1
|
Yadav J, Jasrotia P, Jaglan MS, Sareen S, Kashyap PL, Kumar S, Yadav SS, Singh G, Singh GP. Unravelling the novel genetic diversity and marker-trait associations of corn leaf aphid resistance in wheat using microsatellite markers. PLoS One 2024; 19:e0289527. [PMID: 38386640 PMCID: PMC10883527 DOI: 10.1371/journal.pone.0289527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/17/2023] [Indexed: 02/24/2024] Open
Abstract
The study was conducted to identify novel simple sequence repeat (SSR) markers associated with resistance to corn aphid (CLA), Rhopalosiphum maidis L. in 48 selected bread wheat (Triticum aestivum L.) and wild wheat (Aegilops spp. & T. dicoccoides) genotypes during two consecutive cropping seasons (2018-19 and 2019-20). A total of 51 polymorphic markers containing 143 alleles were used for the analysis. The frequency of the major allele ranged from 0.552 (Xgwm113) to 0.938 (Xcfd45, Xgwm194 and Xgwm526), with a mean of 0.731. Gene diversity ranged from 0.116 (Xgwm526) to 0.489 (Xgwm113), with a mean of 0.354. The polymorphic information content (PIC) value for the SSR markers ranged from 0.107 (Xgwm526) to 0.370 (Xgwm113) with a mean of 0.282. The results of the STRUCTURE analysis revealed the presence of four main subgroups in the populations. Analysis of molecular variance (AMOVA) showed that the between-group difference was around 37 per cent of the total variation contributed to the diversity by the whole germplasm, while 63 per cent of the variation was attributed between individuals within the group. A general linear model (GLM) was used to identify marker-trait associations, which detected a total of 23 and 27 significant new marker-trait associations (MTAs) at the p < 0.01 significance level during the 2018-19 and 2019-20 crop seasons, respectively. The findings of this study have important implications for the identification of molecular markers associated with CLA resistance. These markers can increase the accuracy and efficiency of aphid-resistant germplasm selection, ultimately facilitating the transfer of resistance traits to desirable wheat genotypes.
Collapse
Affiliation(s)
- Jayant Yadav
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
- CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Poonam Jasrotia
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | | | - Sindhu Sareen
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Prem Lal Kashyap
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Sudheer Kumar
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | | | - Gyanendra Singh
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Gyanendra Pratap Singh
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
- ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
2
|
Source Identification and Genome-Wide Association Analysis of Crown Rot Resistance in Wheat. PLANTS 2022; 11:plants11151912. [PMID: 35893616 PMCID: PMC9329777 DOI: 10.3390/plants11151912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Crown rot (CR) is a soil-borne disease of wheat in arid and semiarid areas of the world. The incidence rate and severity of CR are increasing with each passing year, which seriously threatens the safety of world wheat production. Here, 522 wheat varieties/lines representing genetic diversity were used to identify and evaluate the resistance source to CR disease. Six varieties, including Zimai 12, Xinong 509, Mazhamai, Sifangmai, and Dawson, were classified as resistant ® to CR. Seventy-nine varieties were classified as moderately resistant (MR) to CR, accounting for 15.13% of the tested varieties. The wheat 660 K SNP array was used to identify resistance loci by genome-wide association analysis (GWAS). A total of 33 SNPs, located on chromosomes 1A, 1B, 1D, 4A, and 4D, were significantly correlated with seedling resistance to CR in two years. Among them, one SNP on chromosome 1A and nine SNPs on chromosome 1B showed most significant resistance to disease, phenotypic variance explained (PVE) by these SNPs were more than 8.45%. Except that significant locus AX-110436287 and AX109621209 on chromosome 1B and AX-94692276 on 1D are close to the already reported QTL, other SNPs are newly discovered resistance loci. These results could lay a strong theoretical foundation for the genetic improvement and breeding for CR resistance in wheat.
Collapse
|
3
|
Radchenko EE, Abdullaev RA, Anisimova IN. Genetic Resources of Cereal Crops for Aphid Resistance. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111490. [PMID: 35684263 PMCID: PMC9182920 DOI: 10.3390/plants11111490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 05/19/2023]
Abstract
The genetic resources of cereal crops in terms of resistance to aphids are reviewed. Phytosanitary destabilization led to a significant increase in the harmfulness of this group of insects. The breeding of resistant plant genotypes is a radical, the cheapest, and environmentally safe way of pest control. The genetic homogeneity of crops hastens the adaptive microevolution of harmful organisms. Both major and minor aphid resistance genes of cereal plants interact with insects differentially. Therefore, rational breeding envisages the expansion of the genetic diversity of cultivated varieties. The possibilities of replenishing the stock of effective resistance genes by studying the collection of cultivated cereals, introgression, and creating mutant forms are considered. The interaction of insects with plants is subject to the gene-for-gene relationship. Plant resistance genes are characterized by close linkage and multiple allelism. The realizing plant genotype depends on the phytophage biotype. Information about the mechanisms of constitutional and induced plant resistance is discussed. Resistance genes differ in terms of stability of expression. The duration of the period when varieties remain resistant is not related either to its phenotypic manifestation or to the number of resistance genes. One explanation for the phenomenon of durable resistance is the association of the virulence mutation with pest viability.
Collapse
|
4
|
Genetic Variation of Native Perilla Germplasms Collected from South Korea Using Simple Sequence Repeat (SSR) Markers and Morphological Characteristics. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10091764. [PMID: 34579297 PMCID: PMC8471550 DOI: 10.3390/plants10091764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022]
Abstract
Using morphological characteristics and simple sequence repeat (SSR) markers, we evaluated the morphological variation and genetic diversity of 200 Perilla accessions collected from the five regions of South Korea and another region. In morphological characteristics analysis, particularly leaf color, stem color, degree of pubescence, and leaf size have been found to help distinguish the morphological features of native Perilla accessions cultivated in South Korea. Twenty SSR primer sets confirmed a total of 137 alleles in the 200 Perilla accessions. The number of alleles per locus ranged from 3 to 13, with an average number of alleles per locus of 6.85. The average genetic diversity (GD) was 0.649, with a range of 0.290–0.828. From analysis of SSR markers, accessions from the Jeolla-do and Gyeongsang-do regions showed comparatively high genetic diversity values compared with those from other regions in South Korea. In the unweighted pair group method with arithmetic mean (UPGMA) analysis, the 200 Perilla accessions were found to cluster into three main groups and an outgroup with 42% genetic similarity, and did not show a clear geographic structure from the five regions of South Korea. Therefore, it is believed that landrace Perilla seeds are frequently exchanged by farmers through various routes between the five regions of South Korea. The results of this study are expected to provide interesting information on the conservation of these genetic resources and selection of useful resources for the development of varieties for seeds and leafy vegetables of cultivated Perilla frutescens var. frutescens in South Korea.
Collapse
|
5
|
Tolmay VL, Sydenham SL, Sikhakhane TN, Nhlapho BN, Tsilo TJ. Elusive Diagnostic Markers for Russian Wheat Aphid Resistance in Bread Wheat: Deliberating and Reviewing the Status Quo. Int J Mol Sci 2020; 21:ijms21218271. [PMID: 33158282 PMCID: PMC7663459 DOI: 10.3390/ijms21218271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Russian wheat aphid, Diuraphis noxia (Kurdjumov), is a severe pest of wheat, Triticum aestivum L., throughout the world. Resistant cultivars are viewed as the most economical and environmentally viable control available. Studies to identify molecular markers to facilitate resistance breeding started in the 1990s, and still continue. This paper reviews and discusses the literature pertaining to the D. noxia R-genes on chromosome 7D, and markers reported to be associated with them. Individual plants with known phenotypes from a panel of South African wheat accessions are used as examples. Despite significant inputs from various research groups over many years, diagnostic markers for resistance to D. noxia remain elusive. Factors that may have impeded critical investigation, thus blurring the accumulation of a coherent body of information applicable to Dn resistance, are discussed. This review calls for a more fastidious approach to the interpretation of results, especially considering the growing evidence pointing to the complex regulation of aphid resistance response pathways in plants. Appropriate reflection on prior studies, together with emerging knowledge regarding the complexity and specificity of the D. noxia–wheat resistance interaction, should enable scientists to address the challenges of protecting wheat against this pest in future.
Collapse
Affiliation(s)
- Vicki L. Tolmay
- Agricultural Research Council, Small Grain, Private Bag X29, Bethlehem 9700, South Africa; (S.L.S.); (T.N.S.); (B.N.N.); (T.J.T.)
- Department of Life and Consumer Sciences, University of South Africa, Pretoria 0002, South Africa
- Correspondence:
| | - Scott L. Sydenham
- Agricultural Research Council, Small Grain, Private Bag X29, Bethlehem 9700, South Africa; (S.L.S.); (T.N.S.); (B.N.N.); (T.J.T.)
| | - Thandeka N. Sikhakhane
- Agricultural Research Council, Small Grain, Private Bag X29, Bethlehem 9700, South Africa; (S.L.S.); (T.N.S.); (B.N.N.); (T.J.T.)
- Department of Life and Consumer Sciences, University of South Africa, Pretoria 0002, South Africa
| | - Bongiwe N. Nhlapho
- Agricultural Research Council, Small Grain, Private Bag X29, Bethlehem 9700, South Africa; (S.L.S.); (T.N.S.); (B.N.N.); (T.J.T.)
| | - Toi J. Tsilo
- Agricultural Research Council, Small Grain, Private Bag X29, Bethlehem 9700, South Africa; (S.L.S.); (T.N.S.); (B.N.N.); (T.J.T.)
- Department of Life and Consumer Sciences, University of South Africa, Pretoria 0002, South Africa
| |
Collapse
|
6
|
Assessment of genetic diversity and population structure among a collection of Korean Perilla germplasms based on SSR markers. Genes Genomics 2020; 42:1419-1430. [PMID: 33113112 DOI: 10.1007/s13258-020-01013-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Information on the genetic variation of genetic resource collections is very important for both the conservation and utilization of crop germplasms in genebanks. Var. frutescens of Perilla crop is extensively cultivated in South Korea as both an oil crop and a vegetable crop. OBJECTIVES We used SSR markers to evaluate the genetic diversity, genetic relationships, and population structure of 155 accessions of var. frutescens that have been selected as genetic resources for the development of leaf vegetable cultivars and preserved in the RDA-Genebank collection from South Korea. METHODS A total of 155 accessions of var. frutescens of Perilla crop collected in South Korea were obtained from the RDA-Genebank of the Republic of Korea. We selected 20 SSR markers representing the polymorphism of and adequately amplifying all the Perilla accessions. RESULTS The average GD and PIC values were 0.642 and 0.592, respectively, with ranges of 0.244-0.935 and 0.232- 0.931. The genetic variability in the southern region of South Korea was higher than that in the central region. The clustering patterns were not clearly distinguished between the accessions of var. frutescens from the central and southern regions of South Korea. CONCLUSION These results regarding the genetic diversity and population structure of the 155 accessions of var. frutescens of South Korea provide useful information for understanding the genetic variability of this crop and selecting and managing core germplasm sets in the RDA-Genebank of the Republic of Korea.
Collapse
|
7
|
Kumar S, Kumari J, Bhusal N, Pradhan AK, Budhlakoti N, Mishra DC, Chauhan D, Kumar S, Singh AK, Reynolds M, Singh GP, Singh K, Sareen S. Genome-Wide Association Study Reveals Genomic Regions Associated With Ten Agronomical Traits in Wheat Under Late-Sown Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:549743. [PMID: 33042178 PMCID: PMC7527491 DOI: 10.3389/fpls.2020.549743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Poor understanding of the genetic and molecular basis of heat tolerance component traits is a major bottleneck in designing heat tolerant wheat cultivars. The impact of terminal heat stress is generally reported in the case of late sown wheat. In this study, our aim was to identify genomic regions for various agronomic traits under late sown conditions by using genome-wide association approach. An association mapping panel of 205 wheat accessions was evaluated under late sown conditions at three different locations in India. Genotyping of the association panel revealed 15,886 SNPs, out of which 11,911 SNPs with exact physical locations on the wheat reference genome were used in association analysis. A total of 69 QTLs (10 significantly associated and 59 suggestive) were identified for ten different traits including productive tiller number (17), grain yield (14), plant height (12), grain filling rate (6), grain filling duration (5), days to physiological maturity (4), grain number (3), thousand grain weight (3), harvest index (3), and biomass (2). Out of these associated QTLs, 17 were novel for traits, namely PTL (3), GY (2), GFR (6), HI (3) and GNM (3). Moreover, five consistent QTLs across environments were identified for GY (4) and TGW (1). Also, 11 multi-trait SNPs and three hot spot regions on Chr1Ds, Chr2BS, Chr2DS harboring many QTLs for many traits were identified. In addition, identification of heat tolerant germplasm lines based on favorable alleles HD2888, IC611071, IC611273, IC75240, IC321906, IC416188, and J31-170 would facilitate their targeted introgression into popular wheat cultivars. The significantly associated QTLs identified in the present study can be further validated to identify robust markers for utilization in marker-assisted selection (MAS) for development of heat tolerant wheat cultivars.
Collapse
Affiliation(s)
- Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Jyoti Kumari
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Nabin Bhusal
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Divya Chauhan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Suneel Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mathew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| | | | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sindhu Sareen
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
8
|
Chaurasia S, Singh AK, Songachan LS, Sharma AD, Bhardwaj R, Singh K. Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.). Genomics 2020; 112:4608-4621. [PMID: 32771624 DOI: 10.1016/j.ygeno.2020.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Soil salinity is one of the typical abiotic stresses affecting sustainability of wheat production worldwide. In the present study, we performed a 35 K SNP genotyping assay on association panel of 135 diverse wheat genotypes evaluated for vegetative stage tolerance in hydroponics. Association analyses using five multi-locus GWAS models revealed 42 reliable QTNs for 10 salt tolerance associated traits. Among these 42 reliable QTNs, 9, 17 and 16 QTNs were associated with physiological, biomass and shoot ionic traits respectively. Novel major QTNs were identified for chlorophyll content, shoot fresh weight, seedling total biomass, Na+ and K+ concentration and Na+/K+ ratio in shoots. Further, 10 major QTNs showed significant effect on the corresponding salt tolerance traits. Gene ontology analysis of the associated genomic regions identified 58 candidate genes. The information generated in this study will be of potential value for improvement of salt tolerance of wheat cultivars using marker assisted selection.
Collapse
Affiliation(s)
- Shiksha Chaurasia
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India; Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Amit Kumar Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India.
| | - L S Songachan
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Axma Dutt Sharma
- Division of Germplasm Conservation, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Rakesh Bhardwaj
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
9
|
Tulpová Z, Toegelová H, Lapitan NLV, Peairs FB, Macas J, Novák P, Lukaszewski AJ, Kopecký D, Mazáčová M, Vrána J, Holušová K, Leroy P, Doležel J, Šimková H. Accessing a Russian Wheat Aphid Resistance Gene in Bread Wheat by Long-Read Technologies. THE PLANT GENOME 2019; 12. [PMID: 31290924 DOI: 10.3835/plantgenome2018.09.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Russian wheat aphid (RWA) ( Kurdjumov) is a serious invasive pest of small-grain cereals and many grass species. An efficient strategy to defy aphid attacks is to identify sources of natural resistance and transfer resistance genes into susceptible crop cultivars. Revealing the genes helps understand plant defense mechanisms and engineer plants with durable resistance to the pest. To date, more than 15 RWA resistance genes have been identified in wheat ( L.) but none of them has been cloned. Previously, we genetically mapped the RWA resistance gene into an interval of 0.83 cM on the short arm of chromosome 7D and spanned it with five bacterial artificial chromosome (BAC) clones. Here, we used a targeted strategy combining traditional approaches toward gene cloning (genetic mapping and sequencing of BAC clones) with novel technologies, including optical mapping and long-read nanopore sequencing. The latter, with reads spanning the entire length of a BAC insert, enabled us to assemble the whole region, a task that was not achievable with short reads. Long-read optical mapping validated the DNA sequence in the interval and revealed a difference in the locus organization between resistant and susceptible genotypes. The complete and accurate sequence of the region facilitated the identification of new markers and precise annotation of the interval, revealing six high-confidence genes. Identification of as the most likely candidate opens an avenue for its validation through functional genomics approaches.
Collapse
|
10
|
Lu X, Fang Y, Tian B, Tong T, Wang J, Wang H, Cai S, Hu J, Zeng D, Xu H, Zhang X, Xue D. Genetic variation of HvXYN1 associated with endoxylanase activity and TAX content in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2019; 19:170. [PMID: 31039733 PMCID: PMC6492322 DOI: 10.1186/s12870-019-1747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/29/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Endo-β-1,4-xylanase1 (EA), the key endoxylanase in plants, is involved in the degradation of arabinoxylan during grain germination. In barley (Hordeum vulgare L.), one gene (HvXYN-1) that encode a endo-beta-1,4-xylanase, has been cloned. However, the single nucleotide polymorphisms (SNPs) that affect the endoxylanase activity and total arabinoxylan (TAX) content have yet to be characterized. The investigation of genetic variation in HvXYN1 may facilitate a better understanding of the relationship between TAX content and EA activity in barley. RESULTS In the current study, 56 polymorphisms were detected in HvXYN1 among 210 barley accessions collected from 34 countries, with 10 distinct haplotypes identified. The SNPs at positions 110, 305, 1045, 1417, 1504, 1597, 1880 bp in the genomic region of HvXYN1 were significantly associated with EA activity (P < 0.0001), and the sites 110, 305, and 1045 were highly significantly associated with TAX content. The amount of phenotypic variation in a given trait explained by each associated polymorphism ranged from 6.96 to 9.85%. Most notably, we found two variants at positions 1504 bp and 1880 bp in the second exon that significantly (P < 0.0001) affected EA activity; this result could be used in breeding programs to improve beer quality. In addition, African accessions had the highest EA activity and TAX content, and the richest germplasm resources were from Asia, indicating the high potential value of Asian barley. CONCLUSION This study provided insight into understanding the relationship, EA activity, TAX content with the SNPs of HvXYN1 in barley. These SNPs can be applied as DNA markers in breeding programs to improve the quality of barley for beer brewing after further validation.
Collapse
Affiliation(s)
- Xueli Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyu Road, Hangzhou, 310006, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China
| | - Bin Tian
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China
| | - Tao Tong
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China
| | - Jiahui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China
| | - Hua Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, 298 Deshengzhong Road, Hangzhou, 310021, China
| | - Shengguan Cai
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyu Road, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyu Road, Hangzhou, 310006, China
| | - Heng Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, 298 Deshengzhong Road, Hangzhou, 310021, China
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China.
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China.
| |
Collapse
|
11
|
Erginbas-Orakci G, Sehgal D, Sohail Q, Ogbonnaya F, Dreisigacker S, Pariyar SR, Dababat AA. Identification of Novel Quantitative Trait Loci Linked to Crown Rot Resistance in Spring Wheat. Int J Mol Sci 2018; 19:E2666. [PMID: 30205560 PMCID: PMC6165080 DOI: 10.3390/ijms19092666] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 01/04/2023] Open
Abstract
Crown rot (CR), caused by various Fusarium species, is a major disease in many cereal-growing regions worldwide. Fusarium culmorum is one of the most important species, which can cause significant yield losses in wheat. A set of 126 advanced International Maize and Wheat Improvement Center (CIMMYT) spring bread wheat lines were phenotyped against CR for field crown, greenhouse crown and stem, and growth room crown resistance scores. Of these, 107 lines were genotyped using Diversity Array Technology (DArT) markers to identify quantitative trait loci linked to CR resistance by genome-wide association study. Results of the population structure analysis grouped the accessions into three sub-groups. Genome wide linkage disequilibrium was large and declined on average within 20 cM (centi-Morgan) in the panel. General linear model (GLM), mixed linear model (MLM), and naïve models were tested for each CR score and the best model was selected based on quarantine-quarantine plots. Three marker-trait associations (MTAs) were identified linked to CR resistance; two of these on chromosome 3B were associated with field crown scores, each explaining 11.4% of the phenotypic variation and the third MTA on chromosome 2D was associated with greenhouse stem score and explained 11.6% of the phenotypic variation. Together, these newly identified loci provide opportunity for wheat breeders to exploit in enhancing CR resistance via marker-assisted selection or deployment in genomic selection in wheat breeding programs.
Collapse
Affiliation(s)
- Gul Erginbas-Orakci
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Ankara 06511, Turkey.
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF06600, Mexico.
| | - Quahir Sohail
- International Winter Wheat Improvement Program (IWWIP), International Maize and Wheat Improvement Center (CIMMYT), Ankara 06511, Turkey.
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar 25000, Pakistan.
| | - Francis Ogbonnaya
- Grains Research and Development Corporation (GRDC), P.O. Box 5367, Kingston, ACT 2604, Australia.
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF06600, Mexico.
| | - Shree R Pariyar
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Abdelfattah A Dababat
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Ankara 06511, Turkey.
| |
Collapse
|
12
|
Sabiel SAI, Huang S, Hu X, Ren X, Fu C, Peng J, Sun D. SNP-based association analysis for seedling traits in durum wheat ( Triticum turgidum L. durum (Desf.)). BREEDING SCIENCE 2017; 67:83-94. [PMID: 28588384 PMCID: PMC5445962 DOI: 10.1270/jsbbs.16074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/26/2016] [Indexed: 06/07/2023]
Abstract
In the present study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were observed for major seedling traits and their growth. The accessions were evaluated for major seedling traits under controlled conditions of hydroponics at the 13th, 20th, 27th and 34th day-after germination. Biomass traits were measured at the 34th day-after germination. Correlation analysis was conducted among the seedling traits and three field traits at maturity, plant height, grain weight and 1000-grain weight observed in four consecutive years. Associations of the measured seedling traits and SNP markers were analyzed based on the mixed linear model (MLM). The results indicated that highly significant genetic variation and robust heritability were found for the seedling and field mature traits. In total, 259 significant associations were detected for all the traits and four growth stages. The phenotypic variation explained (R2) by a single SNP marker is higher than 10% for most (84%) of the significant SNP markers. Forty-six SNP markers associated with multiple traits, indicating non-neglectable pleiotropy in seedling stage. The associated SNP markers could be helpful for genetic analysis of seedling traits, and marker-assisted breeding of new wheat varieties with strong seedling vigor.
Collapse
Affiliation(s)
- Salih A. I. Sabiel
- College of Plant Science and Technology, Huazhong Agricultural University,
Wuhan Hubei, 430070,
China
- Plant Breeding Program, Agricultural Research Corporation,
Wad Medani, P. O. Box 126,
Sudan
| | - Sisi Huang
- College of Plant Science and Technology, Huazhong Agricultural University,
Wuhan Hubei, 430070,
China
| | - Xin Hu
- College of Plant Science and Technology, Huazhong Agricultural University,
Wuhan Hubei, 430070,
China
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University,
Wuhan Hubei, 430070,
China
| | - Chunjie Fu
- Life Science and Technology Center of China National Seed Group Co., Ltd., and the State Key Laboratory of Crop Breeding Technology Innovation and Integration,
Wuhan, Hubei, 430206,
China
| | - Junhua Peng
- Life Science and Technology Center of China National Seed Group Co., Ltd., and the State Key Laboratory of Crop Breeding Technology Innovation and Integration,
Wuhan, Hubei, 430206,
China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University,
Wuhan Hubei, 430070,
China
- Hubei Collaborative Innovation Center for Grain Industry,
Jingzhou, Hubei, 434025,
China
| |
Collapse
|
13
|
Sehgal D, Singh R, Rajpal VR. Quantitative Trait Loci Mapping in Plants: Concepts and Approaches. MOLECULAR BREEDING FOR SUSTAINABLE CROP IMPROVEMENT 2016. [DOI: 10.1007/978-3-319-27090-6_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Staňková H, Valárik M, Lapitan NLV, Berkman PJ, Batley J, Edwards D, Luo MC, Tulpová Z, Kubaláková M, Stein N, Doležel J, Šimková H. Chromosomal genomics facilitates fine mapping of a Russian wheat aphid resistance gene. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1373-1383. [PMID: 25862680 DOI: 10.1007/s00122-015-2512-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
Making use of wheat chromosomal resources, we developed 11 gene-associated markers for the region of interest, which allowed reducing gene interval and spanning it by four BAC clones. Positional gene cloning and targeted marker development in bread wheat are hampered by high complexity and polyploidy of its nuclear genome. Aiming to clone a Russian wheat aphid resistance gene Dn2401 located on wheat chromosome arm 7DS, we have developed a strategy overcoming problems due to polyploidy and enabling efficient development of gene-associated markers from the region of interest. We employed information gathered by GenomeZipper, a synteny-based tool combining sequence data of rice, Brachypodium, sorghum and barley, and took advantage of a high-density linkage map of Aegilops tauschii. To ensure genome- and locus-specificity of markers, we made use of survey sequence assemblies of isolated wheat chromosomes 7A, 7B and 7D. Despite the low level of polymorphism of the wheat D subgenome, our approach allowed us to add in an efficient and cost-effective manner 11 new gene-associated markers in the Dn2401 region and narrow down the target interval to 0.83 cM. Screening 7DS-specific BAC library with the flanking markers revealed a contig of four BAC clones that span the Dn2401 region in wheat cultivar 'Chinese Spring'. With the availability of sequence assemblies and GenomeZippers for each of the wheat chromosome arms, the proposed strategy can be applied for focused marker development in any region of the wheat genome.
Collapse
Affiliation(s)
- Helena Staňková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hu X, Ren J, Ren X, Huang S, Sabiel SAI, Luo M, Nevo E, Fu C, Peng J, Sun D. Association of Agronomic Traits with SNP Markers in Durum Wheat (Triticum turgidum L. durum (Desf.)). PLoS One 2015; 10:e0130854. [PMID: 26110423 PMCID: PMC4482485 DOI: 10.1371/journal.pone.0130854] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/25/2015] [Indexed: 01/11/2023] Open
Abstract
Association mapping is a powerful approach to detect associations between traits of interest and genetic markers based on linkage disequilibrium (LD) in molecular plant breeding. In this study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were genotyped using 1,366 SNP markers. The extent of LD on each chromosome was evaluated. Association of single nucleotide polymorphisms (SNP) markers with ten agronomic traits measured in four consecutive years was analyzed under a mix linear model (MLM). Two hundred and one significant association pairs were detected in the four years. Several markers were associated with one trait, and also some markers were associated with multiple traits. Some of the associated markers were in agreement with previous quantitative trait loci (QTL) analyses. The function and homology analyses of the corresponding ESTs of some SNP markers could explain many of the associations for plant height, length of main spike, number of spikelets on main spike, grain number per plant, and 1000-grain weight, etc. The SNP associations for the observed traits are generally clustered in specific chromosome regions of the wheat genome, mainly in 2A, 5A, 6A, 7A, 1B, and 6B chromosomes. This study demonstrates that association mapping can complement and enhance previous QTL analyses and provide additional information for marker-assisted selection.
Collapse
Affiliation(s)
- Xin Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
| | - Jing Ren
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, 253023, China
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
| | - Sisi Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
| | - Salih A. I. Sabiel
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
| | - Mingcheng Luo
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, United States of America
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - Chunjie Fu
- Science and Technology Center, China National Seed Group Co., Ltd, Wuhan, Hubei, 430206, China
| | - Junhua Peng
- Science and Technology Center, China National Seed Group Co., Ltd, Wuhan, Hubei, 430206, China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
- Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, Hubei, 434025, China
| |
Collapse
|
16
|
Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:791-807. [PMID: 24408378 DOI: 10.1007/s00122-013-2257-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/14/2013] [Indexed: 05/18/2023]
Abstract
A stable QTL that may be used in marker-assisted selection in wheat breeding programs was detected for yield, yield components and drought tolerance-related traits in spring wheat association mapping panel. Genome-wide association mapping has become a widespread method of quantitative trait locus (QTL) identification for many crop plants including wheat (Triticum aestivum L.). Its benefit over traditional bi-parental mapping approaches depends on the extent of linkage disequilibrium in the mapping population. The objectives of this study were to determine linkage disequilibrium decay rate and population structure in a spring wheat association mapping panel (n = 285-294) and to identify markers associated with yield and yield components, morphological, phenological, and drought tolerance-related traits. The study was conducted under fully irrigated and rain-fed conditions at Greeley, CO, USA and Melkassa, Ethiopia in 2010 and 2011 (five total environments). Genotypic data were generated using diversity array technology markers. Linkage disequilibrium decay rate extended over a longer genetic distance for the D genome (6.8 cM) than for the A and B genomes (1.7 and 2.0 cM, respectively). Seven subpopulations were identified with population structure analysis. A stable QTL was detected for grain yield on chromosome 2DS both under irrigated and rain-fed conditions. A multi-trait region significant for yield and yield components was found on chromosome 5B. Grain yield QTL on chromosome 1BS co-localized with harvest index QTL. Vegetation indices shared QTL with harvest index on chromosome 1AL and 5A. After validation in relevant genetic backgrounds and environments, QTL detected in this study for yield, yield components and drought tolerance-related traits may be used in marker-assisted selection in wheat breeding programs.
Collapse
Affiliation(s)
- Erena A Edae
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA,
| | | | | | | | | |
Collapse
|
17
|
Vanzetti LS, Yerkovich N, Chialvo E, Lombardo L, Vaschetto L, Helguera M. Genetic structure of Argentinean hexaploid wheat germplasm. Genet Mol Biol 2013; 36:391-9. [PMID: 24130447 PMCID: PMC3795179 DOI: 10.1590/s1415-47572013000300014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/15/2013] [Indexed: 11/22/2022] Open
Abstract
The identification of genetically homogeneous groups of individuals is an ancient issue in population genetics and in the case of crops like wheat, it can be valuable information for breeding programs, genetic mapping and germplasm resources. In this work we determined the genetic structure of a set of 102 Argentinean bread wheat (Triticum aestivum L.) elite cultivars using 38 biochemical and molecular markers (functional, closely linked to genes and neutral ones) distributed throughout 18 wheat chromosomes. Genetic relationships among these lines were examined using model-based clustering methods. In the analysis three subpopulations were identified which correspond largely to the origin of the germplasm used by the main breeding programs in Argentina.
Collapse
Affiliation(s)
- Leonardo S Vanzetti
- Grupo Biotecnología y Recursos Genéticos, INTA EEA Marcos Juárez, Marcos Juárez, Córdoba, Argentina . ; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
18
|
Xia Y, Li R, Ning Z, Bai G, Siddique KHM, Yan G, Baum M, Varshney RK, Guo P. Single nucleotide polymorphisms in HSP17.8 and their association with agronomic traits in barley. PLoS One 2013; 8:e56816. [PMID: 23418603 PMCID: PMC3572059 DOI: 10.1371/journal.pone.0056816] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
Small heat shock protein 17.8 (HSP17.8) is produced abundantly in plant cells under heat and other stress conditions and may play an important role in plant tolerance to stress environments. However, HSP17.8 may be differentially expressed in different accessions of a crop species exposed to identical stress conditions. The ability of different genotypes to adapt to various stress conditions resides in their genetic diversity. Allelic variations are the most common forms of genetic variation in natural populations. In this study, single nucleotide polymorphisms (SNPs) of the HSP17.8 gene were investigated across 210 barley accessions collected from 30 countries using EcoTILLING technology. Eleven SNPs including 10 from the coding region of HSP17.8 were detected, which form nine distinguishable haplotypes in the barley collection. Among the 10 SNPs in the coding region, six are missense mutations and four are synonymous nucleotide changes. Five of the six missense changes are predicted to be deleterious to HSP17.8 function. The accessions from Middle East Asia showed the higher nucleotide diversity of HSP17.8 than those from other regions and wild barley (H. spontaneum) accessions exhibited greater diversity than the cultivated barley (H. vulgare) accessions. Four SNPs in HSP17.8 were found associated with at least one of the agronomic traits evaluated except for spike length, namely number of grains per spike, thousand kernel weight, plant height, flag leaf area and leaf color. The association between SNP and these agronomic traits may provide new insight for study of the gene's potential contribution to drought tolerance of barley.
Collapse
Affiliation(s)
- Yanshi Xia
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
- College of Light Industry and Food Science, South China University of Technology, Guangzhou, China
| | - Ronghua Li
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhengxiang Ning
- College of Light Industry and Food Science, South China University of Technology, Guangzhou, China
| | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service, Manhattan, Kansas, United States of America
| | - Kadambot H. M. Siddique
- The Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Guijun Yan
- The Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas, Aleppo, Syria
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Greater Hyderabad, India
| | - Peiguo Guo
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
19
|
VanDoorn A, de Vos M. Resistance to sap-sucking insects in modern-day agriculture. FRONTIERS IN PLANT SCIENCE 2013; 4:222. [PMID: 23818892 PMCID: PMC3694213 DOI: 10.3389/fpls.2013.00222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/08/2013] [Indexed: 05/18/2023]
Abstract
Plants and herbivores have co-evolved in their natural habitats for about 350 million years, but since the domestication of crops, plant resistance against insects has taken a different turn. With the onset of monoculture-driven modern agriculture, selective pressure on insects to overcome resistances has dramatically increased. Therefore plant breeders have resorted to high-tech tools to continuously create new insect-resistant crops. Efforts in the past 30 years have resulted in elucidation of mechanisms of many effective plant defenses against insect herbivores. Here, we critically appraise these efforts and - with a focus on sap-sucking insects - discuss how these findings have contributed to herbivore-resistant crops. Moreover, in this review we try to assess where future challenges and opportunities lay ahead. Of particular importance will be a mandatory reduction in systemic pesticide usage and thus a greater reliance on alternative methods, such as improved plant genetics for plant resistance to insect herbivores.
Collapse
Affiliation(s)
- Arjen VanDoorn
- Keygene NV, WageningenNetherlands
- Department of Plant Physiology, Swammerdam Institute of Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Martin de Vos
- Keygene NV, WageningenNetherlands
- *Correspondence: Martin de Vos, Keygene NV, Agro Business Park 90, 6708 PW Wageningen, Netherlands e-mail:
| |
Collapse
|
20
|
Yu LX, Morgounov A, Wanyera R, Keser M, Singh SK, Sorrells M. Identification of Ug99 stem rust resistance loci in winter wheat germplasm using genome-wide association analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:749-58. [PMID: 22534791 DOI: 10.1007/s00122-012-1867-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/10/2012] [Indexed: 05/20/2023]
Abstract
The evolution of a new race of stem rust, generally referred to as Ug99, threatens global wheat production because it can overcome widely deployed resistance genes that had been effective for many years. To identify loci conferring resistance to Ug99 in wheat, a genome-wide association study was conducted using 232 winter wheat breeding lines from the International Winter Wheat Improvement Program. Breeding lines were genotyped with diversity array technology, simple sequence repeat and sequence-tagged site markers, and phenotyped at the adult plant stage for resistance to stem rust in the stem rust resistance screening nursery at Njoro, Kenya during 2009-2011. A mixed linear model was used for detecting marker-trait associations. Twelve loci associated with Ug99 resistance were identified including markers linked to known genes Sr2 and Lr34. Other markers were located in the chromosome regions where no Sr genes have been previously reported, including one each on chromosomes 1A, 2B, 4A and 7B, two on chromosome 5B and four on chromosome 6B. The same data were used for investigating epistatic interactions between markers with or without main effects. The marker csSr2 linked to Sr2 interacted with wPt4930 on 6BS and wPt729773 in an unknown location. Another marker, csLV34 linked to Lr34, also interacted with wPt4930 on 6BS and wPt4916 on 2BS. The frequent involvement of wPt4916 on 2BS and wPt4930 on 6BS in interactions with other significant loci on the same or different chromosomes suggested complex genetic control for adult plant resistance to Ug99 in winter wheat germplasm.
Collapse
Affiliation(s)
- Long-Xi Yu
- Department of Plant Breeding and Genetics, Cornell University, 240 Emerson Hall, Ithaca, NY 14853-1902, USA
| | | | | | | | | | | |
Collapse
|
21
|
Xia Y, Ning Z, Bai G, Li R, Yan G, Siddique KHM, Baum M, Guo P. Allelic variations of a light harvesting chlorophyll a/b-binding protein gene (Lhcb1) associated with agronomic traits in barley. PLoS One 2012; 7:e37573. [PMID: 22662173 PMCID: PMC3360778 DOI: 10.1371/journal.pone.0037573] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/21/2012] [Indexed: 11/19/2022] Open
Abstract
Light-harvesting chlorophyll a/b-binding protein (LHCP) is one of the most abundant chloroplast proteins in plants. Its main function is to collect and transfer light energy to photosynthetic reaction centers. However, the roles of different LHCPs in light-harvesting antenna systems remain obscure. Exploration of nucleotide variation in the genes encoding LHCP can facilitate a better understanding of the functions of LHCP. In this study, nucleotide variations in Lhcb1, a LHCP gene in barley, were investigated across 292 barley accessions collected from 35 different countries using EcoTILLING technology, a variation of the Targeting Induced Local Lesions In Genomes (TILLING). A total of 23 nucleotide variations were detected including three insert/deletions (indels) and 20 single nucleotide polymorphisms (SNPs). Among them, 17 SNPs were in the coding region with nine missense changes. Two SNPs with missense changes are predicted to be deleterious to protein function. Seventeen SNP formed 31 distinguishable haplotypes in the barley collection. The levels of nucleotide diversity in the Lhcb1 locus differed markedly with geographic origins and species of accessions. The accessions from Middle East Asia exhibited the highest nucleotide and haplotype diversity. H. spontaneum showed greater nucleotide diversity than H. vulgare. Five SNPs in Lhcb1 were significantly associated with at least one of the six agronomic traits evaluated, namely plant height, spike length, number of grains per spike, thousand grain weight, flag leaf area and leaf color, and these SNPs may be used as potential markers for improvement of these barley traits.
Collapse
Affiliation(s)
- Yanshi Xia
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
- College of Light Industry and Food Science, South China University of Technology, Guangzhou, China
| | - Zhengxiang Ning
- College of Light Industry and Food Science, South China University of Technology, Guangzhou, China
| | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service, Manhattan, Kansas, United States of America
| | - Ronghua Li
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Guijun Yan
- The Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Kadambot H. M. Siddique
- The Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas, Aleppo, Syria
| | - Peiguo Guo
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
- * E-mail:
| |
Collapse
|
22
|
Paux E, Sourdille P, Mackay I, Feuillet C. Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv 2011; 30:1071-88. [PMID: 21989506 DOI: 10.1016/j.biotechadv.2011.09.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 08/24/2011] [Accepted: 09/25/2011] [Indexed: 01/04/2023]
Abstract
In the past two decades, the wheat community has made remarkable progress in developing molecular resources for breeding. A wide variety of molecular tools has been established to accelerate genetic and physical mapping for facilitating the efficient identification of molecular markers linked to genes and QTL of agronomic interest. Already, wheat breeders are benefiting from a wide range of techniques to follow the introgression of the most favorable alleles in elite material and develop improved varieties. Breeders soon will be able to take advantage of new technological developments based on Next Generation Sequencing. In this paper, we review the molecular toolbox available to wheat scientists and breeders for performing fundamental genomic studies and breeding. Special emphasis is given on the production and detection of single nucleotide polymorphisms (SNPs) that should enable a step change in saturating the wheat genome for more efficient genetic studies and for the development of new selection methods. The perspectives offered by the access to an ordered full genome sequence for further marker development and enhanced precision breeding is also discussed. Finally, we discuss the advantages and limitations of marker-assisted selection for supporting wheat improvement.
Collapse
Affiliation(s)
- Etienne Paux
- INRA-UBP 1095, Genetics Diversity and Ecophysiology of Cereals, 234 Avenue du Brézet, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
23
|
Laucou V, Lacombe T, Dechesne F, Siret R, Bruno JP, Dessup M, Dessup T, Ortigosa P, Parra P, Roux C, Santoni S, Varès D, Péros JP, Boursiquot JM, This P. High throughput analysis of grape genetic diversity as a tool for germplasm collection management. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1233-45. [PMID: 21234742 DOI: 10.1007/s00122-010-1527-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 12/22/2010] [Indexed: 05/20/2023]
Abstract
Using 20 SSR markers well scattered across the 19 grape chromosomes, we analyzed 4,370 accessions of the INRA grape repository at Vassal, mostly cultivars of Vitis vinifera subsp. sativa (3,727), but also accessions of V. vinifera subsp. sylvestris (80), interspecific hybrids (364), and rootstocks (199). The analysis revealed 2,836 SSR single profiles: 2,323 sativa cultivars, 72 wild individuals (sylvestris), 306 interspecific hybrids, and 135 rootstocks, corresponding to 2,739 different cultivars in all. A total of 524 alleles were detected, with a mean of 26.20 alleles per locus. For the 2,323 cultivars of V. vinifera, 338 alleles were detected with a mean of 16.9 alleles per locus. The mean genetic diversity (GDI) was 0.797 and the level of heterozygosity was 0.76, with broad variation from 0.20 to 1. Interspecific hybrids and rootstocks were more heterozygous and more diverse (GDI = 0.839 and 0.865, respectively) than V. vinifera cultivars (GDI = 0.769), Vitis vinifera subsp. sylvestris being the least divergent with GDI = 0.708. Principal coordinates analysis distinguished the four groups. Slight clonal polymorphism was detected. The limit between clonal variation and cultivar polymorphism was set at four allelic differences out of 40. SSR markers were useful as a complementary tool to traditional ampelography for cultivar identification. Finally, a set of nine SSR markers was defined that was sufficient to distinguish 99.8% of the analyzed accessions. This set is suitable for routine characterization and will be valuable for germplasm management.
Collapse
Affiliation(s)
- V Laucou
- INRA Montpellier SupAgro, UMR DIAPC, Equipe Génétique de la Vigne, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
BAC libraries from wheat chromosome 7D: efficient tool for positional cloning of aphid resistance genes. J Biomed Biotechnol 2010; 2011:302543. [PMID: 21318113 PMCID: PMC3035010 DOI: 10.1155/2011/302543] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/26/2010] [Indexed: 11/29/2022] Open
Abstract
Positional cloning in bread wheat is a tedious task due to its huge genome size and hexaploid character. BAC libraries represent an essential tool for positional cloning. However, wheat BAC libraries comprise more than million clones, which makes their screening very laborious. Here, we present a targeted approach based on chromosome-specific BAC libraries. Such libraries were constructed from flow-sorted arms of wheat chromosome 7D. A library from the short arm (7DS) consisting of 49,152 clones with 113 kb insert size represented 12.1 arm equivalents whereas a library from the long arm (7DL) comprised 50,304 clones of 116 kb providing 14.9x arm coverage. The 7DS library was PCR screened with markers linked to Russian wheat aphid resistance gene DnCI2401, the 7DL library was screened by hybridization with a probe linked to greenbug resistance gene Gb3. The small number of clones combined with high coverage made the screening highly efficient and cost effective.
Collapse
|
25
|
Dogimont C, Bendahmane A, Chovelon V, Boissot N. Host plant resistance to aphids in cultivated crops: Genetic and molecular bases, and interactions with aphid populations. C R Biol 2010; 333:566-73. [DOI: 10.1016/j.crvi.2010.04.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
|