plasticity in response to group size. Notably, individuals that grew up in larger groups had a more male-biased sex allocation and produced slightly longer sperm than individuals raised in pairs. We conclude that, in this flatworm, enforced monogamy induced moderate evolutionary but substantial phenotypically plastic responses.
Collapse
Affiliation(s)
- T Janicke
- Zoological Institute, University of Basel, Basel, Switzerland. .,Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Ecole Pratique des Hautes Etudes, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier Cedex 05, France.
| | - P Sandner
- Zoological Institute, University of Basel, Basel, Switzerland
| | - S A Ramm
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - D B Vizoso
- Zoological Institute, University of Basel, Basel, Switzerland
| | - L Schärer
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Giannakara A, Schärer L, Ramm SA. Sperm competition-induced plasticity in the speed of spermatogenesis. BMC Evol Biol 2016; 16:60. [PMID: 26956948 PMCID: PMC4784355 DOI: 10.1186/s12862-016-0629-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/01/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Sperm competition between rival ejaculates over the fertilization of ova typically selects for the production of large numbers of sperm. An obvious way to increase sperm production is to increase testis size, and most empirical work has focussed on this parameter. Adaptive plasticity in sperm production rate could also arise due to variation in the speed with which each spermatozoon is produced, but whether animals can respond to relevant environmental conditions by modulating the kinetics of spermatogenesis in this way has not been experimentally investigated. RESULTS Here we demonstrate that the simultaneously hermaphroditic flatworm Macrostomum lignano exhibits substantial plasticity in the speed of spermatogenesis, depending on the social context: worms raised under higher levels of sperm competition produce sperm faster. CONCLUSIONS Our findings overturn the prevailing view that the speed of spermatogenesis is a static property of a genotype, and demonstrate the profound impact that social environmental conditions can exert upon a key developmental process. We thus identify, to our knowledge, a novel mechanism through which sperm production rate is maximised under sperm competition.
Collapse
Affiliation(s)
- Athina Giannakara
- Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany.
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany.
| |
Collapse
|
31
|
Marie-Orleach L, Janicke T, Vizoso DB, David P, Schärer L. Quantifying episodes of sexual selection: Insights from a transparent worm with fluorescent sperm. Evolution 2016; 70:314-28. [PMID: 26787006 DOI: 10.1111/evo.12861] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/03/2015] [Accepted: 12/22/2015] [Indexed: 01/14/2023]
Abstract
Sexual selection operates through consecutive episodes of selection that ultimately contribute to the observed variance in reproductive success between individuals. Understanding the relative importance of these episodes is challenging, particularly because the relevant postcopulatory fitness components are often difficult to assess. Here, we investigate different episodes of sexual selection on the male sex function, by assessing how (precopulatory) mating success, and (postcopulatory) sperm-transfer efficiency and sperm-fertilizing efficiency contribute to male reproductive success. Specifically, we used a transgenic line of the transparent flatworm, Macrostomum lignano, which expresses green fluorescent protein (GFP) in all cell types, including sperm cells, enabling in vivo sperm tracking and paternity analysis. We found that a large proportion of variance in male reproductive success arose from the postcopulatory episodes. Moreover, we also quantified selection differentials on 10 morphological traits. Testis size and seminal vesicle size showed significant positive selection differentials, which were mainly due to selection on sperm-transfer efficiency. Overall, our results demonstrate that male reproductive success in M. lignano is not primarily limited by the number of matings achieved, but rather by the ability to convert matings into successful fertilizations, which is facilitated by producing many sperm.
Collapse
Affiliation(s)
- Lucas Marie-Orleach
- Zoological Institute, University of Basel, Basel, Switzerland. .,Centre for Biological Diversity, University of St Andrews, St Andrews, United Kingdom.
| | - Tim Janicke
- Zoological Institute, University of Basel, Basel, Switzerland.,Centre d'Écologie Fonctionnelle et Évolutive, Montpellier, France
| | - Dita B Vizoso
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Patrice David
- Centre d'Écologie Fonctionnelle et Évolutive, Montpellier, France
| | - Lukas Schärer
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Affiliation(s)
- G. A. Parker
- Institute of Integrative Biology; University of Liverpool; Liverpool UK
| |
Collapse
|
33
|
Ramm SA, Edward DA, Claydon AJ, Hammond DE, Brownridge P, Hurst JL, Beynon RJ, Stockley P. Sperm competition risk drives plasticity in seminal fluid composition. BMC Biol 2015; 13:87. [PMID: 26507392 PMCID: PMC4624372 DOI: 10.1186/s12915-015-0197-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/07/2015] [Indexed: 12/24/2022] Open
Abstract
Background Ejaculates contain a diverse mixture of sperm and seminal fluid proteins, the combination of which is crucial to male reproductive success under competitive conditions. Males should therefore tailor the production of different ejaculate components according to their social environment, with particular sensitivity to cues of sperm competition risk (i.e. how likely it is that females will mate promiscuously). Here we test this hypothesis using an established vertebrate model system, the house mouse (Mus musculus domesticus), combining experimental data with a quantitative proteomics analysis of seminal fluid composition. Our study tests for the first time how both sperm and seminal fluid components of the ejaculate are tailored to the social environment. Results Our quantitative proteomics analysis reveals that the relative production of different proteins found in seminal fluid – i.e. seminal fluid proteome composition – differs significantly according to cues of sperm competition risk. Using a conservative analytical approach to identify differential expression of individual seminal fluid components, at least seven of 31 secreted seminal fluid proteins examined showed consistent differences in relative abundance under high versus low sperm competition conditions. Notably three important proteins with potential roles in sperm competition – SVS 6, SVS 5 and CEACAM 10 – were more abundant in the high competition treatment groups. Total investment in both sperm and seminal fluid production also increased with cues of heightened sperm competition risk in the social environment. By contrast, relative investment in different ejaculate components was unaffected by cues of mating opportunities. Conclusions Our study reveals significant plasticity in different ejaculate components, with the production of both sperm and non-sperm fractions of the ejaculate strongly influenced by the social environment. Sperm competition risk is thus shown to be a key factor in male ejaculate production decisions, including driving plasticity in seminal fluid composition. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0197-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven A Ramm
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK. .,Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany.
| | - Dominic A Edward
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK.
| | - Amy J Claydon
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK. .,Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
| | - Dean E Hammond
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
| | - Philip Brownridge
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
| | - Jane L Hurst
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK.
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
| | - Paula Stockley
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK.
| |
Collapse
|
34
|
Bretman A, Fricke C, Westmancoat JD, Chapman T. Effect of competitive cues on reproductive morphology and behavioral plasticity in male fruitflies. Behav Ecol 2015; 27:452-461. [PMID: 27004011 PMCID: PMC4797378 DOI: 10.1093/beheco/arv170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 11/13/2022] Open
Abstract
Phenotypic plasticity will be favored whenever there are significant fitness benefits of responding to environmental variation. The extent and nature of the plasticity that evolves depends on the rate of environmental fluctuations and the capacity to track and respond to that variability. Reproductive environments represent one arena in which changes can be rapid. The finding that males of many species show morphological, physiological, and behavioral plasticity in response to premating and postmating reproductive competition (RC) suggests that plasticity is broadly beneficial. The developmental environment is expected to accurately predict the average population level of RC but to be a relatively poor indicator of immediate RC at any particular mating. Therefore, we predict that manipulation of average RC during development should cause a response in plasticity "set" during development (e.g., size of adult reproductive structures), but not in flexible plasticity determined by the immediate adult environment (e.g., behavioral plasticity in mating duration). We tested this prediction in Drosophila melanogaster males by manipulating 2 independent cues of average RC during development: 1) larval density and 2) the presence or absence of adult males within larval culture vials. Consistent with the prediction, both manipulations resulted in the development of males with significantly larger adult accessory glands (although testis size decreased when males were added to culture vials). There was no effect on adult plasticity (mating duration, extended mating in response to rivals). The results suggest that males have evolved independent responses to long- and short-term variation in RC.
Collapse
Affiliation(s)
- Amanda Bretman
- School of Biology, University of Leeds , Manton Building, Leeds LS2 9JT , UK
| | - Claudia Fricke
- Institute for Evolution and Biodiversity, University of Muenster , Huefferstr. 1, 48149 Muenster , Germany , and
| | - James D Westmancoat
- School of Biological Sciences, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , UK
| |
Collapse
|
35
|
Arbore R, Sekii K, Beisel C, Ladurner P, Berezikov E, Schärer L. Positional RNA-Seq identifies candidate genes for phenotypic engineering of sexual traits. Front Zool 2015; 12:14. [PMID: 26146508 PMCID: PMC4490696 DOI: 10.1186/s12983-015-0106-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION RNA interference (RNAi) of trait-specific genes permits the manipulation of specific phenotypic traits ("phenotypic engineering") and thus represents a powerful tool to test trait function in evolutionary studies. The identification of suitable candidate genes, however, often relies on existing functional gene annotation, which is usually limited in emerging model organisms, especially when they are only distantly related to traditional genetic model organisms. A case in point is the free-living flatworm Macrostomum lignano (Lophotrochozoa: Platyhelminthes: Rhabditophora), an increasingly powerful model organism for evolutionary studies of sex in simultaneous hermaphrodites. To overcome the limitation of sparse functional annotation, we have performed a positional RNA-Seq analysis on different body fragments in order to identify organ-specific candidate transcripts. We then performed gene expression (in situ hybridization) and gene function (RNAi) analyses on 23 candidate transcripts, both to evaluate the predictive potential of this approach and to obtain preliminary functional characterizations of these candidate genes. RESULTS We identified over 4000 transcripts that could be expected to show specific expression in different reproductive organs (including testis, ovary and the male and female genital systems). The predictive potential of the method could then be verified by confirming organ-specific expression for several candidate transcripts, some of which yielded interesting trait-specific knock-down phenotypes that can now be followed up in future phenotypic engineering studies. CONCLUSIONS Our positional RNA-Seq analysis represents a highly useful resource for the identification of candidate transcripts for functional and phenotypic engineering studies in M. lignano, and it has already been used successfully in several studies. Moreover, this approach can overcome some inherent limitations of homology-based candidate selection and thus should be applicable to a broad range of emerging model organisms.
Collapse
Affiliation(s)
- Roberto Arbore
- />Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Kiyono Sekii
- />Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | | | - Peter Ladurner
- />Institute of Zoology and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Eugene Berezikov
- />ERIBA, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lukas Schärer
- />Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| |
Collapse
|
36
|
Moatt JP, Dytham C, Thom MDF. Sperm production responds to perceived sperm competition risk in male Drosophila melanogaster. Physiol Behav 2014; 131:111-4. [PMID: 24769021 DOI: 10.1016/j.physbeh.2014.04.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 11/19/2022]
Abstract
Postcopulatory sexual selection arising from female multiple mating leads to the evolution of ejaculates that maximize a male's reproductive success under sperm competition. Where the risk of sperm competition is variable, optimal fitness may be achieved by plastically altering ejaculate characteristics in response to the prevailing sperm competition environment. In the model species Drosophila melanogaster, males expecting to encounter sperm competition mate for longer and transfer more accessory proteins and sperm. Here we show that after being housed with a single rival for one week, the seminal vesicles of male D. melanogaster contain a significantly greater proportion of live sperm than those of males maintained alone, indicating adaptive adjustment of sperm quality in response to the perceived risk of sperm competition. This effect is due to an increase in the number of live sperm produced, indicating that males upregulate sperm production in response to the presence of rivals. Our data suggest that males show plasticity in the rate of spermatogenesis that is adaptive in the context of a fluctuating sperm competition environment.
Collapse
Affiliation(s)
- Joshua P Moatt
- Department of Biology, University of York, York YO10 5DD, UK
| | - Calvin Dytham
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
37
|
Ramm SA, Schärer L. The evolutionary ecology of testicular function: size isn't everything. Biol Rev Camb Philos Soc 2014; 89:874-88. [DOI: 10.1111/brv.12084] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 12/23/2013] [Accepted: 01/12/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Steven A. Ramm
- Evolutionary Biology; Bielefeld University; Morgenbreede 45 33615 Bielefeld Germany
| | - Lukas Schärer
- Evolutionary Biology; Zoological Institute, University of Basel; Vesalgasse 1 4051 Basel Switzerland
| |
Collapse
|
38
|
Lüpold S, Tomkins JL, Simmons LW, Fitzpatrick JL. Female monopolization mediates the relationship between pre- and postcopulatory sexual traits. Nat Commun 2014; 5:3184. [DOI: 10.1038/ncomms4184] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/31/2013] [Indexed: 11/09/2022] Open
|
39
|
Belloni V, Sorci G, Paccagnini E, Guerreiro R, Bellenger J, Faivre B. Disrupting immune regulation incurs transient costs in male reproductive function. PLoS One 2014; 9:e84606. [PMID: 24400103 PMCID: PMC3882243 DOI: 10.1371/journal.pone.0084606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Background Immune protection against pathogenic organisms has been shown to incur costs. Previous studies investigating the cost of immunity have mostly focused on the metabolic requirements of immune maintenance and activation. In addition to these metabolic costs, the immune system can induce damage to the host if the immune response is mis-targeted or over-expressed. Given its non-specific nature, an over-expressed inflammatory response is often associated with substantial damage for the host. Here, we investigated the cost of an over-expressed inflammatory response in the reproductive function of male mice. Methodology/Principal Findings We experimentally blocked the receptors of an anti-inflammatory cytokine (IL-10) in male mice exposed to a mild inflammatory challenge, with each treatment having an appropriate control group. The experiment was conducted on two age classes, young (3 month old) and old (15 month old) mice, to assess any age-related difference in the cost of a disrupted immune regulation. We found that the concomitant exposure to an inflammatory insult and the blockade of IL-10 induced a reduction in testis mass, compared to the three other groups. The frequency of abnormal sperm morphology was also higher in the group of mice exposed to the inflammatory challenge but did not depend on the blockade of the IL-10. Conclusions Our results provide evidence that immune regulation confers protection against the risk of inflammation-induced infertility during infection. They also suggest that disruption of the effectors involved in the regulation of the inflammatory response can have serious fitness consequences even under mild inflammatory insult and benign environmental conditions.
Collapse
Affiliation(s)
- Virginia Belloni
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne, Dijon, France
- Department Tropical Medicine, University of Tulane, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne, Dijon, France
| | | | - Romain Guerreiro
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne, Dijon, France
| | - Jérôme Bellenger
- Lipides Nutrition Cancer, INSERM UMR 866, Université de Bourgogne, Dijon, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne, Dijon, France
| |
Collapse
|
40
|
Janicke T, Marie-Orleach L, De Mulder K, Berezikov E, Ladurner P, Vizoso DB, Schärer L. Sex allocation adjustment to mating group size in a simultaneous hermaphrodite. Evolution 2013; 67:3233-42. [PMID: 24152005 DOI: 10.1111/evo.12189] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/22/2013] [Indexed: 11/29/2022]
Abstract
Sex allocation theory is considered as a touchstone of evolutionary biology, providing some of the best supported examples for Darwinian adaptation. In particular, Hamilton's local mate competition theory has been shown to generate precise predictions for extraordinary sex ratios observed in many separate-sexed organisms. In analogy to local mate competition, Charnov's mating group size model predicts how sex allocation in simultaneous hermaphrodites is affected by the mating group size (i.e., the number of mating partners plus one). Until now, studies have not directly explored the relationship between mating group size and sex allocation, which we here achieve in the simultaneously hermaphroditic flatworm Macrostomum lignano. Using transgenic focal worms with ubiquitous expression of green-fluorescent protein (GFP), we assessed the number of wild-type mating partners carrying GFP+ sperm from these focal worms when raised in different social group sizes. This allowed us to test directly how mating group size was related to the sex allocation of focal worms. We find that the proportion of male investment initially increases with increasing mating group size, but then saturates as predicted by theory. To our knowledge, this is the first direct test of the mating group size model in a simultaneously hermaphroditic animal.
Collapse
Affiliation(s)
- Tim Janicke
- Zoological Institute, University of Basel, Switzerland; Centre d'Écologie Fonctionnelle et Évolutive, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Sekii K, Vizoso DB, Kuales G, De Mulder K, Ladurner P, Schärer L. Phenotypic engineering of sperm-production rate confirms evolutionary predictions of sperm competition theory. Proc Biol Sci 2013; 280:20122711. [PMID: 23446521 DOI: 10.1098/rspb.2012.2711] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sperm production is a key male reproductive trait and an important parameter in sperm competition theory. Under sperm competition, paternity success is predicted to depend strongly on male allocation to sperm production. Furthermore, because sperm production is inherently costly, individuals should economize in sperm expenditure, and conditional adjustment of the copulation frequency according to their sperm availability may be expected. However, experimental studies showing effects of sperm production on mating behaviour and paternity success have so far been scarce, mainly because sperm production is difficult to manipulate directly in animals. Here, we used phenotypic engineering to manipulate sperm-production rate, by employing dose-dependent RNA interference (RNAi) of a spermatogenesis-specific gene, macbol1, in the free-living flatworm Macrostomum lignano. We demonstrate (i) that our novel dose-dependent RNAi approach allows us to induce high variability in sperm-production rate; (ii) that a reduced sperm-production rate is associated with a decreased copulation frequency, suggesting conditional adjustment of mating behaviour; and (iii) that both sperm production and copulation frequency are important determinants of paternity success in a competitive situation, as predicted by sperm competition theory. Our study clearly documents the potential of phenotypic engineering via dose-dependent RNAi to test quantitative predictions of evolutionary theory.
Collapse
Affiliation(s)
- Kiyono Sekii
- Evolutionary Biology, Zoological Institute, University of Basel, , Basel, Switzerland, Department of Zoology, University of Oxford, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Effects of mating status on copulatory and postcopulatory behaviour in a simultaneous hermaphrodite. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2012.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Mi ZP, Liao WB, Jin L, Lou SL, Cheng J, Wu H. Testis Asymmetry and Sperm Length inRhacophorus omeimontis. Zoolog Sci 2012; 29:368-72. [DOI: 10.2108/zsj.29.368] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Claydon AJ, Ramm SA, Pennington A, Hurst JL, Stockley P, Beynon R. Heterogenous turnover of sperm and seminal vesicle proteins in the mouse revealed by dynamic metabolic labeling. Mol Cell Proteomics 2012; 11:M111.014993. [PMID: 22331477 DOI: 10.1074/mcp.m111.014993] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plasticity in ejaculate composition is predicted as an adaptive response to the evolutionary selective pressure of sperm competition. However, to respond rapidly to local competitive conditions requires dynamic modulation in the production of functionally relevant ejaculate proteins. Here we combine metabolic labeling of proteins with proteomics to explore the opportunity for such modulation within mammalian ejaculates. We assessed the rate at which proteins are synthesized and incorporated in the seminal vesicles of male house mice (Mus musculus domesticus), where major seminal fluid proteins with potential roles in sperm competition are produced. We compared rates of protein turnover in the seminal vesicle with those during spermatogenesis, the timing of which is well known in mice. The subjects were fed a diet containing deuterated valine ([(2)H(8)]valine) for up to 35 days, and the incorporation of dietary-labeled amino acid into seminal vesicle- or sperm-specific proteins was assessed by liquid chromatography-mass spectrometry of samples recovered from the seminal vesicle lumen and cauda epididymis, respectively. Analyses of epididymal contents were consistent with the known duration of spermatogenesis and sperm maturation in this species and in addition revealed evidence for a subset of epididymal proteins subject to rapid turnover. For seminal vesicle proteins, incorporation of the stable isotope was evident from day 2 of labeling, reaching a plateau of labeling by day 24. Hence, even in the absence of copulation, the seminal vesicle proteins and certain epididymal proteins demonstrate considerable turnover, a response that is consonant with the capacity to rapidly modulate protein production. These techniques can now be used to assess the extent of phenotypic plasticity in mammalian ejaculate production and allocation according to social and environmental cues of sperm competition.
Collapse
Affiliation(s)
- Amy J Claydon
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
|
47
|
Abstract
Sperm competition was identified in 1970 as a pervasive selective force in post-copulatory sexual selection that occurs when the ejaculates of different males compete to fertilise a given set of ova. Since then, sperm competition has been much studied both empirically and theoretically. Because sperm competition often favours large ejaculates, an important challenge has been to understand the evolution of strategies through which males invest in sperm production and economise sperm allocation to maximise reproductive success under competitive conditions. Sperm competition mechanisms vary greatly, depending on many factors including the level of sperm competition, space constraints in the sperm competition arena, male mating roles, and female influences on sperm utilisation. Consequently, theoretical models of ejaculate economics are complex and varied, often with apparently conflicting predictions. The goal of this review is to synthesise the theoretical basis of ejaculate economics under sperm competition, aiming to provide empiricists with categorised model assumptions and predictions. We show that apparent contradictions between older and newer models can often be reconciled and there is considerable consensus in the predictions generated by different models. We also discuss qualitative empirical support for some of these predictions, and detail quantitative matches between predictions and observations that exist in the yellow dung fly. We argue that ejaculate economic theory represents a powerful heuristic to explain the diversity in ejaculate traits at multiple levels: across species, across males and within individual males. Future progress requires greater understanding of sperm competition mechanisms, quantification of trade-offs between ejaculate allocation and numbers of matings gained, further knowledge of mechanisms of female sperm selection and their associated costs, further investigation of non-sperm ejaculate effects, and theoretical integration of pre- and post-copulatory episodes of sexual selection.
Collapse
Affiliation(s)
- Geoff A Parker
- Division of Population and Evolutionary Biology, School of Biological Sciences, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK.
| | | |
Collapse
|
48
|
Resolving variation in the reproductive tradeoff between sperm size and number. Proc Natl Acad Sci U S A 2011; 108:5325-30. [PMID: 21402912 DOI: 10.1073/pnas.1009059108] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spermatozoa are amongst the most variable cells, and three factors are thought to account for this variation in design: fertilization mode, phylogeny, and postcopulatory sexual selection. In addition, it has long been assumed that a tradeoff exists between sperm size and number, and although postcopulatory sexual selection affects both traits, empirical evidence for a tradeoff has so far been elusive. Our recent theoretical model predicts that the nature of a direct tradeoff between sperm size and number varies with sperm competition mechanism and sperm competition risk. We test these predictions using a comparative approach in two very different taxa with different sperm competition mechanisms: passerine birds (mechanism: simple raffle) and Drosophila fruit flies (sperm displacement). We show that in both groups, males increase their total ejaculate investment with increasing sperm competition risk, but whereas passerine birds allocate disproportionately to sperm number, drosophilids allocate disproportionately to sperm size. This striking difference between the two groups can be at least partly explained by sperm competition mechanisms depending on sperm size relative to the size of the female reproductive tract: in large animals (passerines), sperm numbers are advantageous in sperm competition owing to dilution inside the female tract, whereas in small animals (drosophilids), large sperm are advantageous for physical competition (sperm displacement). Our study provides two important results. First, we provide convincing evidence for the existence of a sperm size-number tradeoff. Second, we show that by considering both sperm competition mechanism and dilution, can we account for variation in sperm size between different taxa.
Collapse
|
49
|
Schärer L, Littlewood DTJ, Waeschenbach A, Yoshida W, Vizoso DB. Mating behavior and the evolution of sperm design. Proc Natl Acad Sci U S A 2011; 108:1490-5. [PMID: 21220334 PMCID: PMC3029721 DOI: 10.1073/pnas.1013892108] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sperm are the most diverse of all animal cell types, and much of the diversity in sperm design is thought to reflect adaptations to the highly variable conditions under which sperm function and compete to achieve fertilization. Recent work has shown that these conditions often evolve rapidly as a consequence of multiple mating, suggesting a role for sexual selection and sexual conflict in the evolution of sperm design. However, very little of the striking diversity in sperm design is understood functionally, particularly in internally fertilizing organisms. We use phylogenetic comparative analyses covering 16 species of the hermaphroditic flatworm genus Macrostomum to show that a complex sperm design is associated with reciprocal mating and that this complexity is lost secondarily when hypodermic insemination--sperm injection through the epidermis--evolves. Specifically, the complex sperm design, which includes stiff lateral bristles, is likely a male persistence trait associated with sexual conflicts over the fate of received ejaculates and linked to female resistance traits, namely an intriguing postcopulatory sucking behavior and a thickened epithelium of the sperm-receiving organ. Our results suggest that the interactions between sperm donor, sperm, and sperm recipient can change drastically when hypodermic insemination evolves, involving convergent evolution of a needle-like copulatory organ, a simpler sperm design, and a simpler female genital morphology. Our study documents that a shift in the mating behavior may alter fundamentally the conditions under which sperm compete and thereby lead to a drastic change in sperm design.
Collapse
Affiliation(s)
- Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
50
|
Sarasa M, Serrano E, Soriguer RC, Granados JE, Fandos P, Gonzalez G, Joachim J, Pérez JM. Negative effect of the arthropod parasite, Sarcoptes scabiei, on testes mass in Iberian ibex, Capra pyrenaica. Vet Parasitol 2010; 175:306-12. [PMID: 21074328 DOI: 10.1016/j.vetpar.2010.10.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 12/25/2022]
Abstract
Testes mass is a key factor in male reproductive success and is potentially exposed to so-called 'parasitic castration'. This is the result of the direct destruction or alteration of reproductive cell lineages (parasitic castration sensu stricto), or the indirect detrimental effects - for example, via body condition - on the ability of progenitors to produce or rear offspring (parasitic castration sensu lato). There are enormous gaps in our knowledge on the effects of parasites on the testes of wild mammals and in an attempt to rectify this dearth of data we examined the relationship between the skin parasite Sarcoptes scabiei and testes mass in Iberian ibex Capra pyrenaica. We considered data from 222 males that were culled in the population from the Sierra Nevada in Spain. Our results provide evidence that sarcoptic mange is associated with reduced size-corrected testes mass in Iberian ibex which supports the hypothesis that parasitism is a determining factor in gonad plasticity in male mammals. We discuss several hypothetical causes of this relationship and highlight the need to deepen the sub-lethal effects of pathogens if we are to accurately understand their modulator effects on host population dynamics.
Collapse
Affiliation(s)
- Mathieu Sarasa
- Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de Ciencias Experimentales, Universidad de Jaén, E-23071 Jaén, Spain.
| | | | | | | | | | | | | | | |
Collapse
|