1
|
E GX, Chen LP, Zhou DK, Yang BG, Zhang JH, Zhao YJ, Hong QH, Ma YH, Chu MX, Zhang LP, Basang WD, Zhu YB, Han YG, Na RS, Zeng Y, Zhao ZQ, Huang YF, Han JL. Evolutionary relationship and population structure of domestic Bovidae animals based on MHC-linked and neutral autosomal microsatellite markers. Mol Immunol 2020; 124:83-90. [PMID: 32544655 DOI: 10.1016/j.molimm.2020.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022]
Abstract
Major histocompatibility complex (MHC) genes are critical for disease resistance or susceptibility responsible for host-pathogen interactions determined mainly by extensive polymorphisms in the MHC genes. Here, we examined the diversity and phylogenetic pattern of MHC haplotypes reconstructed using three MHC-linked microsatellite markers in 55 populations of five Bovidae species and compared them with those based on neutral autosomal microsatellite markers (NAMs). Three-hundred-and-forty MHC haplotypes were identified in 1453 Bovidae individuals, suggesting significantly higher polymorphism and heterozygosity compared with those based on NAMs. The ambitious boundaries in population differentiation (phylogenetic network, pairwise FST and STRUCTURE analyses) within and between species assessed using the MHC haplotypes were different from those revealed by NAMs associated closely with speciation, geographical distribution, domestication and management histories. In addition, the mean FST was significantly correlated negatively with the number of observed alleles (NA), observed (HO) and expected (HE) heterozygosity and polymorphism information content (PIC) (P < 0.05) in the MHC haplotype dataset while there was no correction of the mean FST estimates (P> 0.05) between the MHC haplotype and NAMs datasets. Analysis of molecular variance (AMOVA) revealed a lower percentage of total variance (PTV) between species/groups based on the MHC-linked microsatellites than NAMs. Therefore, it was inferred that individuals within populations accumulated as many MHC variants as possible to increase their heterozygosity and thus the survival rate of their affiliated populations and species, which eventually reduced population differentiation and thereby complicated their classification and phylogenetic relationship inference. In summary, host-pathogen coevolution and heterozygote advantage, rather than demographic history, act as key driving forces shaping the MHC diversity within the populations and determining the interspecific MHC diversity.
Collapse
Affiliation(s)
- Guang-Xin E
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Li-Peng Chen
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Dong-Ke Zhou
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Bai-Gao Yang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Jia-Hua Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yong-Ju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Qiong-Hua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Yue-Hui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Ming-Xing Chu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lu-Pei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Wang-Dui Basang
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement (Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS)), Lhasa 850002, China
| | - Yan-Bin Zhu
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement (Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS)), Lhasa 850002, China
| | - Yan-Guo Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Ri-Su Na
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yan Zeng
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Zhong-Quan Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yong-Fu Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China.
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi 00100, Kenya.
| |
Collapse
|
2
|
Bakker FT, Antonelli A, Clarke JA, Cook JA, Edwards SV, Ericson PGP, Faurby S, Ferrand N, Gelang M, Gillespie RG, Irestedt M, Lundin K, Larsson E, Matos-Maraví P, Müller J, von Proschwitz T, Roderick GK, Schliep A, Wahlberg N, Wiedenhoeft J, Källersjö M. The Global Museum: natural history collections and the future of evolutionary science and public education. PeerJ 2020; 8:e8225. [PMID: 32025365 PMCID: PMC6993751 DOI: 10.7717/peerj.8225] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022] Open
Abstract
Natural history museums are unique spaces for interdisciplinary research and educational innovation. Through extensive exhibits and public programming and by hosting rich communities of amateurs, students, and researchers at all stages of their careers, they can provide a place-based window to focus on integration of science and discovery, as well as a locus for community engagement. At the same time, like a synthesis radio telescope, when joined together through emerging digital resources, the global community of museums (the ‘Global Museum’) is more than the sum of its parts, allowing insights and answers to diverse biological, environmental, and societal questions at the global scale, across eons of time, and spanning vast diversity across the Tree of Life. We argue that, whereas natural history collections and museums began with a focus on describing the diversity and peculiarities of species on Earth, they are now increasingly leveraged in new ways that significantly expand their impact and relevance. These new directions include the possibility to ask new, often interdisciplinary questions in basic and applied science, such as in biomimetic design, and by contributing to solutions to climate change, global health and food security challenges. As institutions, they have long been incubators for cutting-edge research in biology while simultaneously providing core infrastructure for research on present and future societal needs. Here we explore how the intersection between pressing issues in environmental and human health and rapid technological innovation have reinforced the relevance of museum collections. We do this by providing examples as food for thought for both the broader academic community and museum scientists on the evolving role of museums. We also identify challenges to the realization of the full potential of natural history collections and the Global Museum to science and society and discuss the critical need to grow these collections. We then focus on mapping and modelling of museum data (including place-based approaches and discovery), and explore the main projects, platforms and databases enabling this growth. Finally, we aim to improve relevant protocols for the long-term storage of specimens and tissues, ensuring proper connection with tomorrow’s technologies and hence further increasing the relevance of natural history museums.
Collapse
Affiliation(s)
- Freek T Bakker
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Julia A Clarke
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States of America
| | - Joseph A Cook
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, United States of America
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America.,Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| | - Per G P Ericson
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Søren Faurby
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Nuno Ferrand
- Museu de História Natural e da Ciência, Universidade do Porto, Porto, Portugal
| | - Magnus Gelang
- Department of Zoology, Gothenburg Natural History Museum, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Rosemary G Gillespie
- Essig Museum of Entomology, Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States of America
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Kennet Lundin
- Department of Zoology, Gothenburg Natural History Museum, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Ellen Larsson
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Pável Matos-Maraví
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| | - Johannes Müller
- Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Museum für Naturkunde, Berlin, Germany
| | - Ted von Proschwitz
- Department of Zoology, Gothenburg Natural History Museum, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - George K Roderick
- Essig Museum of Entomology, Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States of America
| | - Alexander Schliep
- Department of Computer Science and Engineering, University of Gothenburg, Göteborg, Sweden
| | | | - John Wiedenhoeft
- Department of Computer Science and Engineering, University of Gothenburg, Göteborg, Sweden
| | - Mari Källersjö
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden.,Gothenburg Botanical Garden, Göteborg, Sweden
| |
Collapse
|
3
|
Bensch S. Scott V. Edwards—Recipient of the 2019 Molecular Ecology Prize. Mol Ecol 2020; 29:20-22. [DOI: 10.1111/mec.15348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Dalton DL, Vermaak E, Roelofse M, Kotze A. Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus). PLoS One 2016; 11:e0163331. [PMID: 27760133 PMCID: PMC5070850 DOI: 10.1371/journal.pone.0163331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022] Open
Abstract
The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC) genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs) are now increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune region of African penguins similar to that observed in New Zealand robin that has undergone several severe population bottlenecks. Single nucleotide polymorphism (SNP) diversity across TLRs varied between ex situ and in situ penguins with the number of non-synonymous alterations in ex situ populations (n = 14) being reduced in comparison to in situ populations (n = 16). Maintaining adaptive diversity is of vital importance in the assurance populations as these animals may potentially be used in the future for re-introductions. Therefore, this study provides essential data on immune gene diversity in penguins and will assist in providing an additional monitoring tool for African penguin in the wild, as well as to monitor diversity in ex situ populations and to ensure that diversity found in the in situ populations are captured in the assurance populations.
Collapse
Affiliation(s)
- Desiré Lee Dalton
- Centre for Conservation Science, National Zoological Gardens of South Africa, Pretoria, Gauteng, South Africa.,Genetics Department, University of the Free State, Bloemfontein, Free State, South Africa
| | - Elaine Vermaak
- Centre for Conservation Science, National Zoological Gardens of South Africa, Pretoria, Gauteng, South Africa
| | - Marli Roelofse
- Centre for Conservation Science, National Zoological Gardens of South Africa, Pretoria, Gauteng, South Africa
| | - Antoinette Kotze
- Centre for Conservation Science, National Zoological Gardens of South Africa, Pretoria, Gauteng, South Africa.,Genetics Department, University of the Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
5
|
Shultz AJ, Baker AJ, Hill GE, Nolan PM, Edwards SV. SNPs across time and space: population genomic signatures of founder events and epizootics in the House Finch ( Haemorhous mexicanus). Ecol Evol 2016; 6:7475-7489. [PMID: 28725414 PMCID: PMC5513257 DOI: 10.1002/ece3.2444] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 12/27/2022] Open
Abstract
Identifying genomic signatures of natural selection can be challenging against a background of demographic changes such as bottlenecks and population expansions. Here, we disentangle the effects of demography from selection in the House Finch (Haemorhous mexicanus) using samples collected before and after a pathogen‐induced selection event. Using ddRADseq, we genotyped over 18,000 SNPs across the genome in native pre‐epizootic western US birds, introduced birds from Hawaii and the eastern United States, post‐epizootic eastern birds, and western birds sampled across a similar time span. We found 14% and 7% reductions in nucleotide diversity, respectively, in Hawaiian and pre‐epizootic eastern birds relative to pre‐epizootic western birds, as well as elevated levels of linkage disequilibrium and other signatures of founder events. Despite finding numerous significant frequency shifts (outlier loci) between pre‐epizootic native and introduced populations, we found no signal of reduced genetic diversity, elevated linkage disequilibrium, or outlier loci as a result of the epizootic. Simulations demonstrate that the proportion of outliers associated with founder events could be explained by genetic drift. This rare view of genetic evolution across time in an invasive species provides direct evidence that demographic shifts like founder events have genetic consequences more widespread across the genome than natural selection.
Collapse
Affiliation(s)
- Allison J Shultz
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| | - Allan J Baker
- Department of Natural History, Royal Ontario Museum Department of Ecology and Evolutionary Biology University of Toronto Toronto ON Canada
| | - Geoffrey E Hill
- Department of Biological Sciences Auburn University Auburn AL USA
| | - Paul M Nolan
- Department of Biology The Citadel Charleston SC USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| |
Collapse
|
6
|
Backström N, Shipilina D, Blom MPK, Edwards SV. Cis-regulatory sequence variation and association with Mycoplasma load in natural populations of the house finch (Carpodacus mexicanus). Ecol Evol 2013; 3:655-66. [PMID: 23532859 PMCID: PMC3605853 DOI: 10.1002/ece3.484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/17/2012] [Accepted: 12/24/2012] [Indexed: 01/19/2023] Open
Abstract
Characterization of the genetic basis of fitness traits in natural populations is important for understanding how organisms adapt to the changing environment and to novel events, such as epizootics. However, candidate fitness-influencing loci, such as regulatory regions, are usually unavailable in nonmodel species. Here, we analyze sequence data from targeted resequencing of the cis-regulatory regions of three candidate genes for disease resistance (CD74, HSP90α, and LCP1) in populations of the house finch (Carpodacus mexicanus) historically exposed (Alabama) and naïve (Arizona) to Mycoplasma gallisepticum. Our study, the first to quantify variation in regulatory regions in wild birds, reveals that the upstream regions of CD74 and HSP90α are GC-rich, with the former exhibiting unusually low sequence variation for this species. We identified two SNPs, located in a GC-rich region immediately upstream of an inferred promoter site in the gene HSP90α, that were significantly associated with Mycoplasma pathogen load in the two populations. The SNPs are closely linked and situated in potential regulatory sequences: one in a binding site for the transcription factor nuclear NFYα and the other in a dinucleotide microsatellite ((GC)6). The genotype associated with pathogen load in the putative NFYα binding site was significantly overrepresented in the Alabama birds. However, we did not see strong effects of selection at this SNP, perhaps because selection has acted on standing genetic variation over an extremely short time in a highly recombining region. Our study is a useful starting point to explore functional relationships between sequence polymorphisms, gene expression, and phenotypic traits, such as pathogen resistance that affect fitness in the wild.
Collapse
Affiliation(s)
- Niclas Backström
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University26 Oxford Street, Cambridge, MA, 02138
| | - Daria Shipilina
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University26 Oxford Street, Cambridge, MA, 02138
| | - Mozes P K Blom
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University26 Oxford Street, Cambridge, MA, 02138
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University26 Oxford Street, Cambridge, MA, 02138
| |
Collapse
|
7
|
Whittaker DJ, Dapper AL, Peterson MP, Atwell JW, Ketterson ED. Maintenance of MHC Class IIB diversity in a recently established songbird population. JOURNAL OF AVIAN BIOLOGY 2012; 43:109-118. [PMID: 22685370 PMCID: PMC3368239 DOI: 10.1111/j.1600-048x.2012.05504.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We examined variation at MHC Class IIB genes in a recently established population of dark-eyed juncos (Junco hyemalis) in a coastal urban environment in southern California, USA relative to an ancestral-range population from a nearby species-typical montane environment. The founding population is estimated to have been quite small, but we predicted that variation at the major histocompatibility complex (MHC) among the founders would nevertheless be preserved owing to the high functional significance of MHC. Previous studies of MHC in songbirds have had varying degrees of success in isolating loci, as passerines show extensive MHC gene duplication. In order to compare diversity in the two populations, we employed two published approaches to sequencing MHC Class II exon 2: direct sequencing with exon-based primers, and traditional cloning and sequencing with intron-based primers. Results from both methods show that the colonist population has maintained high levels of variation. Our results also indicate varying numbers of alleles across individuals, corroborating evidence for gene duplication in songbird MHC. While future studies in songbirds may need to take a genomic approach to fully understand the structure of MHC in this lineage, our results show that it is possible to use traditional methods to reveal functional variation across populations.
Collapse
Affiliation(s)
- Danielle J. Whittaker
- BEACON Center for the Study of Evolution in Action, Michigan State University, 1441 Biomedical and Physical Sciences, East Lansing, MI, 48824
- Department of Biology, Indiana University, 1001 East Third St, Bloomington, IN, 47405
| | - Amy L. Dapper
- Department of Biology, Indiana University, 1001 East Third St, Bloomington, IN, 47405
| | - Mark P. Peterson
- Department of Biology, Indiana University, 1001 East Third St, Bloomington, IN, 47405
| | - Jonathan W. Atwell
- Department of Biology, Indiana University, 1001 East Third St, Bloomington, IN, 47405
| | - Ellen D. Ketterson
- Department of Biology, Indiana University, 1001 East Third St, Bloomington, IN, 47405
| |
Collapse
|
8
|
Hawley DM, Fleischer RC. Contrasting epidemic histories reveal pathogen-mediated balancing selection on class II MHC diversity in a wild songbird. PLoS One 2012; 7:e30222. [PMID: 22291920 PMCID: PMC3264569 DOI: 10.1371/journal.pone.0030222] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/14/2011] [Indexed: 11/20/2022] Open
Abstract
The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.
Collapse
Affiliation(s)
- Dana M Hawley
- Center for Conservation and Evolutionary Genetics, Smithsonian Institution, Washington DC, United States of America.
| | | |
Collapse
|
9
|
Eizaguirre C, Lenz TL, Kalbe M, Milinski M. Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat Commun 2012; 3:621. [PMID: 22233631 PMCID: PMC3272583 DOI: 10.1038/ncomms1632] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/02/2011] [Indexed: 11/08/2022] Open
Abstract
The genes of the major histocompatibility complex are the most polymorphic genes in vertebrates, with more than 1,000 alleles described in human populations. How this polymorphism is maintained, however, remains an evolutionary puzzle. Major histocompatibility complex genes have a crucial function in the adaptive immune system by presenting parasite-derived antigens to T lymphocytes. Because of this function, varying parasite-mediated selection has been proposed as a major evolutionary force for maintaining major histocompatibility complex polymorphism. A necessary prerequisite of such a balancing selection process is rapid major histocompatibility complex allele frequency shifts resulting from emerging selection by a specific parasite. Here we show in six experimental populations of sticklebacks, each exposed to one of two different parasites, that only those major histocompatibility complex alleles providing resistance to the respective specific parasite increased in frequency in the next host generation. This result demonstrates experimentally that varying parasite selection causes rapid adaptive evolutionary changes, thus facilitating the maintenance of major histocompatibility complex polymorphism.
Collapse
Affiliation(s)
- Christophe Eizaguirre
- Leibniz Institute for Marine Sciences, Department of Evolutionary Ecology of Marine Fishes, Duesternbrooker Weg 20, 24105 Kiel, Germany.
| | | | | | | |
Collapse
|
10
|
Sutton JT, Nakagawa S, Robertson BC, Jamieson IG. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Mol Ecol 2011; 20:4408-20. [PMID: 21981032 DOI: 10.1111/j.1365-294x.2011.05292.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jolene T Sutton
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | | | | | | |
Collapse
|
11
|
Alcaide M, Edwards SV. Molecular Evolution of the Toll-Like Receptor Multigene Family in Birds. Mol Biol Evol 2011; 28:1703-15. [DOI: 10.1093/molbev/msq351] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
12
|
Spurgin LG, Richardson DS. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc Biol Sci 2010; 277:979-88. [PMID: 20071384 DOI: 10.1098/rspb.2009.2084] [Citation(s) in RCA: 529] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Major histocompatibility complex (MHC) genes have been put forward as a model for studying how genetic diversity is maintained in wild populations. Pathogen-mediated selection (PMS) is believed to generate the extraordinary levels of MHC diversity observed. However, establishing the relative importance of the three proposed mechanisms of PMS (heterozygote advantage, rare-allele advantage and fluctuating selection) has proved extremely difficult. Studies have attempted to differentiate between mechanisms of PMS using two approaches: (i) comparing MHC diversity with that expected under neutrality and (ii) relating MHC diversity to pathogen regime. Here, we show that in many cases the same predictions arise from the different mechanisms under these approaches, and that most studies that have inferred one mechanism of selection have not fully considered the alternative explanations. We argue that, while it may be possible to demonstrate that particular mechanisms of PMS are occurring, resolving their relative importance within a system is probably impossible. A more realistic target is to continue to demonstrate when and where the different mechanisms of PMS occur, with the aim of determining their relative importance across systems. We put forward what we believe to be the most promising approaches that will allow us to progress towards achieving this.
Collapse
Affiliation(s)
- Lewis G Spurgin
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich, UK
| | | |
Collapse
|
13
|
Mona S, Crestanello B, Bankhead-Dronnet S, Pecchioli E, Ingrosso S, D'Amelio S, Rossi L, Meneguz PG, Bertorelle G. Disentangling the effects of recombination, selection, and demography on the genetic variation at a major histocompatibility complex class II gene in the alpine chamois. Mol Ecol 2009; 17:4053-67. [PMID: 19238706 DOI: 10.1111/j.1365-294x.2008.03892.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major histocompatibility complex (MHC) harbours some of the most polymorphic loci in vertebrate genomes. MHC genes are thought to be subject to some form of balancing selection, most likely pathogen-mediated selection. Hence, MHC genes are excellent candidates for exploring adaptive processes. In this study, we investigated the genetic variation at exon 2 of the DRB class II MHC locus in 191 alpine chamois (Rupicapra rupicapra) from 10 populations in the eastern Alps of Italy. In particular, we were interested in distinguishing and estimating the relative impact of selective and demographic factors, while taking into account the confounding effect of recombination. The extremely high d(n)/d(s) ratio and the presence of trans-species polymorphisms suggest that a strong long-term balancing selection effect has been operating at this locus throughout the evolutionary history of this species. We analysed patterns of genetic variation within and between populations, and the mitochondrial D-loop polymorphism patterns were analysed to provide a baseline indicator of the effects of demographic processes. These analyses showed that (i) the chamois experienced a demographic decline in the last 5000-30 000 years, most likely related to the postglacial elevation in temperature; (ii) this demographic process can explain the results of neutrality tests applied to MHC variation within populations, but cannot justify the much weaker divergence between populations implied by MHC as opposed to mitochondrial DNA; (iii) similar sets of divergent alleles are probably maintained with similar frequencies by balancing selection in different populations, and this mechanism is also operating in small isolated populations, which are strongly affected by drift.
Collapse
Affiliation(s)
- S Mona
- Department of Biology and Evolution, University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gilchrist GW, Lee CE. All stressed out and nowhere to go: does evolvability limit adaptation in invasive species? Genetica 2006; 129:127-32. [PMID: 16924404 DOI: 10.1007/s10709-006-9009-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Introduced and invasive species are major threats native species and communities and, quite naturally, most scientists and managers think of them in terms of ecological problems. However, species introductions are also experiments in evolution, both for the alien species and for the community that they colonize. We focus here on the introduced species because these offer opportunities to study the properties that allow a species to succeed in a novel habitat and the constraints that limit range expansion. Moreover, an increasing body of evidence from diverse taxa suggests that the introduced species often undergo rapid and observable evolutionary change in their new habitat. Evolution requires genetic variation, which may be decreased or expanded during an invasion, and an evolutionary mechanism such as genetic drift or natural selection. In this volume, we seek to understand how natural selection produces adaptive evolution during invasions. Key questions include what is the role of biotic and abiotic stress in driving adaptation, and what is the source of genetic variation in introduced populations.
Collapse
Affiliation(s)
- George W Gilchrist
- Department of Biology, College of William & Mary, Box 8795, Williamsburg, VA 23187-8795, USA.
| | | |
Collapse
|