1
|
Wolf JB, Zühlke M, Weh D, Dal Colle MCS, Thoben C, Beitz T, Bienert K, Cambié D, Sletten ET, Delbianco M, Zimmermann S, Seeberger PH. Rapid Stereochemical Analysis of Glycosylations in Flow by Ion Mobility Spectrometry. Chemistry 2025; 31:e202500311. [PMID: 40110949 PMCID: PMC12057612 DOI: 10.1002/chem.202500311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
Glycans are biologically important molecules that are difficult to synthesize and analyze due to their structural diversity and conformational flexibility. Stereoselective glycosylation reactions are key to achieving high-yielding glycan syntheses. The stereochemical outcome of glycosylations is significantly influenced by factors such as the choice of activator and leaving group systems, solvent type, temperature, concentration, and stoichiometry. We introduce a flow chemistry approach to efficiently screen glycosylation conditions, using minimal material and time to enable a rapid design-make-test-analyze cycle with precise parameter control for reaction optimization. Ion mobility spectrometry provides rapid separation and analysis of crude glycosylation reaction mixtures that requires less method development than liquid chromatography thus making it a valuable tool for optimizing glycosylation reactions.
Collapse
Affiliation(s)
- Jakob B. Wolf
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
- Institut für Chemie, Biochemie und PharmazieFreie Universität BerlinArnimallee 22Berlin14195Germany
| | - Martin Zühlke
- Physical ChemistryUniversität PotsdamKarl‐Liebknecht‐Straße 24–25Potsdam14476Germany
| | - Dominik Weh
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
- Institut für Chemie, Biochemie und PharmazieFreie Universität BerlinArnimallee 22Berlin14195Germany
| | - Marlene C. S. Dal Colle
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
- Institut für Chemie, Biochemie und PharmazieFreie Universität BerlinArnimallee 22Berlin14195Germany
| | - Christian Thoben
- Department of Sensors and Measurement TechnologyInstitute of Electrical Engineering and Measurement TechnologyLeibniz University HannoverHannover30167Germany
| | - Toralf Beitz
- Physical ChemistryUniversität PotsdamKarl‐Liebknecht‐Straße 24–25Potsdam14476Germany
| | - Klaus Bienert
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
| | - Dario Cambié
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
| | - Eric T. Sletten
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
| | - Martina Delbianco
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
| | - Stefan Zimmermann
- Department of Sensors and Measurement TechnologyInstitute of Electrical Engineering and Measurement TechnologyLeibniz University HannoverHannover30167Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
- Institut für Chemie, Biochemie und PharmazieFreie Universität BerlinArnimallee 22Berlin14195Germany
| |
Collapse
|
2
|
Girgis M, Petruncio G, Russo P, Peyton S, Paige M, Campos D, Sanda M. Analysis of N- and O-linked site-specific glycosylation by ion mobility mass spectrometry: State of the art and future directions. Proteomics 2024; 24:e2300281. [PMID: 38171879 DOI: 10.1002/pmic.202300281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Glycosylation, the major post-translational modification of proteins, significantly increases the diversity of proteoforms. Glycans are involved in a variety of pivotal structural and functional roles of proteins, and changes in glycosylation are profoundly connected to the progression of numerous diseases. Mass spectrometry (MS) has emerged as the gold standard for glycan and glycopeptide analysis because of its high sensitivity and the wealth of fragmentation information that can be obtained. Various separation techniques have been employed to resolve glycan and glycopeptide isomers at the front end of the MS. However, differentiating structures of isobaric and isomeric glycopeptides constitutes a challenge in MS-based characterization. Many reports described the use of various ion mobility-mass spectrometry (IM-MS) techniques for glycomic analyses. Nevertheless, very few studies have focused on N- and O-linked site-specific glycopeptidomic analysis. Unlike glycomics, glycoproteomics presents a multitude of inherent challenges in microheterogeneity, which are further exacerbated by the lack of dedicated bioinformatics tools. In this review, we cover recent advances made towards the growing field of site-specific glycosylation analysis using IM-MS with a specific emphasis on the MS techniques and capabilities in resolving isomeric peptidoglycan structures. Furthermore, we discuss commonly used software that supports IM-MS data analysis of glycopeptides.
Collapse
Affiliation(s)
- Michael Girgis
- Department of Bioengineering, College of Engineering & Computing, George Mason University, Fairfax, Virginia, USA
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
| | - Gregory Petruncio
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
- Department of Chemistry & Biochemistry, College of Science, George Mason University, Fairfax, Virginia, USA
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Steven Peyton
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
| | - Mikell Paige
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
- Department of Chemistry & Biochemistry, College of Science, George Mason University, Fairfax, Virginia, USA
| | - Diana Campos
- Max-Planck-Institut fuer Herz- und Lungenforschung, Bad Nauheim, Germany
| | - Miloslav Sanda
- Max-Planck-Institut fuer Herz- und Lungenforschung, Bad Nauheim, Germany
| |
Collapse
|
3
|
Kurilung A, Limjiasahapong S, Kaewnarin K, Wisanpitayakorn P, Jariyasopit N, Wanichthanarak K, Sartyoungkul S, Wong SCC, Sathirapongsasuti N, Kitiyakara C, Sirivatanauksorn Y, Khoomrung S. Measurement of very low-molecular weight metabolites by traveling wave ion mobility and its use in human urine samples. J Pharm Anal 2024; 14:100921. [PMID: 38799238 PMCID: PMC11127212 DOI: 10.1016/j.jpha.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 05/29/2024] Open
Abstract
The collision cross-sections (CCS) measurement using ion mobility spectrometry (IMS) in combination with mass spectrometry (MS) offers a great opportunity to increase confidence in metabolite identification. However, owing to the lack of sensitivity and resolution, IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites (VLMs ≤ 250 Da). Here, we describe an analytical method using ultrahigh-performance liquid chromatography (UPLC) coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples. The experimental CCS values, along with mass spectral properties, were reported for the 174 metabolites. The experimental data included the mass-to-charge ratio (m/z), retention time (RT), tandem MS (MS/MS) spectra, and CCS values. Among the studied metabolites, 263 traveling wave ion mobility spectrometry (TWIMS)-derived CCS values (TWCCSN2) were reported for the first time, and more than 70% of these were CCS values of VLMs. The TWCCSN2 values were highly repeatable, with inter-day variations of <1% relative standard deviation (RSD). The developed method revealed excellent TWCCSN2 accuracy with a CCS difference (ΔCCS) within ±2% of the reported drift tube IMS (DTIMS) and TWIMS CCS values. The complexity of the urine matrix did not affect the precision of the method, as evidenced by ΔCCS within ±1.92%. According to the Metabolomics Standards Initiative, 55 urinary metabolites were identified with a confidence level of 1. Among these 55 metabolites, 53 (96%) were VLMs. The larger number of confirmed compounds found in this study was a result of the addition of TWCCSN2 values, which clearly increased metabolite identification confidence.
Collapse
Affiliation(s)
- Alongkorn Kurilung
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Suphitcha Limjiasahapong
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Khwanta Kaewnarin
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- SingHealth Duke-NUS Institute of Biodiversity Medicine, National Cancer Centre Singapore, 168583, Singapore
| | - Pattipong Wisanpitayakorn
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Narumol Jariyasopit
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kwanjeera Wanichthanarak
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sitanan Sartyoungkul
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Nuankanya Sathirapongsasuti
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Chagriya Kitiyakara
- Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sakda Khoomrung
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
4
|
Safferthal M, Bechtella L, Zappe A, Vos GM, Pagel K. Labeling of Mucin-Type O-Glycans for Quantification Using Liquid Chromatography and Fluorescence Detection. ACS MEASUREMENT SCIENCE AU 2024; 4:223-230. [PMID: 38645579 PMCID: PMC11027200 DOI: 10.1021/acsmeasuresciau.3c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 04/23/2024]
Abstract
O-glycosylation is a common post-translational modification that is essential for the defensive properties of mucus barriers. Incomplete and altered O-glycosylation is often linked to severe diseases, such as cancer, cystic fibrosis, and chronic obstructive pulmonary disease. Originating from a nontemplate-driven biosynthesis, mucin-type O-glycan structures are very complex. They are often present as heterogeneous mixtures containing multiple isomers. Therefore, the analysis of complex O-glycan mixtures usually requires hyphenation of orthogonal techniques such as liquid chromatography (LC), ion mobility spectrometry, and mass spectrometry (MS). However, MS-based techniques are mainly qualitative. Moreover, LC separation of O-glycans often lacks reproducibility and requires sophisticated data treatment and analysis. Here we present a mucin-type O-glycomics analysis workflow that utilizes hydrophilic interaction liquid chromatography for separation and fluorescence labeling for detection and quantification. In combination with mass spectrometry, a detailed analysis on the relative abundance of specific mucin-type O-glycan compositions and features, such as fucose, sialic acids, and sulfates, is performed. Furthermore, the average number of monosaccharide units of O-glycans in different samples was determined. To demonstrate universal applicability, the method was tested on mucins from different tissue types and mammals, such as bovine submaxillary mucins, porcine gastric mucins, and human milk mucins. To account for day-to-day retention time shifts in O-glycan separations and increase the comparability between different instruments and laboratories, we included fluorescently labeled dextran ladders in our workflow. In addition, we set up a library of glucose unit values for all identified O-glycans, which can be used to simplify the identification process of glycans in future analyses.
Collapse
Affiliation(s)
- Marc Safferthal
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| | - Leïla Bechtella
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| | - Andreas Zappe
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| | - Gaël M. Vos
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| | - Kevin Pagel
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| |
Collapse
|
5
|
Bechtella L, Chunsheng J, Fentker K, Ertürk GR, Safferthal M, Polewski Ł, Götze M, Graeber SY, Vos GM, Struwe WB, Mall MA, Mertins P, Karlsson NG, Pagel K. Ion mobility-tandem mass spectrometry of mucin-type O-glycans. Nat Commun 2024; 15:2611. [PMID: 38521783 PMCID: PMC10960840 DOI: 10.1038/s41467-024-46825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
The dense O-glycosylation of mucins plays an important role in the defensive properties of the mucus hydrogel. Aberrant glycosylation is often correlated with inflammation and pathology such as COPD, cancer, and Crohn's disease. The inherent complexity of glycans and the diversity in the O-core structure constitute fundamental challenges for the analysis of mucin-type O-glycans. Due to coexistence of multiple isomers, multidimensional workflows such as LC-MS are required. To separate the highly polar carbohydrates, porous graphitized carbon is often used as a stationary phase. However, LC-MS workflows are time-consuming and lack reproducibility. Here we present a rapid alternative for separating and identifying O-glycans released from mucins based on trapped ion mobility mass spectrometry. Compared to established LC-MS, the acquisition time is reduced from an hour to two minutes. To test the validity, the developed workflow was applied to sputum samples from cystic fibrosis patients to map O-glycosylation features associated with disease.
Collapse
Affiliation(s)
- Leïla Bechtella
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4‑6, 14195, Berlin, Germany
| | - Jin Chunsheng
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Fentker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Güney R Ertürk
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
| | - Marc Safferthal
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4‑6, 14195, Berlin, Germany
| | - Łukasz Polewski
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4‑6, 14195, Berlin, Germany
| | - Michael Götze
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4‑6, 14195, Berlin, Germany
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gaël M Vos
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4‑6, 14195, Berlin, Germany
| | - Weston B Struwe
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Berlin Institute of Health, 10178, Berlin, Germany
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany.
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4‑6, 14195, Berlin, Germany.
| |
Collapse
|
6
|
Vos GM, Hooijschuur KC, Li Z, Fjeldsted J, Klein C, de Vries RP, Toraño JS, Boons GJ. Sialic acid O-acetylation patterns and glycosidic linkage type determination by ion mobility-mass spectrometry. Nat Commun 2023; 14:6795. [PMID: 37880209 PMCID: PMC10600165 DOI: 10.1038/s41467-023-42575-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
O-acetylation is a common modification of sialic acids that has been implicated in a multitude of biological and disease processes. A lack of analytical methods that can determine exact structures of sialic acid variants is a hurdle to determine roles of distinct O-acetylated sialosides. Here, we describe a drift tube ion mobility-mass spectrometry approach that can elucidate exact O-acetylation patterns as well as glycosidic linkage types of sialosides isolated from complex biological samples. It is based on the use of a library of synthetic O-acetylated sialosides to establish intrinsic collision cross section (CCS) values of diagnostic fragment ions. The CCS values were used to characterize O-acetylated sialosides from mucins and N-linked glycans from biologicals as well as equine tracheal and nasal tissues. It uncovered contrasting sialic acid linkage types of acetylated and non-acetylated sialic acids and provided a rationale for sialic acid binding preferences of equine H7 influenza A viruses.
Collapse
Affiliation(s)
- Gaёl M Vos
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Kevin C Hooijschuur
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Zeshi Li
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | | | | | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Javier Sastre Toraño
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG, Utrecht, The Netherlands.
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
7
|
Wang JQ, Zhao J, Nie SP, Xie MY, Li SP. Matrix Assisted Laser Desorption Ionization – Tandem Time-of-Flight – Mass Spectrometry (MALDI-TOF/TOF-MS) Characterization of Oligosaccharides: Structural Identification and Differentiation. ANAL LETT 2023. [DOI: 10.1080/00032719.2022.2157421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jun-Qiao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, Macau, China
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, Taipa, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, Macau, China
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, Taipa, Macau, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, Macau, China
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, Taipa, Macau, China
| |
Collapse
|
8
|
Peng W, Kobeissy F, Mondello S, Barsa C, Mechref Y. MS-based glycomics: An analytical tool to assess nervous system diseases. Front Neurosci 2022; 16:1000179. [PMID: 36408389 PMCID: PMC9671362 DOI: 10.3389/fnins.2022.1000179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
Neurological diseases affect millions of peopleochemistryorldwide and are continuously increasing due to the globe's aging population. Such diseases affect the nervous system and are characterized by a progressive decline in brain function and progressive cognitive impairment, decreasing the quality of life for those with the disease as well as for their families and loved ones. The increased burden of nervous system diseases demands a deeper insight into the biomolecular mechanisms at work during disease development in order to improve clinical diagnosis and drug design. Recently, evidence has related glycosylation to nervous system diseases. Glycosylation is a vital post-translational modification that mediates many biological functions, and aberrant glycosylation has been associated with a variety of diseases. Thus, the investigation of glycosylation in neurological diseases could provide novel biomarkers and information for disease pathology. During the last decades, many techniques have been developed for facilitation of reliable and efficient glycomic analysis. Among these, mass spectrometry (MS) is considered the most powerful tool for glycan analysis due to its high resolution, high sensitivity, and the ability to acquire adequate structural information for glycan identification. Along with MS, a variety of approaches and strategies are employed to enhance the MS-based identification and quantitation of glycans in neurological samples. Here, we review the advanced glycomic tools used in nervous system disease studies, including separation techniques prior to MS, fragmentation techniques in MS, and corresponding strategies. The glycan markers in common clinical nervous system diseases discovered by utilizing such MS-based glycomic tools are also summarized and discussed.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chloe Barsa
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
9
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
10
|
Manabe N, Ohno S, Matsumoto K, Kawase T, Hirose K, Masuda K, Yamaguchi Y. A Data Set of Ion Mobility Collision Cross Sections and Liquid Chromatography Retention Times from 71 Pyridylaminated N-Linked Oligosaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1772-1783. [PMID: 35997275 PMCID: PMC9460764 DOI: 10.1021/jasms.2c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Determination of the glycan structure is an essential step in understanding structure-function relationships of glycans and glycoconjugates including biopharmaceuticals. Mass spectrometry, because of its high sensitivity and mass resolution, is an excellent means of analyzing glycan structures. We previously proposed a method for rapid and precise identification of N-glycan structures by ultraperformance liquid chromatography-connected ion mobility mass spectrometry (UPLC/IM-MS). To substantiate this methodology, we here examine 71 pyridylaminated (PA-) N-linked oligosaccharides including isomeric pairs. A data set on collision drift times, retention times, and molecular mass was collected for these PA-oligosaccharides. For standardization of the observables, LC retention times were normalized into glucose units (GU) using pyridylaminated α-1,6-linked glucose oligomers as reference, and drift times in IM-MS were converted into collision cross sections (CCS). To evaluate the CCS value of each PA-oligosaccharide, we introduced a CCS index which is defined as a CCS ratio of a target PA-glycan to the putative standard PA-glucose oligomer of the same m/z. We propose a strategy for practical structural analysis of N-linked glycans based on the database of m/z, CCS index, and normalized retention time (GU).
Collapse
Affiliation(s)
- Noriyoshi Manabe
- Division
of Structural Glycobiology, Institute of Molecular Biomembrane and
Glycobiology, Tohoku Medical and Pharmaceutical
University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi981-8558, Japan
| | - Shiho Ohno
- Division
of Structural Glycobiology, Institute of Molecular Biomembrane and
Glycobiology, Tohoku Medical and Pharmaceutical
University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi981-8558, Japan
| | - Kana Matsumoto
- Structural
Glycobiology Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama351-0198, Japan
| | - Taiji Kawase
- Nihon
Waters KK, Kitashinagawa, Shinagawa, Tokyo140-0001, Japan
| | - Kenji Hirose
- Nihon
Waters KK, Kitashinagawa, Shinagawa, Tokyo140-0001, Japan
| | - Katsuyoshi Masuda
- Graduate
School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| | - Yoshiki Yamaguchi
- Division
of Structural Glycobiology, Institute of Molecular Biomembrane and
Glycobiology, Tohoku Medical and Pharmaceutical
University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi981-8558, Japan
- Structural
Glycobiology Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama351-0198, Japan
| |
Collapse
|
11
|
Paglia G, Smith AJ, Astarita G. Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics. MASS SPECTROMETRY REVIEWS 2022; 41:722-765. [PMID: 33522625 DOI: 10.1002/mas.21686] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.
Collapse
Affiliation(s)
- Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Andrew J Smith
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
12
|
Manz C, Götze M, Frank C, Zappe A, Pagel K. Dextran as internal calibrant for N-glycan analysis by liquid chromatography coupled to ion mobility-mass spectrometry. Anal Bioanal Chem 2022; 414:5023-5031. [PMID: 35614231 PMCID: PMC9234027 DOI: 10.1007/s00216-022-04133-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
LC-MS is one of the most important tools for the comprehensive characterization of N-glycans. Despite many efforts to speed up glycan analysis via optimized sample preparation (e.g., faster enzyme digestion in combination with instant or rapid labeling dyes), a major bottleneck remains the rather long measurement times of HILIC chromatography. Further complication arises from the necessity to concomitantly calibrate with an external standard to allow for accurate retention times and the conversion into more robust GU values. Here we demonstrate the use of an internal calibration strategy for HILIC chromatography to speed up glycan analysis. By reducing the number of utilized dextran oligosaccharides, the calibrant can be spiked directly into the sample such that external calibration runs are no longer required. The minimized dextran ladder shows accurate GU calibration with a minor deviation of well below 1% and can be applied without modifications in sample preparation or data processing. We further demonstrate the simultaneous use of the minimized dextran ladder as calibrant for the estimation of CCS values in traveling wave ion mobility spectrometry. In both cases, the minimized dextran ladder enables the measurement of calibrant and sample in a single HPLC run without losing information or accuracy.
Collapse
Affiliation(s)
- Christian Manz
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany.,Analytical Chemistry, CMC, Silence Therapeutics GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Michael Götze
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany
| | - Clemens Frank
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany
| | - Andreas Zappe
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany
| | - Kevin Pagel
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany. .,Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany.
| |
Collapse
|
13
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
14
|
Nalehua MR, Zaia J. Measuring change in glycoprotein structure. Curr Opin Struct Biol 2022; 74:102371. [PMID: 35452871 DOI: 10.1016/j.sbi.2022.102371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 11/19/2022]
Abstract
Biosynthetic enzymes in the secretory pathway create distributions of glycans at each glycosite that elaborate the biophysical properties and biological functions of glycoproteins. Because the biosynthetic glycosylation reactions do not go to completion, each protein glycosite is heterogeneous with respect to glycosylation. This heterogeneity means that it is not sufficient to measure protein abundance in omics experiments. Rather, it is necessary to sample the distribution of glycosylation at each glycosite to quantify the changes that occur during biological processes. On the one hand, the use of data-dependent acquisition methods to sample glycopeptides is limited by the instrument duty cycle and the missing value problem. On the other, stepped window data-independent acquisition samples all precursors, but ion abundances are limited by duty cycle. Therefore, the ability to quantify accurately the flux in glycoprotein glycosylation that occurs during biological processes requires the exploitation of emerging mass spectrometry technologies capable of deep, comprehensive sampling and selective high confidence assignment of the complex glycopeptide mixtures. This review summarizes recent technical advances and mass spectral glycoproteomics analysis strategies and how these developments impact our ability to quantify the changes in glycosylation that occur during biological processes. We highlight specific improvements to glycopeptide characterization through activated electron dissociation, ion mobility trends and instrumentation, and efficient algorithmic approaches for glycopeptide assignment. We also discuss the emerging need for unified standards to enable interlaboratory collaborations and effective monitoring of structural changes in glycoproteins.
Collapse
Affiliation(s)
| | - Joseph Zaia
- Dept. of Biochemistry, Boston University, United States.
| |
Collapse
|
15
|
Hollerbach AL, Conant CR, Nagy G, Ibrahim YM. Implementation of Ion Mobility Spectrometry-Based Separations in Structures for Lossless Ion Manipulations (SLIM). Methods Mol Biol 2022; 2394:453-469. [PMID: 35094340 PMCID: PMC9526429 DOI: 10.1007/978-1-0716-1811-0_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Structures for Lossless Ion Manipulations (SLIM) is a powerful variant of traveling wave ion mobility spectrometry (TW-IMS) that uses a serpentine pattern of microelectrodes deposited onto printed circuit boards to achieve ultralong ion path lengths (13.5 m). Ions are propelled through SLIM platforms via arrays of TW electrodes while RF and DC electrodes provide radial confinement, establishing near lossless transmission. The recent ability to cycle ions multiple times through a SLIM has allowed ion path lengths to exceed 1000 m, providing unprecedented separation power and the ability to observe ion structural conformations unobtainable with other IMS technologies. The combination of high separation power, high signal intensity, and the ability to couple with mass spectrometry places SLIM in the unique position of being able to address longstanding proteomics and metabolomics challenges by allowing the characterization of isomeric mixtures containing low abundance analytes.
Collapse
Affiliation(s)
| | | | - Gabe Nagy
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|
16
|
Abikhodr AH, Yatsyna V, Ben Faleh A, Warnke S, Rizzo TR. Identifying Mixtures of Isomeric Human Milk Oligosaccharides by the Decomposition of IR Spectral Fingerprints. Anal Chem 2021; 93:14730-14736. [PMID: 34704745 PMCID: PMC8581968 DOI: 10.1021/acs.analchem.1c03190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
The analysis of glycans presents a significant challenge that arises from their isomeric heterogeneity. While high-resolution ion mobility spectrometry (IMS) has shown the ability to resolve subtly different glycan isomers, their unambiguous assignment remains difficult. Here, we demonstrate an infrared (IR) spectroscopic approach for identifying isomers in a glycan mixture. To display the feasibility of this approach, we have constructed a small database of cryogenic spectra of five lacto-N-fucopentaose (LNFP) and six disaccharide isomers and demonstrated that in the cases where they cannot be separated by IMS, we can use a cryogenic IR spectrum to identify the isomeric components of a mixture.
Collapse
Affiliation(s)
- Ali H. Abikhodr
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique
Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Vasyl Yatsyna
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique
Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
- Department
of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Ahmed Ben Faleh
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique
Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Stephan Warnke
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique
Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique
Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Trapped ion mobility spectrometry time-of-flight mass spectrometry for high throughput and high resolution characterization of human milk oligosaccharide isomers. Anal Chim Acta 2021; 1180:338878. [PMID: 34538323 DOI: 10.1016/j.aca.2021.338878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
The microbiome and immune system of infants are shaped by various bioactive components of human breastmilk, notably human milk oligosaccharides (HMOs). HMOs represent the third component of breastmilk and exhibit extremely high structural diversity with many isomers. Here, we propose a high throughput and high resolution approach to characterize main oligosaccharides present in breastmilk with high identification level thanks to ion mobility spectrometry. Four pairs of standard HMO isomers, that are (LNT/LNnT), (LNFP I/LNFP V), (3'-SL/6'-SL) and (2'-FL/3-FL), were first investigated under both positive and negative ionization mode using direct introduction-trapped ion mobility spectrometry-time-of-flight mass spectrometry (TIMS-TOF). By examining all the ionic species formed (i.e. protonated and deprotonated ions as well as adduct species), every isomer pair could be distinguished through the separation of at least one species, even with a small difference in collision cross section values (as small as 1.5%) thanks to the flexible resolution capacity of the TIMS instrument. Although multiple mobility peaks resulting from different glycan anomeric conformers, open-ring and/or different ionic isomer structures (i.e. various charge site locations), could be observed for some HMO species. The reduction at the reducing-end of HMOs did not significantly facilitate the isomer distinction. Finally, the unambiguous identification of the studied HMOs in a breastmilk sample showed the potential of the approach combining ion mobility separation and MS/MS experiments for high throughput distinction of HMO isomers in complex breastmilk samples without laborious sample preparation.
Collapse
|
18
|
Skeene K, Khatri K, Soloviev Z, Lapthorn C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140697. [PMID: 34246790 DOI: 10.1016/j.bbapap.2021.140697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline. MS use spans from identification of correct sequences, to intact molecule analyses, protein complexes and more recently epitope and paratope identification. MS toolkits could be incredibly diverse and with ever evolving instrumentation, increasingly novel MS-based techniques are becoming indispensable tools in the biopharmaceutical industry. Here we discuss application of Ion Mobility MS (IMMS) in an industrial setting, and what the current applications and outlook are for making IMMS more mainstream.
Collapse
Affiliation(s)
- Kirsty Skeene
- Biopharm Process Research, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Kshitij Khatri
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Collegeville, PA 19406, USA.
| | - Zoja Soloviev
- Protein, Cellular and Structural Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Cris Lapthorn
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
19
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
20
|
Dumontier R, Loutelier-Bourhis C, Walet-Balieu ML, Burel C, Mareck A, Afonso C, Lerouge P, Bardor M. Identification of N-glycan oligomannoside isomers in the diatom Phaeodactylum tricornutum. Carbohydr Polym 2021; 259:117660. [PMID: 33673983 DOI: 10.1016/j.carbpol.2021.117660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 01/09/2023]
Abstract
Microalgae are emerging production systems for recombinant proteins like monoclonal antibodies. In this context, the characterization of the host cell N-glycosylation machinery and of the microalgae-made biopharmaceuticals, which are mainly glycoprotein-based products, requires efficient analytical methodologies dedicated to the profiling of the N-glycans. Herein, in order to gain knowledge regarding its N-glycosylation pathway, we profile the protein N-linked oligosaccharides isolated from the diatom Phaeodactylum tricornutum that has been used successfully to produce functional monoclonal antibodies. The combination of ion mobility spectrometry-mass Spectrometry and electrospray ionization-multistage tandem mass spectrometry allows us to decipher the detailed structure of the oligomannoside isomers and to demonstrate that the processing of the oligomannosides N-linked to proteins occurs in this diatom as reported in mammals. Therefore, P. tricornutum synthesizes human-like oligomannosides in contrast to other microalgae species. This represent an advantage as an alternative ecofriendly expression system to produce biopharmaceuticals used for human therapy.
Collapse
Affiliation(s)
- Rodolphe Dumontier
- Normandie University, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, 76000 Rouen, France; Normandie University, UNIROUEN, SFR NORVEGE, 76000 Rouen, France
| | | | - Marie-Laure Walet-Balieu
- Normandie University, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, 76000 Rouen, France; Normandie University, UNIROUEN, SFR NORVEGE, 76000 Rouen, France
| | - Carole Burel
- Normandie University, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, 76000 Rouen, France; Normandie University, UNIROUEN, SFR NORVEGE, 76000 Rouen, France
| | - Alain Mareck
- Normandie University, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, 76000 Rouen, France; Normandie University, UNIROUEN, SFR NORVEGE, 76000 Rouen, France
| | - Carlos Afonso
- Normandie University, UNIROUEN, INSA Rouen, CNRS, UMR6014 - COBRA, 76000 Rouen, France
| | - Patrice Lerouge
- Normandie University, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, 76000 Rouen, France; Normandie University, UNIROUEN, SFR NORVEGE, 76000 Rouen, France
| | - Muriel Bardor
- Normandie University, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, 76000 Rouen, France; Normandie University, UNIROUEN, SFR NORVEGE, 76000 Rouen, France; Univ Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000 Lille, France.
| |
Collapse
|
21
|
Feuerstein ML, Kurulugama RT, Hann S, Causon T. Novel acquisition strategies for metabolomics using drift tube ion mobility-quadrupole resolved all ions time-of-flight mass spectrometry (IM-QRAI-TOFMS). Anal Chim Acta 2021; 1163:338508. [PMID: 34024419 DOI: 10.1016/j.aca.2021.338508] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022]
Abstract
The focus of this work was the implementation of ion mobility (IM) and a prototype quadrupole driver within data independent acquisition (DIA) using a drift tube IM-QTOFMS aiming to improve the level of confidence in identity confirmation workflows for non-targeted metabolomics. In addition to conventional all ions (IM-AI) acquisition, quadrupole resolved all ions (IM-QRAI) acquisition allows a drift time-directed precursor ion isolation in DIA using sequential isolation of precursor ions using mass windows of up to 100 Da which can be rapidly ramped across single ion mobility transients (i.e., <100 ms) according to the arrival times of precursor ions. Both IM-AI and IM-QRAI approaches were used for identity confirmation and relative quantification of metabolites in cellular extracts of the cell factory host Pichia pastoris. Samples were spiked with a uniformly 13C-labeled (U13C) internal standard and LC with low-field drift tube IM separation was used in combination with IM-AI and IM-QRAI. Combining excellent hardware performance and correlation of IM arrival times of natural (natC) and U13C metabolites enabled alignment of signals in the arrival time domain (DTCCSN2 differences ≤0.3%), and, in the case of IM-QRAI operation, maintenance of quantitative signals in comparison to IM-AI. The combination of tailored IM-QRAI methods for precursor ion isolation and IM separation also minimized the occurrence of spectral interferences in complex DIA datasets. Combined use of the software tools MS-DIAL, MS-Finder and Skyline for peak picking, feature alignment, reconciliation of natC and U13C isotopologue pairs, deconvolution of fragment spectra from DIA data, identity confirmation (including DTCCSN2) and targeted re-extraction of datafiles were employed for the data processing workflow. Overall, the combined new acquisition and data processing approaches enabled 87 metabolites to be identified between Level 1 (identified by standard compound) and Level 3.2 (accurate mass spectrum and number of carbons confirmed). The developed methods constitute promising metabolomics discovery tools and can be used to elucidate the number of carbon atoms present in unknown metabolites in stable isotope-supported metabolomics.
Collapse
Affiliation(s)
- Max L Feuerstein
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | | | - Stephan Hann
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Tim Causon
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
22
|
Belova L, Caballero-Casero N, van Nuijs ALN, Covaci A. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal Chem 2021; 93:6428-6436. [PMID: 33845572 DOI: 10.1021/acs.analchem.1c00142] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ion mobility mass spectrometry (IM-MS)-derived collision cross section (CCS) values can serve as a valuable additional identification parameter within the analysis of compounds of emerging concern (CEC) in human matrices. This study introduces the first comprehensive database of DTCCSN2 values of 148 CECs and their metabolites including bisphenols, alternative plasticizers (AP), organophosphate flame retardants (OP), perfluoroalkyl chemicals (PFAS), and others. A total of 311 ions were included in the database, whereby the DTCCSN2 values for 113 compounds are reported for the first time. For 105 compounds, more than one ion is reported. Moreover, the DTCCSN2 values of several isomeric CECs and their metabolites are reported to allow a distinction between isomers. Comprehensive quality assurance guidelines were implemented in the workflow of acquiring DTCCSN2 values to ensure reproducible experimental conditions. The reliability and reproducibility of the complied database were investigated by analyzing pooled human urine spiked with 30 AP and OP metabolites at two concentration levels. For all investigated metabolites, the DTCCSN2 values measured in urine showed a percent error of <1% in comparison to database values. DTCCSN2 values of OP metabolites showed an average percent error of 0.12% (50 ng/mL in urine) and 0.15% (20 ng/mL in urine). For AP metabolites, these values were 0.10 and 0.09%, respectively. These results show that the provided database can be of great value for enhanced identification of CECs in environmental and human matrices, which can advance future suspect screening studies on CECs.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
23
|
Richardson K, Langridge D, Dixit SM, Ruotolo BT. An Improved Calibration Approach for Traveling Wave Ion Mobility Spectrometry: Robust, High-Precision Collision Cross Sections. Anal Chem 2021; 93:3542-3550. [PMID: 33555172 DOI: 10.1021/acs.analchem.0c04948] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The combination of ion-mobility (IM) separation with mass spectrometry (MS) has impacted global measurement efforts in areas ranging from food analysis to drug discovery. Reasons for the broad adoption of IM-MS include its significantly increased peak capacity, duty-cycle, and ability to reconstruct fragmentation data in parallel, all of which greatly enable the analyses of complex mixtures. More fundamentally, however, measurements of ion-gas molecule collision cross sections (CCSs) are used to support compound identification and quantitation efforts as well as study the structures of large biomolecules. As the first commercialized form of IM-MS, Traveling Wave Ion Mobility (TWIM) devices are operated at low pressures (∼3 mbar) and voltages, are relatively short (∼25 cm), and separate ions on a timescale of tens of milliseconds. These qualities make TWIM ideally suited for hybridization with MS. Owing to the complicated motion of ions in TWIM devices, however, IM transit times must be calibrated to enable CCS measurements. Applicability of these calibrations has hitherto been restricted to primarily singly charged small molecules and some classes of large, multiply charged ions under a significantly narrower range of instrument conditions. Here, we introduce and extensively characterize a dramatically improved TWIM calibration methodology. Using over 2500 experimental TWIM data sets, covering ions that span over 3.5 orders of magnitude of molecular mass, we demonstrate robust calibrations for a significantly expanded range of instrument conditions, thereby opening up new analytical application areas and enabling the expansion of high-precision CCS measurements for both existing and next-generation TWIM instrumentation.
Collapse
Affiliation(s)
- K Richardson
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - D Langridge
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - S M Dixit
- Department of Chemistry, University of Michigan, University Ave., Ann Arbor, Michigan 48109, United States
| | - B T Ruotolo
- Department of Chemistry, University of Michigan, University Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Sastre Toraño J, Aizpurua‐Olaizola O, Wei N, Li T, Unione L, Jiménez‐Osés G, Corzana F, Somovilla VJ, Falcon‐Perez JM, Boons G. Identification of Isomeric N-Glycans by Conformer Distribution Fingerprinting using Ion Mobility Mass Spectrometry. Chemistry 2021; 27:2149-2154. [PMID: 33047840 PMCID: PMC7898647 DOI: 10.1002/chem.202004522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/14/2022]
Abstract
Glycans possess unparalleled structural complexity arising from chemically similar monosaccharide building blocks, configurations of anomeric linkages and different branching patterns, potentially giving rise to many isomers. This level of complexity is one of the main reasons that identification of exact glycan structures in biological samples still lags behind that of other biomolecules. Here, we introduce a methodology to identify isomeric N-glycans by determining gas phase conformer distributions (CDs) by measuring arrival time distributions (ATDs) using drift-tube ion mobility spectrometry-mass spectrometry. Key to the approach is the use of a range of well-defined synthetic glycans that made it possible to investigate conformer distributions in the gas phase of isomeric glycans in a systematic manner. In addition, we have computed CD fingerprints by molecular dynamics (MD) simulation, which compared well with experimentally determined CDs. It supports that ATDs resemble conformational populations in the gas phase and offer the prospect that such an approach can contribute to generating a library of CCS distributions (CCSDs) for structure identification.
Collapse
Affiliation(s)
- Javier Sastre Toraño
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Oier Aizpurua‐Olaizola
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Exosomes LabCIC bioGUNE, CIBERehdDerioSpain
| | - Na Wei
- The University of GeorgiaComplex Carbohydrate Research CenterAthensGAUSA
| | - Tiehai Li
- The University of GeorgiaComplex Carbohydrate Research CenterAthensGAUSA
| | - Luca Unione
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Gonzalo Jiménez‐Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNEBasque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801A48160DerioSpain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis QuímicaUniversidad de La Rioja26006LogroñoSpain
| | - Victor J. Somovilla
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | | | - Geert‐Jan Boons
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- The University of GeorgiaComplex Carbohydrate Research CenterAthensGAUSA
| |
Collapse
|
25
|
de Haan N, Falck D, Wuhrer M. Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 2020; 30:226-240. [PMID: 31281930 PMCID: PMC7225405 DOI: 10.1093/glycob/cwz048] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Protein N- and O-glycosylation are well known co- and post-translational modifications of immunoglobulins. Antibody glycosylation on the Fab and Fc portion is known to influence antigen binding and effector functions, respectively. To study associations between antibody glycosylation profiles and (patho) physiological states as well as antibody functionality, advanced technologies and methods are required. In-depth structural characterization of antibody glycosylation usually relies on the separation and tandem mass spectrometric (MS) analysis of released glycans. Protein- and site-specific information, on the other hand, may be obtained by the MS analysis of glycopeptides. With the development of high-resolution mass spectrometers, antibody glycosylation analysis at the intact or middle-up level has gained more interest, providing an integrated view of different post-translational modifications (including glycosylation). Alongside the in-depth methods, there is also great interest in robust, high-throughput techniques for routine glycosylation profiling in biopharma and clinical laboratories. With an emphasis on IgG Fc glycosylation, several highly robust separation-based techniques are employed for this purpose. In this review, we describe recent advances in MS methods, separation techniques and orthogonal approaches for the characterization of immunoglobulin glycosylation in different settings. We put emphasis on the current status and expected developments of antibody glycosylation analysis in biomedical, biopharmaceutical and clinical research.
Collapse
Affiliation(s)
- Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|
26
|
Mesa Sanchez D, Creger S, Singla V, Kurulugama RT, Fjeldsted J, Laskin J. Ion Mobility-Mass Spectrometry Imaging Workflow. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2437-2442. [PMID: 32841564 DOI: 10.1021/jasms.0c00142] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique for the label-free spatially resolved analysis of biological tissues. Coupling ion mobility (IM) separation with MSI allows for separation of isobars in the mobility dimension and increases confidence of peak assignments. Recently, imaging experiments have been implemented on several commercially available and custom-designed ion mobility instruments, making IM-MSI experiments more broadly accessible to the MS community. However, the absence of open access data analysis software for IM-MSI systems presents a bottleneck. Herein, we present an imaging workflow to visualize IM-MSI data produced on the Agilent 6560 ion mobility quadrupole time-of-flight system. Specifically, we have developed a Python script, the ion mobility-mass spectrometry image creation script (IM-MSIC), which interfaces Agilent's Mass Hunter Mass Profiler software with the MacCoss lab's Skyline software and generates drift time and mass-to-charge-selected ion images. In the workflow, Mass Profiler is used for an untargeted feature detection. The IM-MSIC script mediates user input of data, extracts ion chronograms utilizing Skyline's command-line interface, and then proceeds toward ion image generation within a single user interface. Ion image postprocessing is subsequently performed using different tools implemented in accompanying scripts. Though the current work only showcases Agilent IM-MSI data, this workflow can be readily adapted for use with most major instrument vendors.
Collapse
Affiliation(s)
- Daniela Mesa Sanchez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Steve Creger
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Veerupaksh Singla
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | | | - John Fjeldsted
- Agilent Technologies Inc., Santa Clara, California 95051, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
27
|
Pralow A, Cajic S, Alagesan K, Kolarich D, Rapp E. State-of-the-Art Glycomics Technologies in Glycobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:379-411. [PMID: 33112988 DOI: 10.1007/10_2020_143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycosylation affects the properties of biologics; thus regulatory bodies classified it as critical quality attribute and force biopharma industry to capture and control it throughout all phases, from R&D till end of product lifetime. The shift from originators to biosimilars further increases importance and extent of glycoanalysis, which thus increases the need for technology platforms enabling reliable high-throughput and in-depth glycan analysis. In this chapter, we will first summarize on established glycoanalytical methods based on liquid chromatography focusing on hydrophilic interaction chromatography, capillary electrophoresis focusing on multiplexed capillary gel electrophoresis, and mass spectrometry focusing on matrix-assisted laser desorption; we will then highlight two emerging technologies based on porous graphitized carbon liquid chromatography and on ion-mobility mass spectrometry as both are highly promising tools to deliver an additional level of information for in-depth glycan analysis; additionally we elaborate on the advantages and challenges of different glycoanalytical technologies and their complementarity; finally, we briefly review applications thereof to biopharmaceutical products. This chapter provides an overview of current state-of-the-art analytical approaches for glycan characterization of biopharmaceuticals that can be employed to capture glycoprotein heterogeneity in a biopharmaceutical context.
Collapse
Affiliation(s)
- Alexander Pralow
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Kathirvel Alagesan
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- ARC Centre of Excellence in Nanoscale Biophotonics, Griffith University, Gold Coast, QLD, Australia
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
- glyXera GmbH, Magdeburg, Germany.
| |
Collapse
|
28
|
Barrientos RC, Zhang Q. Recent advances in the mass spectrometric analysis of glycosphingolipidome - A review. Anal Chim Acta 2020; 1132:134-155. [PMID: 32980104 PMCID: PMC7525043 DOI: 10.1016/j.aca.2020.05.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022]
Abstract
Aberrant expression of glycosphingolipids has been implicated in a myriad of diseases, but our understanding of the strucural diversity, spatial distribution, and biological function of this class of biomolecules remains limited. These challenges partly stem from a lack of sensitive tools that can detect, identify, and quantify glycosphingolipids at the molecular level. Mass spectrometry has emerged as a powerful tool poised to address most of these challenges. Here, we review the recent developments in analytical glycosphingolipidomics with an emphasis on sample preparation, mass spectrometry and tandem mass spectrometry-based structural characterization, label-free and labeling-based quantification. We also discuss the nomenclature of glycosphingolipids, and emerging technologies like ion mobility spectrometry in differentiation of glycosphingolipid isomers. The intrinsic advantages and shortcomings of each method are carefully critiqued in line with an individual's research goals. Finally, future perspectives on analytical sphingolipidomics are stated, including a need for novel and more sensive methods in isomer separation, low abundance species detection, and profiling the spatial distribution of glycosphingolipid molecular species in cells and tissues using imaging mass spectrometry.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States.
| |
Collapse
|
29
|
Wei J, Tang Y, Ridgeway ME, Park MA, Costello CE, Lin C. Accurate Identification of Isomeric Glycans by Trapped Ion Mobility Spectrometry-Electronic Excitation Dissociation Tandem Mass Spectrometry. Anal Chem 2020; 92:13211-13220. [PMID: 32865981 DOI: 10.1021/acs.analchem.0c02374] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ion mobility-mass spectrometry (IM-MS) has become a powerful tool for glycan structural characterization due to its ability to separate isomers and provide collision cross section (CCS) values that facilitate structural assignment. However, IM-based isomer analysis may be complicated by the presence of multiple gas-phase conformations of a single structure that not only increases difficulty in isomer separation but can also introduce the possibility for misinterpretation of conformers as isomers. Here, the ion mobility behavior of several sets of isomeric glycans, analyzed as their permethylated derivatives, in both nonreduced and reduced forms, was investigated by gated-trapped ion mobility spectrometry (G-TIMS). Notably, reducing-end reduction, commonly performed to remove anomerism-induced chromatographic peak splitting, did not eliminate the conformational heterogeneity of permethylated glycans in the gas phase. At a mobility resolving power of ∼100, 14 out of 22 structures showed more than one conformation. These results highlight the need to use IMS devices with high mobility resolving power for better separation of isomers and to acquire additional structural information that can differentiate isomers from conformers. Online electronic excitation dissociation (EED) MS/MS analysis of isomeric glycan mixtures following G-TIMS separation showed that EED can generate isomer-specific fragments while producing nearly identical tandem mass spectra for conformers, thus allowing confident identification of isomers with minimal evidence of any ambiguity resulting from the presence of conformers. G-TIMS EED MS/MS analysis of N-linked glycans released from ovalbumin revealed that several mobility features previously thought to arise from isomeric structures were conformers of a single structure. Finally, analysis of ovalbumin N-glycans from different sources showed that the G-TIMS EED MS/MS approach can accurately determine the batch-to-batch variations in glycosylation profiles at the isomer level, with confident assignment of each isomeric structure.
Collapse
Affiliation(s)
- Juan Wei
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Room 508, Boston, Massachusetts 02118, United States
| | - Yang Tang
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Room 508, Boston, Massachusetts 02118, United States.,Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Mark E Ridgeway
- Bruker Daltonics, Billerica, Massachusetts 01821, United States
| | - Melvin A Park
- Bruker Daltonics, Billerica, Massachusetts 01821, United States
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Room 508, Boston, Massachusetts 02118, United States.,Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Room 508, Boston, Massachusetts 02118, United States
| |
Collapse
|
30
|
Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS. MASS SPECTROMETRY REVIEWS 2020; 39:586-679. [PMID: 32329121 DOI: 10.1002/mas.21622] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization. This review describes the use of negative ion mass spectrometry for the structural analysis of N-linked glycans and emphasises the many advantages that can be gained by this mode of operation. Biosynthesis and structures of the compounds are described followed by methods for release of the glycans from the protein. Methods for ionization are discussed with emphasis on matrix-assisted laser desorption/ionization (MALDI) and methods for producing negative ions from neutral compounds. Acidic glycans naturally give deprotonated species under most ionization conditions. Fragmentation of negative ions is discussed next with particular reference to those ions that are diagnostic for specific features such as the branching topology of the glycans and substitution positions of moieties such as fucose and sulfate, features that are often difficult to identify easily by conventional techniques such as positive ion fragmentation and exoglycosidase digestions. The advantages of negative over positive ions for this structural work are emphasised with an example of a series of glycans where all other methods failed to produce a structure. Fragmentation of derivatized glycans is discussed next, both with respect to derivatives at the reducing terminus of the molecules, and to methods for neutralization of the acidic groups on sialic acids to both stabilize them for MALDI analysis and to produce the diagnostic fragments seen with the neutral glycans. The use of ion mobility, combined with conventional mass spectrometry is described with emphasis on its use to extract clean glycan spectra both before and after fragmentation, to separate isomers and its use to extract additional information from separated fragment ions. A section on applications follows with examples of the identification of novel structures from lower organisms and tables listing the use of negative ions for structural identification of specific glycoproteins, glycans from viruses and uses in the biopharmaceutical industry and in medicine. The review concludes with a summary of the advantages and disadvantages of the technique. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
31
|
Uppal SS, Mookherjee A, Harkewicz R, Beasley SE, Bush MF, Guttman M. High-Precision, Gas-Phase Hydrogen/Deuterium-Exchange Kinetics by Mass Spectrometry Enabled by Exchange Standards. Anal Chem 2020; 92:7725-7732. [PMID: 32368904 DOI: 10.1021/acs.analchem.0c00749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mass spectrometry (MS) has become a primary tool for identifying and quantifying biological molecules. In combination with other orthogonal techniques, such as gas-phase hydrogen/deuterium exchange (gHDX), MS is also capable of probing the structure of ions. However, gHDX kinetics can depend strongly on many factors, including laboratory temperature, instrumental conditions, and instrument platform selection. These effects can lead to high variability with gHDX measurements, which has hindered the broader adoption of gHDX for structural MS. Here we introduce an approach for standardizing gHDX measurements using cosampled standards. Quantifying the exchange kinetics for analytes relative to the exchange kinetics of the standards results in greater accuracy and precision than the underlying absolute measurements. The standardization was found to be effective for several types of analytes including small molecules and intact proteins. A subset of analytes showed deviations in their standardized exchange profiles that are attributed to field heating and the concomitant conformational isomerization. Inclusion of helium during the gHDX process for collisional cooling helps mitigate such variations in exchange kinetics related to ion heating. We anticipate that the outcomes of this research will enable the broader use of gHDX in MS-based workflows for molecular identification and isomer differentiation.
Collapse
Affiliation(s)
- Sanjit S Uppal
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Abhigya Mookherjee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rick Harkewicz
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sarah E Beasley
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
32
|
Lucas PL, Mathieu-Rivet E, Song PCT, Oltmanns A, Loutelier-Bourhis C, Plasson C, Afonso C, Hippler M, Lerouge P, Mati-Baouche N, Bardor M. Multiple xylosyltransferases heterogeneously xylosylate protein N-linked glycans in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:230-245. [PMID: 31777161 DOI: 10.1111/tpj.14620] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 05/08/2023]
Abstract
Nowadays, little information is available regarding the N-glycosylation pathway in the green microalga Chlamydomonas reinhardtii. Recent investigation demonstrated that C. reinhardtii synthesizes linear oligomannosides. Maturation of these oligomannosides results in N-glycans that are partially methylated and carry one or two xylose residues. One xylose residue was demonstrated to be a core β(1,2)-xylose. Recently, N-glycoproteomic analysis performed on glycoproteins secreted by C. reinhardtii demonstrated that the xylosyltransferase A (XTA) was responsible for the addition of the core β(1,2)-xylose. Furthermore, another xylosyltransferase candidate named XTB was suggested to be involved in the xylosylation in C. reinhardtii. In the present study, we focus especially on the characterization of the structures of the xylosylated N-glycans from C. reinhardtii taking advantage of insertional mutants of XTA and XTB, and of the XTA/XTB double-mutant. The combination of mass spectrometry approaches allowed us to identify the major N-glycan structures bearing one or two xylose residues. They confirm that XTA is responsible for the addition of the core β(1,2)-xylose, whereas XTB is involved in the addition of the xylose residue onto the linear branch of the N-glycan as well as in the partial addition of the core β(1,2)-xylose suggesting that this transferase exhibits a low substrate specificity. Analysis of the double-mutant suggests that an additional xylosyltransferase is involved in the xylosylation process in C. reinhardtii. Additional putative candidates have been identified in the C. reinhardtii genome. Altogether, these results pave the way for a better understanding of the C. reinhardtii N-glycosylation pathway.
Collapse
Affiliation(s)
- Pierre-Louis Lucas
- Laboratoire Glyco-MEV EA4358, Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, SFR NORVEGE, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
| | - Elodie Mathieu-Rivet
- Laboratoire Glyco-MEV EA4358, Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, SFR NORVEGE, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
| | - Philippe C T Song
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, Plate-Forme de Protéomique PISSARO, Rouen, France
| | - Anne Oltmanns
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | | - Carole Plasson
- Laboratoire Glyco-MEV EA4358, Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, SFR NORVEGE, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
| | - Carlos Afonso
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, Rouen, France
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Patrice Lerouge
- Laboratoire Glyco-MEV EA4358, Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, SFR NORVEGE, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
| | - Narimane Mati-Baouche
- Laboratoire Glyco-MEV EA4358, Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, SFR NORVEGE, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
| | - Muriel Bardor
- Laboratoire Glyco-MEV EA4358, Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, SFR NORVEGE, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
33
|
Miller RL, Guimond SE, Schwörer R, Zubkova OV, Tyler PC, Xu Y, Liu J, Chopra P, Boons GJ, Grabarics M, Manz C, Hofmann J, Karlsson NG, Turnbull JE, Struwe WB, Pagel K. Shotgun ion mobility mass spectrometry sequencing of heparan sulfate saccharides. Nat Commun 2020; 11:1481. [PMID: 32198425 PMCID: PMC7083916 DOI: 10.1038/s41467-020-15284-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/27/2020] [Indexed: 01/23/2023] Open
Abstract
Despite evident regulatory roles of heparan sulfate (HS) saccharides in numerous biological processes, definitive information on the bioactive sequences of these polymers is lacking, with only a handful of natural structures sequenced to date. Here, we develop a “Shotgun” Ion Mobility Mass Spectrometry Sequencing (SIMMS2) method in which intact HS saccharides are dissociated in an ion mobility mass spectrometer and collision cross section values of fragments measured. Matching of data for intact and fragment ions against known values for 36 fully defined HS saccharide structures (from di- to decasaccharides) permits unambiguous sequence determination of validated standards and unknown natural saccharides, notably including variants with 3O-sulfate groups. SIMMS2 analysis of two fibroblast growth factor-inhibiting hexasaccharides identified from a HS oligosaccharide library screen demonstrates that the approach allows elucidation of structure-activity relationships. SIMMS2 thus overcomes the bottleneck for decoding the informational content of functional HS motifs which is crucial for their future biomedical exploitation. Heparan sulfates (HS) contain functionally relevant structural motifs, but determining their monosaccharide sequence remains challenging. Here, the authors develop an ion mobility mass spectrometry-based method that allows unambiguous characterization of HS sequences and structure-activity relationships.
Collapse
Affiliation(s)
- Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, Copenhagen, N 2200, Denmark. .,Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK. .,Laboratory of Cancer Biology, Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Scott E Guimond
- Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Institute for Science and Technology in Medicine, School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Ralf Schwörer
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Olga V Zubkova
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Márkó Grabarics
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Christian Manz
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Johanna Hofmann
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jeremy E Turnbull
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, Copenhagen, N 2200, Denmark.,Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Weston B Struwe
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3QZ, UK
| | - Kevin Pagel
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| |
Collapse
|
34
|
Dyukova I, Carrascosa E, Pellegrinelli RP, Rizzo TR. Combining Cryogenic Infrared Spectroscopy with Selective Enzymatic Cleavage for Determining Glycan Primary Structure. Anal Chem 2020; 92:1658-1662. [PMID: 31898462 DOI: 10.1021/acs.analchem.9b04776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Given the biological relevance and intrinsic structural complexity of glycans, increasing efforts are being directed toward developing a general glycan database that includes information from different analytical methods. As recently demonstrated, cryogenic infrared (IR) spectroscopy is a promising technique for glycan analysis, as it provides unique vibrational fingerprints of specific glycan isomer ions. One of the main goals of a glycan database is the identification and detailed characterization of unknown species. In this work, we combine enzymatic digestion with cryogenic IR-spectroscopy and demonstrate how it can be used for glycan identification. We measured the IR-spectra of a series of cationic glycan standards of increasing complexity and compared them with spectra of the same species after enzymatic cleavage of larger glycans. We show that the cryogenic IR spectra of the cleaved glycans are highly structured and virtually identical to those of standards after both single and multiple cleavages. Our results suggest that the combination of these methods represents a potentially powerful and specific approach for the characterization of unknown glycans.
Collapse
Affiliation(s)
- Irina Dyukova
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM , Station 6, CH-1015 Lausanne , Switzerland
| | - Eduardo Carrascosa
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM , Station 6, CH-1015 Lausanne , Switzerland
| | - Robert P Pellegrinelli
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM , Station 6, CH-1015 Lausanne , Switzerland
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM , Station 6, CH-1015 Lausanne , Switzerland
| |
Collapse
|
35
|
Abrahams JL, Taherzadeh G, Jarvas G, Guttman A, Zhou Y, Campbell MP. Recent advances in glycoinformatic platforms for glycomics and glycoproteomics. Curr Opin Struct Biol 2019; 62:56-69. [PMID: 31874386 DOI: 10.1016/j.sbi.2019.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
Protein glycosylation is the most complex and prevalent post-translation modification in terms of the number of proteins modified and the diversity generated. To understand the functional roles of glycoproteins it is important to gain an insight into the repertoire of oligosaccharides present. The comparison and relative quantitation of glycoforms combined with site-specific identification and occupancy are necessary steps in this direction. Computational platforms have continued to mature assisting researchers with the interpretation of such glycomics and glycoproteomics data sets, but frequently support dedicated workflows and users rely on the manual interpretation of data to gain insights into the glycoproteome. The growth of site-specific knowledge has also led to the implementation of machine-learning algorithms to predict glycosylation which is now being integrated into glycoproteomics pipelines. This short review describes commercial and open-access databases and software with an emphasis on those that are actively maintained and designed to support current analytical workflows.
Collapse
Affiliation(s)
- Jodie L Abrahams
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ghazaleh Taherzadeh
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Gabor Jarvas
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary; Horváth Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andras Guttman
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary; Horváth Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; SCIEX, Brea, CA, USA
| | - Yaoqi Zhou
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Matthew P Campbell
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
36
|
Duivelshof BL, Jiskoot W, Beck A, Veuthey JL, Guillarme D, D’Atri V. Glycosylation of biosimilars: Recent advances in analytical characterization and clinical implications. Anal Chim Acta 2019; 1089:1-18. [DOI: 10.1016/j.aca.2019.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022]
|
37
|
Abstract
Glycoconjugates are diverse biomolecules that are dynamically assembled to regulate and fine-tune numerous cellular processes. Their biosynthesis is nontemplate-driven, achieved stepwise in discrete locations within the cell, giving rise to a range of complex branched structures that pose a significant challenge in structural biology. Mass spectrometry is the leading method for analysis of glycoconjugates, and the addition of ion mobility has proven valuable for improving structural assignments of individual glycans in complex biological mixtures. In this chapter, we briefly discuss recent applications of IM for glycomics and describe how to acquire, interpret, and analyze IM-MS data for the analysis of glycans.
Collapse
Affiliation(s)
- Weston B Struwe
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, UK.
| | - David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Gray CJ, Migas LG, Barran PE, Pagel K, Seeberger PH, Eyers CE, Boons GJ, Pohl NLB, Compagnon I, Widmalm G, Flitsch SL. Advancing Solutions to the Carbohydrate Sequencing Challenge. J Am Chem Soc 2019; 141:14463-14479. [PMID: 31403778 DOI: 10.1021/jacs.9b06406] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbohydrates possess a variety of distinct features with stereochemistry playing a particularly important role in distinguishing their structure and function. Monosaccharide building blocks are defined by a high density of chiral centers. Additionally, the anomericity and regiochemistry of the glycosidic linkages carry important biological information. Any carbohydrate-sequencing method needs to be precise in determining all aspects of this stereodiversity. Recently, several advances have been made in developing fast and precise analytical techniques that have the potential to address the stereochemical complexity of carbohydrates. This perspective seeks to provide an overview of some of these emerging techniques, focusing on those that are based on NMR and MS-hybridized technologies including ion mobility spectrometry and IR spectroscopy.
Collapse
Affiliation(s)
- Christopher J Gray
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Lukasz G Migas
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Perdita E Barran
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Kevin Pagel
- Institute for Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Peter H Seeberger
- Biomolecular Systems Department , Max Planck Institute for Colloids and Interfaces , Am Muehlenberg 1 , 14476 Potsdam , Germany
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology , University of Liverpool , Crown Street , Liverpool L69 7ZB , U.K
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Nicola L B Pohl
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Isabelle Compagnon
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS , Université de Lyon , 69622 Villeurbanne Cedex , France.,Institut Universitaire de France IUF , 103 Blvd St Michel , 75005 Paris , France
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , S-106 91 Stockholm , Sweden
| | - Sabine L Flitsch
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| |
Collapse
|
39
|
Rojas-Macias MA, Mariethoz J, Andersson P, Jin C, Venkatakrishnan V, Aoki NP, Shinmachi D, Ashwood C, Madunic K, Zhang T, Miller RL, Horlacher O, Struwe WB, Watanabe Y, Okuda S, Levander F, Kolarich D, Rudd PM, Wuhrer M, Kettner C, Packer NH, Aoki-Kinoshita KF, Lisacek F, Karlsson NG. Towards a standardized bioinformatics infrastructure for N- and O-glycomics. Nat Commun 2019; 10:3275. [PMID: 31332201 PMCID: PMC6796180 DOI: 10.1038/s41467-019-11131-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
The mass spectrometry (MS)-based analysis of free polysaccharides and glycans released from proteins, lipids and proteoglycans increasingly relies on databases and software. Here, we review progress in the bioinformatics analysis of protein-released N- and O-linked glycans (N- and O-glycomics) and propose an e-infrastructure to overcome current deficits in data and experimental transparency. This workflow enables the standardized submission of MS-based glycomics information into the public repository UniCarb-DR. It implements the MIRAGE (Minimum Requirement for A Glycomics Experiment) reporting guidelines, storage of unprocessed MS data in the GlycoPOST repository and glycan structure registration using the GlyTouCan registry, thereby supporting the development and extension of a glycan structure knowledgebase.
Collapse
Affiliation(s)
- Miguel A Rojas-Macias
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland
- Computer Science Department, University of Geneva, Geneva, 1227, Switzerland
| | - Peter Andersson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Vignesh Venkatakrishnan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Nobuyuki P Aoki
- Soka University, Hachioji, 192-8577, Tokyo, Japan
- SparqLite LLC., Hachioji, 192-0032, Tokyo, Japan
| | - Daisuke Shinmachi
- Soka University, Hachioji, 192-8577, Tokyo, Japan
- SparqLite LLC., Hachioji, 192-0032, Tokyo, Japan
| | - Christopher Ashwood
- Department of Molecular Sciences, Macquarie University, Sydney, 2109, Australia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Tao Zhang
- Leiden University Medical Center, Leiden, 2333ZA, Netherlands
| | - Rebecca L Miller
- Copenhagen Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, København, DK-2200, Denmark
| | - Oliver Horlacher
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland
| | - Weston B Struwe
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Yu Watanabe
- Graduate School of Medical and Dental Sciences, Niigata University, 950-2181, Niigata, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Sciences, Niigata University, 950-2181, Niigata, Japan
| | - Fredrik Levander
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Immunotechnology, Lund University, Lund, 22387, Sweden
| | - Daniel Kolarich
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, QLD, QLD 4222, Australia
- ARC Centre for Nanoscale BioPhotonics, Macquarie University and Griffith University, North Ryde and Gold Coast, NSW and QLD, NSW 2109 and QLD 4222, Australia
| | - Pauline M Rudd
- Bioprocessing Technology Institute, AStar, Singapore, 138668, Singapore
| | - Manfred Wuhrer
- Leiden University Medical Center, Leiden, 2333ZA, Netherlands
| | | | - Nicolle H Packer
- Department of Molecular Sciences, Macquarie University, Sydney, 2109, Australia
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, QLD, QLD 4222, Australia
- ARC Centre for Nanoscale BioPhotonics, Macquarie University and Griffith University, North Ryde and Gold Coast, NSW and QLD, NSW 2109 and QLD 4222, Australia
| | | | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland
- Computer Science Department, University of Geneva, Geneva, 1227, Switzerland
- Section of Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.
| |
Collapse
|
40
|
Jin C, Harvey DJ, Struwe WB, Karlsson NG. Separation of Isomeric O-Glycans by Ion Mobility and Liquid Chromatography–Mass Spectrometry. Anal Chem 2019; 91:10604-10613. [DOI: 10.1021/acs.analchem.9b01772] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David J. Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Weston B. Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Chemistry Research laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
Wongtrakul-Kish K, Walsh I, Sim LC, Mak A, Liau B, Ding V, Hayati N, Wang H, Choo A, Rudd PM, Nguyen-Khuong T. Combining Glucose Units, m/z, and Collision Cross Section Values: Multiattribute Data for Increased Accuracy in Automated Glycosphingolipid Glycan Identifications and Its Application in Triple Negative Breast Cancer. Anal Chem 2019; 91:9078-9085. [DOI: 10.1021/acs.analchem.9b01476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Katherine Wongtrakul-Kish
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| | - Ian Walsh
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| | - Lyn Chiin Sim
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| | - Amelia Mak
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| | - Brian Liau
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| | - Vanessa Ding
- Antibody Discovery Group, Bioprocessing Technology Institute, A*STAR, Singapore 138668
| | - Noor Hayati
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| | - Han Wang
- Waters Asia Pacific Pte Ltd., 1 Science Park Rd, No. 02-01/06 The Capricorn, Singapore Science Park II, Singapore 117528
| | - Andre Choo
- Antibody Discovery Group, Bioprocessing Technology Institute, A*STAR, Singapore 138668
| | - Pauline M. Rudd
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
- National Institute for Bioprocessing Research and Training, Conway Institute, Dublin, Ireland
- University College Dublin, Belfield, Dublin, Ireland
| | - Terry Nguyen-Khuong
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| |
Collapse
|
42
|
Ben Faleh A, Warnke S, Rizzo TR. Combining Ultrahigh-Resolution Ion-Mobility Spectrometry with Cryogenic Infrared Spectroscopy for the Analysis of Glycan Mixtures. Anal Chem 2019; 91:4876-4882. [PMID: 30835102 DOI: 10.1021/acs.analchem.9b00659] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The isomeric complexity of glycans make their analysis by traditional techniques particularly challenging. While the recent combination of ion mobility spectrometry (IMS) with cryogenic IR spectroscopy has demonstrated promise as a new technique for glycan analysis, this approach has been limited by the modest resolution of the ion mobility stage. In this work we report results from a newly developed instrument that combines ultrahigh-resolution IMS with cryogenic IR spectroscopy for glycan analysis. This apparatus makes use of the recent development in traveling-wave IMS called structures for lossless ion manipulation. The IMS stage allows the selection of glycan isomers that differ in collisional cross section by as little as 0.2% before injecting them into a cryogenic ion trap for IR spectral analysis. We compare our results to those using drift-tube IMS and highlight the advantages of the substantial increase in resolution. Application of this approach to glycan mixtures demonstrates our ability to isolate individual components, measure a cryogenic IR spectrum, and identify them using a spectroscopic database.
Collapse
Affiliation(s)
- Ahmed Ben Faleh
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCPM, Station 6 , CH-1015 Lausanne , Switzerland
| | - Stephan Warnke
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCPM, Station 6 , CH-1015 Lausanne , Switzerland
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCPM, Station 6 , CH-1015 Lausanne , Switzerland
| |
Collapse
|
43
|
Mucha E, Stuckmann A, Marianski M, Struwe WB, Meijer G, Pagel K. In-depth structural analysis of glycans in the gas phase. Chem Sci 2019; 10:1272-1284. [PMID: 30809341 PMCID: PMC6357860 DOI: 10.1039/c8sc05426f] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
Although there have been substantial improvements in glycan analysis over the past decade, the lack of both high-resolution and high-throughput methods hampers progress in glycomics. This perspective article highlights the current developments of liquid chromatography, mass spectrometry, ion-mobility spectrometry and cryogenic IR spectroscopy for glycan analysis and gives a critical insight to their individual strengths and limitations. Moreover, we discuss a novel concept in which ion mobility-mass spectrometry and cryogenic IR spectroscopy is combined in a single instrument such that datasets consisting of m/z, collision cross sections and IR fingerprints can be obtained. This multidimensional data will then be compared to a comprehensive reference library of intact glycans and their fragments to accurately identify unknown glycans on a high-throughput scale with minimal sample requirements. Due to the complementarity of the obtained information, this novel approach is highly diagnostic and also suitable for the identification of larger glycans; however, the workflow and instrumentation is straightforward enough to be implemented into a user-friendly setup.
Collapse
Affiliation(s)
- Eike Mucha
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Alexandra Stuckmann
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Mateusz Marianski
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
| | - Weston B Struwe
- Oxford Glycobiology Institute , Department of Biochemistry , University of Oxford , OX1 3QU Oxford , UK
| | - Gerard Meijer
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| |
Collapse
|
44
|
Picache JA, Rose BS, Balinski A, Leaptrot KL, Sherrod SD, May JC, McLean JA. Collision cross section compendium to annotate and predict multi-omic compound identities. Chem Sci 2019; 10:983-993. [PMID: 30774892 PMCID: PMC6349024 DOI: 10.1039/c8sc04396e] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023] Open
Abstract
Ion mobility mass spectrometry (IM-MS) expands the analyte coverage of existing multi-omic workflows by providing an additional separation dimension as well as a parameter for characterization and identification of molecules - the collision cross section (CCS). This work presents a large, Unified CCS compendium of >3800 experimentally acquired CCS values obtained from traceable molecular standards and measured with drift tube ion mobility-mass spectrometers. An interactive visualization of this compendium along with data analytic tools have been made openly accessible. Represented in the compendium are 14 structurally-based chemical super classes, consisting of a total of 80 classes and 157 subclasses. Using this large data set, regression fitting and predictive statistics have been performed to describe mass-CCS correlations specific to each chemical ontology. These structural trends provide a rapid and effective filtering method in the traditional untargeted workflow for identification of unknown biochemical species. The utility of the approach is illustrated by an application to metabolites in human serum, quantified trends of which were used to assess the probability of an unknown compound belonging to a given class. CCS-based filtering narrowed the chemical search space by 60% while increasing the confidence in the remaining isomeric identifications from a single class, thus demonstrating the value of integrating predictive analyses into untargeted experiments to assist in identification workflows. The predictive abilities of this compendium will improve in specificity and expand to more chemical classes as additional data from the IM-MS community is contributed. Instructions for data submission to the compendium and criteria for inclusion are provided.
Collapse
Affiliation(s)
- Jaqueline A Picache
- Department of Chemistry , Center for Innovative Technology , Vanderbilt Institute of Chemical Biology , Vanderbilt Institute for Integrative Biosystems Research and Education , Vanderbilt-Ingram Cancer Center , Vanderbilt University , Nashville , Tennessee 37235 , USA .
| | - Bailey S Rose
- Department of Chemistry , Center for Innovative Technology , Vanderbilt Institute of Chemical Biology , Vanderbilt Institute for Integrative Biosystems Research and Education , Vanderbilt-Ingram Cancer Center , Vanderbilt University , Nashville , Tennessee 37235 , USA .
| | - Andrzej Balinski
- Department of Chemistry , Center for Innovative Technology , Vanderbilt Institute of Chemical Biology , Vanderbilt Institute for Integrative Biosystems Research and Education , Vanderbilt-Ingram Cancer Center , Vanderbilt University , Nashville , Tennessee 37235 , USA .
| | - Katrina L Leaptrot
- Department of Chemistry , Center for Innovative Technology , Vanderbilt Institute of Chemical Biology , Vanderbilt Institute for Integrative Biosystems Research and Education , Vanderbilt-Ingram Cancer Center , Vanderbilt University , Nashville , Tennessee 37235 , USA .
| | - Stacy D Sherrod
- Department of Chemistry , Center for Innovative Technology , Vanderbilt Institute of Chemical Biology , Vanderbilt Institute for Integrative Biosystems Research and Education , Vanderbilt-Ingram Cancer Center , Vanderbilt University , Nashville , Tennessee 37235 , USA .
| | - Jody C May
- Department of Chemistry , Center for Innovative Technology , Vanderbilt Institute of Chemical Biology , Vanderbilt Institute for Integrative Biosystems Research and Education , Vanderbilt-Ingram Cancer Center , Vanderbilt University , Nashville , Tennessee 37235 , USA .
| | - John A McLean
- Department of Chemistry , Center for Innovative Technology , Vanderbilt Institute of Chemical Biology , Vanderbilt Institute for Integrative Biosystems Research and Education , Vanderbilt-Ingram Cancer Center , Vanderbilt University , Nashville , Tennessee 37235 , USA .
| |
Collapse
|
45
|
Manz C, Grabarics M, Hoberg F, Pugini M, Stuckmann A, Struwe WB, Pagel K. Separation of isomeric glycans by ion mobility spectrometry – the impact of fluorescent labelling. Analyst 2019; 144:5292-5298. [DOI: 10.1039/c9an00937j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bloodgroup oligosaccharides have been derivatized with labels common in HPLC and evaluated regarding their ion mobility behaviour.
Collapse
Affiliation(s)
- Christian Manz
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Fritz Haber Institute of the Max Planck Society
| | - Márkó Grabarics
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Fritz Haber Institute of the Max Planck Society
| | - Friederike Hoberg
- Fritz Haber Institute of the Max Planck Society
- Department of Molecular Physics
- 14195 Berlin
- Germany
| | - Michele Pugini
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Fritz Haber Institute of the Max Planck Society
| | - Alexandra Stuckmann
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Weston B. Struwe
- Oxford Glycobiology Institute
- Department of Biochemistry
- University of Oxford
- Oxford OX1 3QU
- UK
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Fritz Haber Institute of the Max Planck Society
| |
Collapse
|
46
|
Dong X, Huang Y, Cho BG, Zhong J, Gautam S, Peng W, Williamson SD, Banazadeh A, Torres-Ulloa KY, Mechref Y. Advances in mass spectrometry-based glycomics. Electrophoresis 2018; 39:3063-3081. [PMID: 30199110 DOI: 10.1002/elps.201800273] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
The diversification of the chemical properties and biological functions of proteins is attained through posttranslational modifications, such as glycosylation. Glycans, which are covalently attached to proteins, play a vital role in cell activities. The microheterogeneity and complexity of glycan structures associated with proteins make comprehensive glycomic analysis challenging. However, recent advancements in mass spectrometry (MS), separation techniques, and sample preparation methods have primarily facilitated structural elucidation and quantitation of glycans. This review focuses on describing recent advances in MS-based techniques used for glycomic analysis (2012-2018), including ionization, tandem MS, and separation techniques coupled with MS. Progress in glycomics workflow involving glycan release, purification, derivatization, and separation will also be highlighted here. Additionally, the recent development of quantitative glycomics through comparative and multiplex approaches will also be described.
Collapse
Affiliation(s)
- Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Seth D Williamson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Katya Y Torres-Ulloa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
47
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
48
|
Zhang Q, Li Z, Wang Y, Zheng Q, Li J. Mass spectrometry for protein sialoglycosylation. MASS SPECTROMETRY REVIEWS 2018; 37:652-680. [PMID: 29228471 DOI: 10.1002/mas.21555] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Sialic acids are a family of structurally unique and negatively charged nine-carbon sugars, normally found at the terminal positions of glycan chains on glycoproteins and glycolipids. The glycosylation of proteins is a universal post-translational modification in eukaryotic species and regulates essential biological functions, in which the most common sialic acid is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid) (Neu5NAc). Because of the properties of sialic acids under general mass spectrometry (MS) conditions, such as instability, ionization discrimination, and mixed adducts, the use of MS in the analysis of protein sialoglycosylation is still challenging. The present review is focused on the application of MS related methodologies to the study of both N- and O-linked sialoglycans. We reviewed MS-based strategies for characterizing sialylation by analyzing intact glycoproteins, proteolytic digested glycopeptides, and released glycans. The review concludes with future perspectives in the field.
Collapse
Affiliation(s)
- Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Zack Li
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
| | - Jianjun Li
- National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
49
|
|
50
|
Morrison KA, Clowers BH. Contemporary glycomic approaches using ion mobility-mass spectrometry. Curr Opin Chem Biol 2017; 42:119-129. [PMID: 29248736 DOI: 10.1016/j.cbpa.2017.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
Abstract
Characterization of complex oligosaccharides has historically required extensive sample handling and separations before analysis using nuclear magnetic resonance spectroscopy and electron impact mass spectra following hydrolysis, derivatization, and gas chromatographic separation. Advances in liquid chromatography separations and tandem mass spectrometry have expanded the range of intact glycan analysis, but carbohydrate structure and conformation-integral chemical characteristics-are often difficult to assess with minimal amounts of sample in a rapid fashion. Because ion mobility spectrometry (IMS) separates analytes based upon an effective 'size-to-charge' ratio, IMS is, by extension, highly applicable to glycomics. Furthermore, the speed of IMS, its growing levels of separation efficiency, and direct compatibility with all forms of mass spectrometry, illustrates is core role in the future of glycomics efforts. This review assesses the current state of ion mobility-mass spectrometry applied to glycan, glycoprotein, and glycoconjugate analysis. Currently, assessing optimal ion polarity and adduct type for a glycan class along with the appropriate tandem mass spectrometry technique underpin many of the current glycan analysis efforts using ion mobility-mass spectrometry (IMMS). Once determined, these parameters have enabled a growing and impressive range of glycomics campaigns employing this technique. Additionally, the combination of IMS with tandem mass spectrometry, and even spectroscopic methods, further expands the dimensionality of hybrid instrumentation to provide a more comprehensive assessment of glycan structure across a wide dynamic range. Continued computational efforts to complement experimental and instrumental advancements also serve as a core component of IMMS workflows applied to glycomics and promise to maximize the information gained from mobility separations.
Collapse
Affiliation(s)
- Kelsey A Morrison
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|