1
|
Çomaklı V, Aygül İ, Sağlamtaş R, Kuzu M, Demirdağ R, Akincioğlu H, Adem Ş, Gülçin İ. Assessment of Anticholinergic and Antidiabetic Properties of Some Natural and Synthetic Molecules: An In vitro and In silico Approach. Curr Comput Aided Drug Des 2024; 20:441-451. [PMID: 37202895 DOI: 10.2174/1573409919666230518151414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION This study aimed to determine the in vitro and in silico effects of some natural and synthetic molecules on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes. BACKGROUND Alzheimer's disease (AD) and Type II diabetes mellitus (T2DM) are considered the most important diseases of today's world. However, the side effects of therapeutic agents used in both diseases limit their use. Therefore, developing drugs with high therapeutic efficacy and better pharmacological profile is important. OBJECTIVES This study sets out to determine the related enzyme inhibitors used in treating AD and T2DM, considered amongst the most important diseases of today's world. METHODS In the current study, the in vitro and in silico effects of dienestrol, hesperetin, Lthyroxine, 3,3',5-Triiodo-L-thyronine (T3) and dobutamine molecules on AChE, BChE and α - glycosidase enzyme activities were investigated. RESULTS All the molecules showed an inhibitory effect on the enzymes. The IC50 and Ki values of the L-Thyroxine molecule, which showed the strongest inhibition effect for the AChE enzyme, were determined as 1.71 μM and 0.83 ± 0.195 μM, respectively. In addition, dienestrol, T3, and dobutamine molecules showed a more substantial inhibition effect than tacrine. The dobutamine molecule showed the most substantial inhibition effect for the BChE enzyme, and IC50 and Ki values were determined as 1.83 μM and 0.845 ± 0.143 μM, respectively. The IC50 and Ki values for the hesperetin molecule, which showed the strongest inhibition for the α -glycosidase enzyme, were determined as 13.57 μM and 12.33 ± 2.57 μM, respectively. CONCLUSION According to the results obtained, the molecules used in the study may be considered potential inhibitor candidates for AChE, BChE and α-glycosidase.
Collapse
Affiliation(s)
- Veysel Çomaklı
- Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - İmdat Aygül
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhane, Türkiye
| | - Rüya Sağlamtaş
- Department of Medical Services and Techniques, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Müslüm Kuzu
- Department of Nutrition and Dietetics, Karabük University, Karabük, Türkiye
| | - Ramazan Demirdağ
- Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Hülya Akincioğlu
- Department of Chemistry, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Şevki Adem
- Department of Chemistry, Çankırı Karatekin University, Çankırı, Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
2
|
Demir Y, Türkeş C, Küfrevioğlu Öİ, Beydemir Ş. Molecular Docking Studies and the Effect of Fluorophenylthiourea Derivatives on Glutathione-Dependent Enzymes. Chem Biodivers 2023; 20:e202200656. [PMID: 36538730 DOI: 10.1002/cbdv.202200656] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a serious problem affecting the health of all human societies. Chemotherapy refers to the use of drugs to kill cancer or the origin of cancer. In the past three decades, researchers have studied about proteins and their roles in the production of cancer cells. Glutathione S-transferases (GSTs) are a superfamily of enzymes that play a key role in cellular detoxification, protecting against reactive electrophiles attacks, including chemotherapeutic agents. Glutathione reductase (GR) is an important antioxidant enzyme involved in protecting the cell against oxidative stress. In this current study, GST and GR enzymes were purified from human erythrocytes using affinity chromatography. GR was obtained with a specific activity of 5.95 EU/mg protein and a 52.38 % yield. GST was obtained with a specific activity of 4.88 EU/mg protein and a 74.88 % yield. The effect of fluorophenylthiourea derivatives on the purified enzymes was investigated. Afterward, KI values were found to range from 23.04±4.37 μM-59.97±13.45 μM for GR and 7.22±1.64 μM-41.24±2.55 μM for GST. 1-(2,6-difluorophenyl)thiourea was showed the best inhibition effect for both GST and GR enzymes. The relationships of inhibitors with 3D structures of GST and GR were explained by molecular docking studies.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, 24100, Turkey
| | | | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| |
Collapse
|
3
|
Güller P, Karaman M, Güller U, Aksoy M, Küfrevioğlu Öİ. A study on the effects of inhibition mechanism of curcumin, quercetin, and resveratrol on human glutathione reductase through in vitro and in silico approaches. J Biomol Struct Dyn 2020; 39:1744-1753. [DOI: 10.1080/07391102.2020.1738962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Pınar Güller
- Chemistry Department, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Muhammet Karaman
- Molecular Biology and Genetics Department, Faculty of Arts and Science, Kilis 7 Aralık University, Kilis, Turkey
| | - Uğur Güller
- Food Engineering Department, Faculty of Engineering, Iğdır University, IĞDIR, Turkey
| | - Mine Aksoy
- Chemistry Department, Faculty of Science, Atatürk University, Erzurum, Turkey
| | | |
Collapse
|
4
|
Jiang GZ, Shi HJ, Xu C, Zhang DD, Liu WB, Li XF. Glucose-6-phosphate dehydrogenase in blunt snout bream Megalobrama amblycephala: molecular characterization, tissue distribution, and the responsiveness to dietary carbohydrate levels. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:401-415. [PMID: 30225750 DOI: 10.1007/s10695-018-0572-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to characterize the full-length cDNA of glucose-6-phosphate dehydrogenase (G6PD) from Megalobrama amblycephala with its responses to dietary carbohydrate levels characterized. The cDNA obtained covered 2768 bp with an open reading frame of 1572 bp. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (77-97%) among most fish and other higher vertebrates. The highest transcription of G6PD was observed in kidney followed by liver, whereas relatively low abundance was detected in eye. Then, the transcriptions and activities of G6PD as well as lipid contents were determined in the liver, muscle, and the adipose tissue of fish fed two dietary carbohydrate levels (30 and 42%) for 12 weeks. Hepatic transcriptions of fatty acid synthetase (FAS), acetyl-CoA carboxylase α (ACCα), sterol regulatory element-binding protein-1 (SREBP1), and peroxisome proliferator-activated receptor γ (PPARγ) were also measured to corroborate the lipogenesis derived from carbohydrates. The G6PD expressions and activities in both liver and the adipose tissue as well as the lipid contents in whole-body, liver, and the adipose tissue all increased significantly after high-carbohydrate feeding. Hepatic transcriptions of FAS, ACCα, SREBP1, and PPARγ were also up-regulated remarkably by the intake of a high-carbohydrate diet. These results indicated that the G6PD of M. amblycephala shared a high similarity with that of other vertebrates. Its expressions and activities in tissues were both highly inducible by high-carbohydrate feeding, as also held true for the transcriptions of other enzymes and/or transcription factors involved in lipogenesis, evidencing an enhanced lipogenesis by high dietary carbohydrate levels.
Collapse
Affiliation(s)
- Guang-Zhen Jiang
- Key Laboratory of Aquaculture Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hua-Juan Shi
- Key Laboratory of Aquaculture Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Chao Xu
- Key Laboratory of Aquaculture Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Ding-Dong Zhang
- Key Laboratory of Aquaculture Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquaculture Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquaculture Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
5
|
Kuzu M, Çomaklı V, Akkemik E, Çiftci M, Küfrevioğlu Öİ. Inhibitory properties of some heavy metals on carbonic anhydrase I and II isozymes activities purified from Van Lake fish (Chalcalburnus Tarichi) gill. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1119-1125. [PMID: 29629489 DOI: 10.1007/s10695-018-0499-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
In this study, CA I and II isoenzymes were purified from Van Lake fish gills by using Sepharose-4B-L-tyrosine-sulfanilamide affinity chromatography and to determine the effects of some metals on the enzyme activities. For purified CA I isoenzyme, yield, specific activity, and purification fold were obtained as 42.07%, 4948.12 EU/mg protein, and 116.61 and for CA II isoenzyme, 7%, 1798.56 EU/mg protein, and 42.38 respectively. Activity of CA was determined by measuring "CO2-hydratase activity". Purity control was checked by SDS-PAGE. In vitro inhibitory effect of Cu2+, Ag+, Cd2+, Ni2+ metal ions, and arsenic (V) oxide were also examined for both isozymes activities. Whereas Cu2+, Ag+, Cd2+, and Ni2+ ions showed inhibitory effects on both isozymes, arsenic (V) oxide showed activation effect. IC50 values were calculated by drawing activity %-[I] graphs for metal ions exhibiting inhibitory effects. IC50 values were determined as 3.39, 6.38, 13.52, and 206 μM for CA I isozyme and 6.16, 20.29, 46, and 223 μM for CA II isozyme respectively.
Collapse
Affiliation(s)
- Müslüm Kuzu
- Faculty of Pharmacy, University of Ağrı İbrahim Çeçen, 04100, Ağrı, Turkey.
| | - Veysel Çomaklı
- School of Healthy, University of Ağrı İbrahim Çeçen, 04100, Ağrı, Turkey
| | - Ebru Akkemik
- Faculty of Engineering and Architecture, Siirt University, 56100, Siirt, Turkey
| | - Mehmet Çiftci
- Faculty of Science and Letters, Bingöl University, 12000, Bingöl, Turkey
| | | |
Collapse
|
6
|
Tchuente Tchuenmogne MA, Kammalac TN, Gohlke S, Kouipou RMT, Aslan A, Kuzu M, Comakli V, Demirdag R, Ngouela SA, Tsamo E, Sewald N, Lenta BN, Boyom FF. Compounds from Terminalia mantaly L. (Combretaceae) Stem Bark Exhibit Potent Inhibition against Some Pathogenic Yeasts and Enzymes of Metabolic Significance. MEDICINES (BASEL, SWITZERLAND) 2017; 4:E6. [PMID: 28930221 PMCID: PMC5597071 DOI: 10.3390/medicines4010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022]
Abstract
Background: Pathogenic yeasts resistance to current drugs emphasizes the need for new, safe, and cost-effective drugs. Also, new inhibitors are needed to control the effects of enzymes that are implicated in metabolic dysfunctions such as cancer, obesity, and epilepsy. Methods: The anti-yeast extract from Terminalia mantaly (Combretaceae) was fractionated and the structures of the isolated compounds established by means of spectroscopic analysis and comparison with literature data. Activity was assessed against Candida albicans, C. parapsilosis and C. krusei using the microdilution method, and against four enzymes of metabolic significance: glucose-6-phosphate dehydrogenase, human erythrocyte carbonic anhydrase I and II, and glutathione S-transferase. Results: Seven compounds, 3,3'-di-O-methylellagic acid 4'-O-α-rhamnopyranoside; 3-O-methylellagic acid; arjungenin or 2,3,19,23-tetrahydroxyolean-12-en-28-oïc acid; arjunglucoside or 2,3,19,23-tetrahydroxyolean-12-en-28-oïc acid glucopyranoside; 2α,3α,24-trihydroxyolean-11,13(18)-dien-28-oïc acid; stigmasterol; and stigmasterol 3-O-β-d-glucopyranoside were isolated from the extract. Among those, 3,3'-di-O-methylellagic acid 4'-O-α-rhamnopyranoside, 3-O-methylellagic acid, and arjunglucoside showed anti-yeast activity comparable to that of reference fluconazole with minimal inhibitory concentrations (MIC) below 32 µg/mL. Besides, Arjunglucoside potently inhibited the tested enzymes with 50% inhibitory concentrations (IC50) below 4 µM and inhibitory constant (Ki) <3 µM. Conclusions: The results achieved indicate that further SAR studies will likely identify potent hit derivatives that should subsequently enter the drug development pipeline.
Collapse
Affiliation(s)
- Marthe Aimée Tchuente Tchuenmogne
- Laboratory of Natural Products and Organic Synthesis, Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Thierry Ngouana Kammalac
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Sebastian Gohlke
- Chemistry Department, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, D-33501 Bielefeld, Germany.
| | - Rufin Marie Toghueo Kouipou
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Abdulselam Aslan
- Faculty of Engineering, Department of Industrial Engineering, Giresun University, 28200 Giresun, Turkey.
| | - Muslum Kuzu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Agrı Ibrahim Cecen University, 04100 Agri, Turkey.
| | - Veysel Comakli
- School of Health, Department of Nutrition and Dietetics, Agrı Ibrahim Cecen University, 04100 Agri, Turkey.
| | - Ramazan Demirdag
- School of Health, Department of Nutrition and Dietetics, Agrı Ibrahim Cecen University, 04100 Agri, Turkey.
| | - Silvère Augustin Ngouela
- Laboratory of Natural Products and Organic Synthesis, Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Etienne Tsamo
- Laboratory of Natural Products and Organic Synthesis, Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Norbert Sewald
- Chemistry Department, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, D-33501 Bielefeld, Germany.
| | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, Yaoundé, Cameroon.
| | - Fabrice Fekam Boyom
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|