1
|
Robinson S, Wegner NC, Sepulveda CA, Franck JPC. Relative sarcolipin (SLN) and sarcoplasmic reticulum Ca 2+ ATPase (SERCA1) transcripts levels in closely related endothermic and ectothermic scombrid fishes: Implications for molecular basis of futile calcium cycle non-shivering thermogenesis (NST). Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111667. [PMID: 38782254 DOI: 10.1016/j.cbpa.2024.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Regional endothermy is the ability of an animal to elevate the temperature of specific regions of the body above that of the surrounding environment and has evolved independently among several fish lineages. Sarcolipin (SLN) is a small transmembrane protein that uncouples the sarcoplasmic reticulum calcium ATPase pump (SERCA1b) resulting in futile Ca2+ cycling and is thought to play a role in non-shivering thermogenesis (NST) in cold-challenged mammals and possibly some fishes. This study investigated the relative expression of sln and serca1 transcripts in three regionally-endothermic fishes (the skipjack, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, both of which elevate the temperatures of their slow-twitch red skeletal muscle (RM) and extraocular muscles (EM), as well as the cranial endothermic swordfish, Xiphias gladius), and closely related ectothermic scombrids (the Eastern Pacific bonito, Sarda chiliensis, and Pacific chub mackerel, Scomber japonicus). Using Reverse Transcription quantitative PCR (RT-qPCR) and species-specific primers, relative sln expression trended higher in both the RM and EM for all four scombrid species compared to white muscle. In addition, relative serca1 expression was found to be higher in RM of skipjack and yellowfin tuna in comparison to white muscle. However, neither sln nor serca1 transcripts were higher in swordfish RM, EM or cranial heater tissue in comparison to white muscle. A key phosphorylation site in sarcolipin, threonine 5, is conserved in the swordfish, but is mutated to alanine or valine in tunas and the endothermic smalleye Pacific opah, Lampris incognitus, which should result in increased uncoupling of the SERCA pump. Our results support the role of potential SLN-NST in endothermic tunas and the lack thereof for swordfish.
Collapse
Affiliation(s)
- Sean Robinson
- Department of Biology, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada. https://twitter.com/swm_robinson
| | - Nicholas C Wegner
- Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | | | - Jens P C Franck
- Department of Biology, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.
| |
Collapse
|
2
|
Shelley SP, James RS, Tallis J. The effects of muscle starting length on work loop power output of isolated mouse soleus and extensor digitorum longus muscle. J Exp Biol 2024; 227:jeb247158. [PMID: 38584504 DOI: 10.1242/jeb.247158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Force-length relationships derived from isometric activations may not directly apply to muscle force production during dynamic contractions. As such, different muscle starting lengths between isometric and dynamic conditions could be required to achieve maximal force and power. Therefore, this study examined the effects of starting length [±5-10% of length corresponding to maximal twitch force (L0)] on work loop (WL) power output (PO), across a range of cycle frequencies, of the soleus (SOL) and extensor digitorum longus muscle (EDL; N=8-10) isolated from ∼8 week old C57 mice. Furthermore, passive work was examined at a fixed cycle frequency to determine the association of passive work and active net work. Starting length affected maximal WL PO of the SOL and EDL across evaluated cycle frequencies (P<0.030, ηp2>0.494). For the SOL, PO produced at -5% L0 was greater than that at most starting lengths (P<0.015, Cohen's d>0.6), except -10% L0 (P=0.135, d<0.4). However, PO produced at -10% L0 versus L0 did not differ (P=0.138, d=0.35-0.49), indicating -5% L0 is optimal for maximal SOL WL PO. For the EDL, WL PO produced at -10% L0 was lower than that at most starting lengths (P<0.032, d>1.08), except versus -5% L0 (P=0.124, d<0.97). PO produced at other starting lengths did not differ (P>0.163, d<1.04). For the SOL, higher passive work was associated with reduced PO (Spearman's r=0.709, P<0.001), but no relationship was observed between passive work and PO of the EDL (Pearson's r=0.191, r2=0.04, P=0.184). This study suggests that starting length should be optimised for both static and dynamic contractions and confirms that the force-length curve during dynamic contractions is muscle specific.
Collapse
Affiliation(s)
- Sharn P Shelley
- Research Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry, CV1 5FB, UK
| | - Rob S James
- Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Jason Tallis
- Research Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry, CV1 5FB, UK
| |
Collapse
|
3
|
Arostegui MC, Shero MR, Frank LR, Berquist RM, Braun CD. An enigmatic pelagic fish with internalized red muscle: A future regional endotherm or forever an ectotherm? JOURNAL OF FISH BIOLOGY 2023; 102:1311-1326. [PMID: 36911991 DOI: 10.1111/jfb.15375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Ectothermy and endothermy in extant fishes are defined by distinct integrated suites of characters. Although only ⁓0.1% of fishes are known to have endothermic capacity, recent discoveries suggest that there may still be uncommon pelagic fish species with yet to be discovered endothermic traits. Among the most rarely encountered marine fishes, the louvar Luvarus imperialis is a remarkable example of adaptive evolution as the only extant pelagic species in the order Acanthuriformes (including surgeonfishes, tangs, unicornfishes and Moorish idol). Magnetic resonance imaging and gross necropsy did not yield evidence of cranial or visceral endothermy but revealed a central-posterior distribution of myotomal red muscle that is a mixture of the character states typifying ectotherms (lateral-posterior) and red muscle endotherms (central-anterior). Dissection of a specimen confirmed, and an osteological proxy supported, that L. imperialis has not evolved the vascular rete that is vital to retaining heat in the red muscle. The combination of presumably relying on caudal propulsion while exhibiting internal red muscle without associated retia is unique to L. imperialis among all extant fishes, raising the macroevolutionary question of whether this species - in geologic timescales - will remain an ectotherm or evolve red muscle endothermy.
Collapse
Affiliation(s)
- Martin C Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Michelle R Shero
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Lawrence R Frank
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, CA, USA
| | - Rachel M Berquist
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, CA, USA
| | - Camrin D Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
4
|
Morrison PR, Bernal D, Sepulveda CA, Brauner CJ. The effect of temperature on haemoglobin-oxygen binding affinity in regionally endothermic and ectothermic sharks. J Exp Biol 2023; 226:286204. [PMID: 36576038 DOI: 10.1242/jeb.244979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Haemoglobin (Hb)-O2 binding affinity typically decreases with increasing temperature, but several species of ectothermic and regionally endothermic fishes exhibit reduced Hb thermal sensitivity. Regionally endothermic sharks, including the common thresher shark (Alopias vulpinus) and lamnid sharks such as the shortfin mako shark (Isurus oxyrinchus), can maintain select tissues and organs warmer than ambient temperature by retaining metabolic heat with vascular heat exchangers. In the ectothermic bigeye thresher shark (Alopias superciliosus), diurnal movements above and below the thermocline subject the tissues, including the blood, to a wide range of operating temperatures. Therefore, blood-O2 transport must occur across internal temperature gradients in regionally endothermic species, and over the range of environmental temperatures encountered by the ectothermic bigeye thresher shark. While previous studies have shown temperature-independent Hb-O2 affinity in lamnid sharks, including shortfin mako, the Hb-O2 affinity of the common and bigeye thresher sharks is unknown. Therefore, we examined the effect of temperature on whole-blood Hb-O2 affinity in common thresher shark and bigeye thresher shark. For comparison, analyses were also conducted on the shortfin mako shark and two ectothermic species, blue shark (Prionace glauca) and spiny dogfish (Squalus acanthias). Blood-O2 binding affinity was temperature independent for common thresher shark and shortfin mako shark, which should prevent internal temperature gradients from negatively affecting blood-O2 transport. Blue shark and spiny dogfish blood-O2 affinity decreased with increasing temperature, as expected, but bigeye thresher shark blood exhibited both a reduced temperature dependence and a high Hb-O2 affinity, which likely prevents large changes in environment temperature and low environmental oxygen from affecting O2 uptake.
Collapse
Affiliation(s)
- Phillip R Morrison
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Diego Bernal
- Department of Biology, University of Massachusetts, Dartmouth, MA 02747, USA
| | | | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
5
|
Diel Vertical Habitat Use Observations of a Scalloped Hammerhead and a Bigeye Thresher in the Northern Gulf of Mexico. FISHES 2022. [DOI: 10.3390/fishes7040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Understanding habitat use of elasmobranchs in pelagic environments is complicated due to the mobility of these large animals and their ability to move great distances in a three-dimensional environment. The Gulf of Mexico is a region where many highly migratory pelagic shark species occur, while in close proximity to coastal, anthropogenic activity including recreational and commercial fisheries. This study provides summary information on the vertical habitat use for a single male scalloped hammerhead and a single male bigeye thresher that were each caught and tagged with an archiving satellite tag. The scalloped hammerhead occupied shallow depths (<100 m) over the continental shelf during the 90 d deployment. The bigeye thresher exhibited strong patterns of diel vertical migrations by occupying depths below the thermocline (>350 m) during the day, then occupying shallower depths (50–100 m) during the night. By providing summary information, this note urges future research to provide scientific information on pelagic, highly migratory species for management efforts in the Gulf of Mexico region.
Collapse
|
6
|
Shelley S, James RS, Eustace SJ, Eyre E, Tallis J. Effect of stimulation frequency on force, power, and fatigue of isolated mouse extensor digitorum longus muscle. J Exp Biol 2022; 225:275021. [PMID: 35413119 DOI: 10.1242/jeb.243285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
Abstract
This study examined the effect of stimulation frequency (140, 200, 230 and 260 Hz) on isometric force, work loop (WL) power, and the fatigue resistance of extensor digitorum longus (EDL) muscle (n=32), isolated from 8-10-week-old CD-1 female mice. Stimulation frequency had significant effects on isometric properties of isolated mouse EDL, whereby increasing stimulation frequency evoked increased isometric force, quicker activation, and prolonged relaxation (P <0.047), until 230 Hz and above, thereafter force and activation did not differ (P >0.137). Increasing stimulation frequency increased maximal WL power output (P <0.001; 140 Hz, 71.3±3.5; 200 Hz, 105.4±4.1; 230 Hz, 115.5±4.1; 260 Hz, 121.1±4.1 W.kg-1), but resulted in significantly quicker rates of fatigue during consecutive WL's (P <0.004). WL shapes indicate impaired muscle relaxation at the end of shortening and subsequent increased negative work appeared to contribute to fatigue at 230 and 260 Hz, but not at lower stimulation frequencies. Cumulative work was unaffected by stimulation frequency, except at the start of fatigue protocol where 230 and 260 Hz produced more work than 140 Hz (P <0.039). We demonstrate that stimulation frequency affects force, power, and fatigue, but effects are not uniform between different assessments of contractile performance. Therefore, future work examining contractile properties of isolated skeletal muscle should consider increasing stimulation frequency beyond that needed for maximal force when examining maximal power but utilise a sub-maximal stimulation frequency for fatigue assessments to avoid high degree of negative work atypical of in vivo function.
Collapse
Affiliation(s)
- Sharn Shelley
- Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S James
- Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Steven J Eustace
- Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Emma Eyre
- Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Jason Tallis
- Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
7
|
Gamperl AK, Syme DA. Temperature effects on the contractile performance and efficiency of oxidative muscle from a eurythermal versus a stenothermal salmonid. J Exp Biol 2021; 224:jeb242487. [PMID: 34350949 PMCID: PMC8353165 DOI: 10.1242/jeb.242487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 01/18/2023]
Abstract
We compared the thermal sensitivity of oxidative muscle function between the eurythermal Atlantic salmon (Salmo salar) and the more stenothermal Arctic char (Salvelinus alpinus; which prefers cooler waters). Power output was measured in red skeletal muscle strips and myocardial trabeculae, and efficiency (net work/energy consumed) was measured for trabeculae, from cold (6°C) and warm (15°C) acclimated fish at temperatures from 2 to 26°C. The mass-specific net power produced by char red muscle was greater than in salmon, by 2-to 5-fold depending on test temperature. Net power first increased, then decreased, when the red muscle of 6°C-acclimated char was exposed to increasing temperature. Acclimation to 15°C significantly impaired mass-specific power in char (by ∼40-50%) from 2 to 15°C, but lessened its relative decrease between 15 and 26°C. In contrast, maximal net power increased, and then plateaued, with increasing temperature in salmon from both acclimation groups. Increasing test temperature resulted in a ∼3- to 5-fold increase in maximal net power produced by ventricular trabeculae in all groups, and this effect was not influenced by acclimation temperature. Nonetheless, lengthening power was higher in trabeculae from warm-acclimated char, and char trabeculae could not contract as fast as those from salmon. Finally, the efficiency of myocardial net work was approximately 2-fold greater in 15°C-acclimated salmon than char (∼15 versus 7%), and highest at 20°C in salmon. This study provides several mechanistic explanations as to their inter-specific difference in upper thermal tolerance, and potentially why southern char populations are being negatively impacted by climate change.
Collapse
Affiliation(s)
- A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, CanadaA1C 5S7
| | - Douglas A. Syme
- Department of Biological Sciences, University of Calgary, Calgary, AB, CanadaT2N 1N4
| |
Collapse
|