1
|
Guo RR, Heijs B, Wang WJ, Wuhrer M, Liu L, Lageveen-Kammeijer GSM, Voglmeir J. Insight into distribution and composition of nonhuman N-Glycans in mammalian organs via MALDI-TOF and MALDI-MSI. Carbohydr Polym 2025; 351:123065. [PMID: 39778995 DOI: 10.1016/j.carbpol.2024.123065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
The major hurdle of xenotransplantation is the immune response triggered by human natural antibodies interacting with carbohydrate antigens on the transplanted animal organ. Specifically, terminal glycoprotein motifs such as galactose-α1,3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc) are significant obstacles. Little is known about the abundance and compositions of asparagine-linked complex carbohydrates (N-glycans) carrying these motifs in mammalian organs. By studying heart, kidney, and liver tissues from pig, cattle, and sheep, we aimed to gain insights into the abundance and spatial distribution of α-Gal- or Neu5Gc-containing N-glycans. N-glycomes were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), MALDI-mass spectrometry imaging (MSI), and capillary electrophoresis-electrospray ionization (CE-ESI)-MS. Both α-Gal- and Neu5Gc-containing N-glycans were present in all samples, with α-Gal-modified N-glycans being the most abundant nonhuman carbohydrate motif. The abundance of N-glycans terminating with α-Gal or Neu5Gc was higher in heart and kidney samples than livers. MSI revealed kidneys had the highest glycosylation levels, and α-Gal-containing N-glycans were abundant in the kidney cortex but scarce in the medulla. This study enhances our understanding of α-Gal- and Neu5Gc-modified N-glycans in animal organs and may guide research on carbohydrate antigen-induced immune rejection in xenotransplantation.
Collapse
Affiliation(s)
- Rui-Rui Guo
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453000, China; Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Wen-Jun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guinevere S M Lageveen-Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands; Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713, AV, Groningen, the Netherlands.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Contò M, Miarelli M, Di Giovanni S, Failla S. Variability of Sialic Acids in Beef Breeds and Nutritional Implications in Red Meat. Molecules 2025; 30:710. [PMID: 39942813 PMCID: PMC11821032 DOI: 10.3390/molecules30030710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
This study examines the variability of sialic acids, specifically N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), in beef from seven cattle breeds (Holstein Friesian, Red Pied, Maremmana, Chianina, Charolais, Limousin, and Piemontese). Neu5Gc, a non-human sialic acid linked to inflammation and disease risk, showed significant breed differences (p < 0.001), with the highest concentration in Holstein Friesian (61.02 µg/g) and the lowest in Piemontese (20.87 µg/g). Neu5Ac, known for its neuroprotective properties, was most abundant in Piemontese (112.99 µg/g, p = 0.032) and lowest in Limousin (81.25 µg/g). The Neu5Ac/Neu5Gc ratio, critical for dietary health, exceeded the threshold of 5:1 only in Piemontese (5.49), identifying it as a breed with a higher ratio. This study highlights the influence of breed, with limited effects of muscle type and aging, on sialic acid content. Significant correlations were observed between Neu5Gc and fatty acid classes (p < 0.05) and between Neu5Ac and polar amino acid groups (p < 0.01). The findings support selective breeding to optimize beef's nutritional profile, enhancing its health benefits for consumers.
Collapse
Affiliation(s)
| | | | | | - Sebastiana Failla
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Research Centre for Animal Production and Aquaculture, Via Salaria, 31, 00016 Monterotondo, Italy; (M.C.); (S.D.G.)
| |
Collapse
|
3
|
Wu L, Deng Q, Isah MB, Dang M, Zhang X. Development and evaluation of an immunoassay for the quantification of N-acetylneuraminic acid (Neu5Ac) in foods and biosamples. Food Chem 2024; 461:140929. [PMID: 39178546 DOI: 10.1016/j.foodchem.2024.140929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
N-acetylneuraminic acid is an active ingredient in tonic foods and an important additive in foods and biopharmaceuticals. To address the limitations of existing methods of N-acetylneuraminic acid quantification, we developed an immunoassay based on antibodies induced in hens using artificial antigen, showing high sensitivity and specificity with no cross-reactivity with eight N-acetylneuraminic acid analogues. An IgY-based indirect competitive enzyme-linked immunosorbent assay showed a detection range of 1.14 to 70.08 ng/mL and a limit of detection of 0.57 ng/mL. In spiked samples, recoveries by the indirect competitive enzyme-linked immunosorbent assay ranged from 74.05% to 110.87% compared with HPLC (73.01% to 108.8%). Consistency between the indirect competitive enzyme-linked immunosorbent assay and HPLC was satisfactory (R2 = 0.9736), demonstrating this established immunoassay as a rapid and reliable approach for N-acetylneuraminic acid analysis. The assay described in this study provides an important method for the screening of N-acetylneuraminic acid in biological samples and foodstuffs.
Collapse
Affiliation(s)
- Longjiang Wu
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Qinqin Deng
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Murtala Bindawa Isah
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Mei Dang
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Keng Ridge Crescent, 119260, Singapore
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057, Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1 Guelph, Ontario, Canada.
| |
Collapse
|
4
|
Uprety T, Yu J, Nogales A, Naveed A, Yu H, Chen X, Liu Y, Bowman AS, Martinez-Sobrido L, Parrish CR, Melikyan GB, Wang D, Li F. Influenza D virus utilizes both 9- O-acetylated N-acetylneuraminic and 9- O-acetylated N-glycolylneuraminic acids as functional entry receptors. J Virol 2024; 98:e0004224. [PMID: 38376198 PMCID: PMC10949506 DOI: 10.1128/jvi.00042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/20/2024] [Indexed: 02/21/2024] Open
Abstract
Influenza D virus (IDV) utilizes bovines as a primary reservoir with periodical spillover to other hosts. We have previously demonstrated that IDV binds both 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac). Bovines produce both Neu5,9Ac2 and Neu5Gc9Ac, while humans are genetically unable to synthesize Neu5Gc9Ac. 9-O-Acetylation of sialic acids is catalyzed by CASD1 via a covalent acetyl-enzyme intermediate. To characterize the role of Neu5,9Ac2 and Neu5Gc9Ac in IDV infection and determine which form of 9-O-acetylated sialic acids drives IDV entry, we took advantage of a CASD1 knockout (KO) MDCK cell line and carried out feeding experiments using synthetic 9-O-acetyl sialic acids in combination with the single-round and multi-round IDV infection assays. The data from our studies show that (i) CASD1 KO cells are resistant to IDV infection and lack of IDV binding to the cell surface is responsible for the failure of IDV replication; (ii) feeding CASD1 KO cells with Neu5,9Ac2 or Neu5Gc9Ac resulted in a dose-dependent rescue of IDV infectivity; and (iii) diverse IDVs replicated robustly in CASD1 KO cells fed with either Neu5,9Ac2 or Neu5Gc9Ac at a level similar to that in wild-type cells with a functional CASD1. These data demonstrate that IDV can utilize Neu5,9Ac2- or non-human Neu5Gc9Ac-containing glycan receptor for infection. Our findings provide evidence that IDV has acquired the ability to infect and transmit among agricultural animals that are enriched in Neu5Gc9Ac, in addition to posing a zoonotic risk to humans expressing only Neu5,9Ac2.IMPORTANCEInfluenza D virus (IDV) has emerged as a multiple-species-infecting pathogen with bovines as a primary reservoir. Little is known about the functional receptor that drives IDV entry and promotes its cross-species spillover potential among different hosts. Here, we demonstrated that IDV binds exclusively to 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and non-human 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac) and utilizes both for entry and infection. This ability in effective engagement of both 9-O-acetylated sialic acids as functional receptors for infection provides an evolutionary advantage to IDV for expanding its host range. This finding also indicates that IDV has the potential to emerge in humans because Neu5,9Ac2 is ubiquitously expressed in human tissues, including lung. Thus, results of our study highlight a need for continued surveillance of IDV in humans, as well as for further investigation of its biology and cross-species transmission mechanism.
Collapse
Affiliation(s)
- Tirth Uprety
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Jieshi Yu
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal, INIA-CSIC. Madrid, Madrid, Spain
| | - Ahsan Naveed
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California, USA
| | | | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Colin R. Parrish
- College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Liu F, Tol AJ, Kuipers F, Oosterveer MH, van der Beek EM, van Leeuwen SS. Characterization of milk oligosaccharide and sialic acid content and their influence on brain sialic acid in a lean mouse model for gestational diabetes. Heliyon 2024; 10:e24539. [PMID: 38317966 PMCID: PMC10839809 DOI: 10.1016/j.heliyon.2024.e24539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Oligosaccharides and sialic acids (Sia) are bioactive components in milk that contribute to newborn development and health. Hyperglycemia in pregnancy (HIP) can have adverse effects on both mother and infant. HIP is associated with low-grade systemic inflammation. Inflammation influenced glycan composition, particularly of Sia-containing structures. We hypothesize that HIP and high-fat diet influence milk oligosaccharide composition, particularly sialylated oligosaccharides. Furthermore, we propose that milk Sia content influences pup brain Sia content. To test these hypotheses we (i) characterize mouse milk oligosaccharides and Sia concentrations in mouse milk of a GDM mouse model with dietary fat intake intervention; and (ii) determine Sia levels in offspring brains. The concentrations of oligosaccharides and Sia in mouse milk and offspring's brains were quantified using UPLC-FLD analysis. Analyses were performed on surplus samples from a previous study, where HIP was induced by combining high-fat diet (HF) feeding and low-dose streptozotocin injections in C57Bl/6NTac female mice. The previous study described the metabolic effects of HIP on dams and offspring. We detected 21 mouse milk oligosaccharides, including 9 neutral and 12 acidic structures using UPLC-MS. A total of 8 structures could be quantified using UPLC-FLD. Maternal HIP and HF diet during lactation influenced sialylated oligosaccharide concentrations in mouse milk and total and free sialic acid concentrations. Sia content in offspring brain was associated with total and free Neu5Gc in mouse milk of dams, but no correlations with HIP or maternal diet were observed.
Collapse
Affiliation(s)
- Fan Liu
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Angela J.C. Tol
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Folkert Kuipers
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Maaike H. Oosterveer
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Eline M. van der Beek
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sander S. van Leeuwen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
6
|
Golden RK, Sutkus LT, Bauer LL, Donovan SM, Dilger RN. Determining the safety and efficacy of dietary supplementation with 3'-sialyllactose or 6'-sialyllactose on growth, tolerance, and brain sialic acid concentrations. Front Nutr 2023; 10:1278804. [PMID: 37927504 PMCID: PMC10620723 DOI: 10.3389/fnut.2023.1278804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Sialylated oligosaccharides, including 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), comprise a large portion of human milk and have been known to support development over the first year of life. While research has investigated the impact of early-life supplementation, longer-term supplementation remains relatively unexplored. Consequently, the following study assesses the impact of supplementation of either 3'-SL or 6'-SL on growth performance, tolerance, and brain sialic acid concentrations. Two-day-old piglets (n = 75) were randomly assigned to a commercial milk replacer ad libitum without or with 3'-SL or 6'-SL (added at 0.2673% on an as-is basis). Daily body weight and feed disappearance were recorded to assess growth performance and tolerance. Pigs were euthanized for sample collection on postnatal day 33 (n = 30) or 61 (n = 33), respectively. Across growth performance, clinical chemistry and hematology, histomorphology, and sialic acid quantification, dietary differences were largely unremarkable at either time-point. Overall, SA was well-tolerated both short-term and long-term.
Collapse
Affiliation(s)
- Rebecca K. Golden
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Loretta T. Sutkus
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Laura L. Bauer
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Ryan N. Dilger
- Neuroscience Program, University of Illinois, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
7
|
Guerrero-Flores GN, Pacheco FJ, Boskovic DS, Pacheco SOS, Zhang G, Fraser GE, Miles FL. Sialic acids Neu5Ac and KDN in adipose tissue samples from individuals following habitual vegetarian or non-vegetarian dietary patterns. Sci Rep 2023; 13:12593. [PMID: 37537165 PMCID: PMC10400564 DOI: 10.1038/s41598-023-38102-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Sialic acids (Sias) are a class of sugar molecules with a parent nine-carbon neuraminic acid, generally present at the ends of carbohydrate chains, either attached to cellular surfaces or as secreted glycoconjugates. Given their position and structural diversity, Sias modulate a wide variety of biological processes. However, little is known about the role of Sias in human adipose tissue, or their implications for health and disease, particularly among individuals following different dietary patterns. The goal of this study was to measure N-Acetylneuraminic acid (Neu5Ac), N-Glycolylneuraminic acid (Neu5Gc), and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) concentrations in adipose tissue samples from participants in the Adventist Health Study-2 (AHS-2) and to compare the abundance of these Sias in individuals following habitual, long-term vegetarian or non-vegetarian dietary patterns. A method was successfully developed for the extraction and detection of Sias in adipose tissue. Sias levels were quantified in 52 vegans, 56 lacto-vegetarians, and 48 non-vegetarians using LC-MS/MS with Neu5Ac-D-1,2,3-13C3 as an internal standard. Dietary groups were compared using linear regression. Vegans and lacto-ovo-vegetarians had significantly higher concentrations of Neu5Ac relative to non-vegetarians. While KDN levels tended to be higher in vegans and lacto-ovo-vegetarians, these differences were not statistically significant. However, KDN levels were significantly inversely associated with body mass index. In contrast, Neu5Gc was not detected in human adipose samples. It is plausible that different Neu5Ac concentrations in adipose tissues of vegetarians, compared to those of non-vegetarians, reflect a difference in the baseline inflammatory status between the two groups. Epidemiologic studies examining levels of Sias in human adipose tissue and other biospecimens will help to further explore their roles in development and progression of inflammatory conditions and chronic diseases.
Collapse
Affiliation(s)
- Gerardo N Guerrero-Flores
- Interdisciplinary Center for Research in Health and Behavioral Sciences, School of Medicine, Universidad Adventista del Plata, 3103, Libertador San Martín, Entre Ríos, Argentina
- Faculty of Medical Sciences, Universidad Nacional de Rosario (UNR), 3100, Rosario, Argentina
| | - Fabio J Pacheco
- Interdisciplinary Center for Research in Health and Behavioral Sciences, School of Medicine, Universidad Adventista del Plata, 3103, Libertador San Martín, Entre Ríos, Argentina
- Institute for Food Science and Nutrition, Universidad Adventista del Plata, 3103, Libertador San Martín, Entre Ríos, Argentina
| | - Danilo S Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Sandaly O S Pacheco
- Interdisciplinary Center for Research in Health and Behavioral Sciences, School of Medicine, Universidad Adventista del Plata, 3103, Libertador San Martín, Entre Ríos, Argentina
- Institute for Food Science and Nutrition, Universidad Adventista del Plata, 3103, Libertador San Martín, Entre Ríos, Argentina
| | - Guangyu Zhang
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Gary E Fraser
- Center for Nutrition, Healthy Lifestyles and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, 92350, USA
- Adventist Health Study, Loma Linda University, Loma Linda, CA, 92350, USA
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Fayth L Miles
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.
- Center for Nutrition, Healthy Lifestyles and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, 92350, USA.
- Adventist Health Study, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
8
|
Abstract
Sialic acids (Sias), a group of over 50 structurally distinct acidic saccharides on the surface of all vertebrate cells, are neuraminic acid derivatives. They serve as glycan chain terminators in extracellular glycolipids and glycoproteins. In particular, Sias have significant implications in cell-to-cell as well as host-to-pathogen interactions and participate in various biological processes, including neurodevelopment, neurodegeneration, fertilization, and tumor migration. However, Sia is also present in some of our daily diets, particularly in conjugated form (sialoglycans), such as those in edible bird's nest, red meats, breast milk, bovine milk, and eggs. Among them, breast milk, especially colostrum, contains a high concentration of sialylated oligosaccharides. Numerous reviews have concentrated on the physiological function of Sia as a cellular component of the body and its relationship with the occurrence of diseases. However, the consumption of Sias through dietary sources exerts significant influence on human health, possibly by modulating the gut microbiota's composition and metabolism. In this review, we summarize the distribution, structure, and biological function of particular Sia-rich diets, including human milk, bovine milk, red meat, and egg.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Red Meat Derived Glycan, N-acetylneuraminic Acid (Neu5Ac) Is a Major Sialic Acid in Different Skeletal Muscles and Organs of Nine Animal Species-A Guideline for Human Consumers. Foods 2023; 12:foods12020337. [PMID: 36673429 PMCID: PMC9858279 DOI: 10.3390/foods12020337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Sialic acids (Sias) are acidic monosaccharides and red meat is a notable dietary source of Sia for humans. Among the Sias, N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN) play multiple roles in immunity and brain cognition. On the other hand, N-glycolylneuraminic acid (Neu5Gc) is a non-human Sia capable of potentiating cancer and inflammation in the human body. However, their expression within the animal kingdom remains unknown. We determined Neu5Ac and KDN in skeletal muscle and organs across a range (n = 9) of species using UHPLC and found that (1) caprine skeletal muscle expressed the highest Neu5Ac (661.82 ± 187.96 µg/g protein) following by sheep, pig, dog, deer, cat, horse, kangaroo and cattle; (2) Among organs, kidney contained the most Neu5Ac (1992−3050 µg/g protein) across species; (3) ~75−98% of total Neu5Ac was conjugated, except for in dog and cat muscle (54−58%); (4) <1% of total Sia was KDN, in which ~60−100% was unconjugated, with the exception of sheep liver and goat muscle (~12−25%); (5) Neu5Ac was the major Sia in almost all tested organs. This study guides consumers to the safest red meat relating to Neu5Ac and Neu5Gc content, though the dog and cat meat are not conventional red meat globally.
Collapse
|
10
|
Immune disguise: the mechanisms of Neu5Gc inducing autoimmune and transplant rejection. Genes Immun 2022; 23:175-182. [PMID: 36151402 DOI: 10.1038/s41435-022-00182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Organ (stem cell) transplantation is the most effective treatment for advanced organ failure. Neu5Gc (N-hydroxyacetylneuraminic acid) is a pathogenic non-human sialic acid, which is very similar to the molecular structure of Neu5Ac (N-acetylneuraminic acid) in human body. Neu5Gc has the function of "immune disguise", which is the main obstacle to transplantation. Gene knockout such as cytidine monophosphate-N-acetylneuraminidase (CMAH) reduces donor antigenicity, making xenotransplantation from fiction to reality. Exploring the immune disguise event in this emerging field has become a hot topic in the research of transplantation immune tolerance mechanism.
Collapse
|
11
|
Ogun OJ, Thaller G, Becker D. An Overview of the Importance and Value of Porcine Species in Sialic Acid Research. BIOLOGY 2022; 11:biology11060903. [PMID: 35741423 PMCID: PMC9219854 DOI: 10.3390/biology11060903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Humans frequently interact with pigs and porcine meat is the most consumed red meat in the world. In addition, due to the many physiological and anatomical similarities shared between pigs and humans, in contrast to most mammalian species, pigs are a suitable model organism and pig organs can be used for xenotransplantation. However, one major challenge of porcine meat consumption and xenotransplantation is the xenoreactivity between red meat Neu5Gc sialic acid and human anti-Neu5Gc antibodies, which are associated with certain diseases and disorders. Furthermore, pigs express both α2-3 and α2-6 Sia linkages that could serve as viable receptors for viral infections, reassortments, and cross-species transmission of viruses. Therefore, pigs play a significant role in sialic acid research and, in general, in human health. Abstract Humans frequently interact with pigs, whose meat is also one of the primary sources of animal protein. They are one of the main species at the center of sialic acid (Sia) research. Sias are sugars at terminals of glycoconjugates, are expressed at the cell surfaces of mammals, and are important in cellular interactions. N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) are notable Sias in mammals. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) encodes the CMAH enzyme that biosynthesizes Neu5Gc. Although humans cannot endogenously synthesize Neu5Gc due to the inactivation of this gene by a mutation, Neu5Gc can be metabolically incorporated into human tissues from red meat consumption. Interactions between Neu5Gc and human anti-Neu5Gc antibodies have been associated with certain diseases and disorders. In this review, we summarized the sialic acid metabolic pathway, its regulation and link to viral infections, as well as the importance of the pig as a model organism in Sia research, making it a possible source of Neu5Gc antigens affecting human health. Future research in solving the structures of crucial enzymes involved in Sia metabolism, as well as their regulation and interactions with other enzymes, especially CMAH, could help to understand their function and reduce the amount of Neu5Gc.
Collapse
Affiliation(s)
- Oluwamayowa Joshua Ogun
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
- Correspondence: (O.J.O.); (D.B.)
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Correspondence: (O.J.O.); (D.B.)
| |
Collapse
|
12
|
Khan N, Sasmal A, Khedri Z, Secrest P, Verhagen A, Srivastava S, Varki N, Chen X, Yu H, Beddoe T, Paton AW, Paton JC, Varki A. Sialoglycan binding patterns of bacterial AB5 toxin B subunits correlate with host range and toxicity, indicating evolution independent of A subunits. J Biol Chem 2022; 298:101900. [PMID: 35398357 PMCID: PMC9120245 DOI: 10.1016/j.jbc.2022.101900] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Many pathogenic bacteria secrete AB5 toxins that can be virulence factors. Cytotoxic A subunits are delivered to the cytosol following B subunit binding to specific host cell surface glycans. Some B subunits are not associated with A subunits, for example, YpeB of Yersinia pestis, the etiologic agent of plague. Plague cannot be eradicated because of Y. pestis' adaptability to numerous hosts. We previously showed selective binding of other B5 pentamers to a sialoglycan microarray, with sialic acid (Sia) preferences corresponding to those prominently expressed by various hosts, for example, N-acetylneuraminic acid (Neu5Ac; prominent in humans) or N-glycolylneuraminic acid (Neu5Gc; prominent in ruminant mammals and rodents). Here, we report that A subunit phylogeny evolved independently of B subunits and suggest a future B subunit nomenclature based on bacterial species names. We also found via phylogenetic analysis of B subunits, which bind Sias, that homologous molecules show poor correlation with species phylogeny. These data indicate ongoing lateral gene transfers between species, including mixing of A and B subunits. Consistent with much broader host range of Y. pestis, we show that YpeB recognizes all mammalian Sia types, except for 4-O-acetylated ones. Notably, YpeB alone causes dose-dependent cytotoxicity, which is abolished by a mutation (Y77F) eliminating Sia recognition, suggesting that cell proliferation and death are promoted via lectin-like crosslinking of cell surface sialoglycoconjugates. These findings help explain the host range of Y. pestis and could be important for pathogenesis. Overall, our data indicate ongoing rapid evolution of both host Sias and pathogen toxin-binding properties.
Collapse
|
13
|
Jahan M, Francis N, Wynn P, Wang B. The Potential for Sialic Acid and Sialylated Glycoconjugates as Feed Additives to Enhance Pig Health and Production. Animals (Basel) 2021; 11:ani11082318. [PMID: 34438776 PMCID: PMC8388453 DOI: 10.3390/ani11082318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary This review discusses the current challenges in the pig industry and the potential nutritional significance of sialic acid (Sia) and glycoconjugates (Sia-GC’s) for pig health and nutrition. Sia is a nine-carbon acidic sugar which is present in various organs and body fluids of humans and animals. Sias contribute to many beneficial biological functions including pathogen resistance, immunomodulation, gut microbiota development, gut maturation, anti-inflammation and neurodevelopment. The role of Sias in regulating the metabolism of pigs has seldom been reported. However, we have documented significant beneficial effects of specific Sia-GC’s on health and production performance of sows and piglets. These findings are reviewed in relation to other studies while noting the beneficial effects of the inclusion of Sia, Sia containing oligosaccharide or the sialo-protein lactoferrin in the diets of gilts and sows. The importance of the passive transfer of of Sia and Sia-GC’s through milk to the young and the implications for their growth and development is also reviewed. This information will assist in optimizing the composition of sow/gilt milk replacers designed to increases the survival of IUGR piglets or piglets with dams suffering from agalactia, a common problem in pig production systems worldwide. Abstract Swine are one of the most important agricultural species for human food production. Given the significant disease challenges confronting commercial pig farming systems, introduction of a new feed additive that can enhance animal performance by improving growth and immune status represents a major opportunity. One such candidate is sialic acid (Sia), a diverse family of nine-carbon acidic sugar, present in various organs and body fluid, as well as an essential structural and functional constituent of brain ganglioside of humans and animals. Sias are key monosaccharide and biomarker of sialylated milk oligosaccharide (Sia-MOS’s), sialylated glycoproteins and glycolipids in milk and all vertebrate cells. Sias accomplish many critical endogenous functions by virtue of their physiochemical properties and via recognition by intrinsic receptors. Human milk sialylated glycoconjugates (Sia-GC’s) are bioactive compounds known to act as prebiotics that promote gut microbiota development, gut maturation, pathogen resistance, immunomodulation, anti-inflammation and neurodevelopment. However, the importance of Sia in pig health, especially in the growth, development, immunity of developing piglet and in pig production remains unknown. This review aims to critically discuss the current status of knowledge of the biology and nutritional role of Sia and Sia-GC’s on health of both female sow and newborn piglets.
Collapse
Affiliation(s)
| | | | | | - Bing Wang
- Correspondence: ; Tel.: +61-2-6933-4549
| |
Collapse
|
14
|
Ling AJW, Chang LS, Babji AS, Latip J, Koketsu M, Lim SJ. Review of sialic acid's biochemistry, sources, extraction and functions with special reference to edible bird's nest. Food Chem 2021; 367:130755. [PMID: 34390910 DOI: 10.1016/j.foodchem.2021.130755] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Sialic acids are a group of nine-carbon α-keto acids. Sialic acid exists in more than 50 forms, with the natural types discovered as N-acetylneuraminic acid (Neu5Ac), deaminoneuraminic acid (2-keto-3-deoxy-nonulononic acid or Kdn), and N-glycolylneuraminic acid (Neu5Gc). Sialic acid level varies depending on the source, where edible bird's nest (EBN), predominantly Neu5Ac, is among the major sources of sialic acid. Due to its high nutritive value and complexity, sialic acid has been studied extensively through acid, aqueous, and enzymatic extraction. Although detection by chromatographic methods or mass spectrometry is common, the isolation and recovery work remained limited. Sialic acid is well-recognised for its bioactivities, including brain and cognition development, immune-enhancing, anti-hypertensive, anticancer, and skin whitening properties. Therefore, sialic acid can be used as a functional ingredient in the various industries. This paper reviews the current trend in the biochemistry, sources, extraction, and functions of sialic acids with special reference to EBN.
Collapse
Affiliation(s)
- Alvin Jin Wei Ling
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Lee Sin Chang
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Abdul Salam Babji
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Centre for Innovation and Technology Transfer (INOVASI@UKM), Chancellery, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Jalifah Latip
- Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
15
|
Hashemian M, Merat S, Poustchi H, Jafari E, Radmard AR, Kamangar F, Freedman N, Hekmatdoost A, Sheikh M, Boffetta P, Sinha R, Dawsey SM, Abnet CC, Malekzadeh R, Etemadi A. Red Meat Consumption and Risk of Nonalcoholic Fatty Liver Disease in a Population With Low Meat Consumption: The Golestan Cohort Study. Am J Gastroenterol 2021; 116:1667-1675. [PMID: 33767101 PMCID: PMC8460710 DOI: 10.14309/ajg.0000000000001229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD), as the most common liver disease in the world, can range from simple steatosis to steatohepatitis. We evaluated the association between meat consumption and risk of NAFLD in the Golestan Cohort Study (GCS). METHODS The GCS enrolled 50,045 participants, aged 40-75 years in Iran. Dietary information was collected using a 116-item semiquantitative food frequency questionnaire at baseline (2004-2008). A random sample of 1,612 cohort members participated in a liver-focused study in 2011. NAFLD was ascertained through ultrasound. Total red meat consumption and total white meat consumption were categorized into quartiles based on the GCS population, with the first quartile as the referent group. Multivariable logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The median intake of total red meat was 17 and total white meat was 53 g/d. During follow-up, 505 individuals (37.7%) were diagnosed with NAFLD, and 124 of them (9.2%) had elevated alanine transaminase. High total red meat consumption (ORQ4 vs Q1 = 1.59, 95% CI = 1.06-2.38, P trend = 0.03) and organ meat consumption (ORQ4 vs Q1 = 1.70, 95% CI = 1.19-2.44, P trend = 0.003) were associated with NAFLD. Total white meat, chicken, or fish consumption did not show significant associations with NAFLD. DISCUSSION In this population with low consumption of red meat, individuals in the highest group of red meat intake were at increased odds of NAFLD. Furthermore, this is the first study to show an association between organ meat consumption and NAFLD (see Visual Abstract, http://links.lww.com/AJG/B944).
Collapse
Affiliation(s)
- Maryam Hashemian
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Departments of Biology, School of Art and Sciences, Utica College, Utica, New York, USA
| | - Shahin Merat
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Jafari
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Reza Radmard
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farin Kamangar
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, Maryland, USA
| | - Neal Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Azita Hekmatdoost
- Departments of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Sheikh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Genetic Epidemiology Group, Section of Genetics, International Agency for Research on Cancer, the World Health Organization, Lyon, France
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Rashmi Sinha
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Sanford M Dawsey
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Christian C Abnet
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Etemadi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Seo N, Ko J, Lee D, Jeong H, Oh MJ, Kim U, Lee DH, Kim J, Choi YJ, An HJ. In-depth characterization of non-human sialic acid (Neu5Gc) in human serum using label-free ZIC-HILIC/MRM-MS. Anal Bioanal Chem 2021; 413:5227-5237. [PMID: 34235565 DOI: 10.1007/s00216-021-03495-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023]
Abstract
Sialic acid Neu5Gc, a non-human glycan, is recognized as a new harmful substance that can cause vascular disease and cancer. Humans are unable to synthesize Neu5Gc due to a genetic defect that converts Neu5Ac to Neu5Gc, but Neu5Gc is often observed in human biological samples. Therefore, the demand for accurately measuring the amount of Neu5Gc present in human blood or tissues is rapidly increasing, but there is still no method to reliably quantify trace amounts of a non-human sugar. In particular, selective isolation and detection of Neu5Gc from human serum is analytically challenging due to the presence of excess sialic acid Neu5Ac, which has physicochemical properties very similar to Neu5Gc. Herein, we developed the label-free approach based on ZIC-HILIC/MRM-MS that can enrich sialic acids released from human serum and simultaneously monitor Neu5Ac and Neu5Gc. The combination of complete separation of Neu5Gc from abundant Neu5Ac by hydrophilic and electrostatic interactions with selective monitoring of structure-specific cross-ring cleavage ions generated by negative CID-MS/MS was remarkably effective for quantification of Neu5Ac and Neu5Gc at the femtomole level. Indeed, we were able to successfully determine the absolute quantitation of Neu5Gc from 30 healthy donors in the range of 3.336 ± 1.252 pg/μL (mean ± SD), 10,000 times lower than Neu5Ac. In particular, analysis of sialic acids in protein-free serum revealed that both Neu5Ac and Neu5G are mostly bound to proteins and/or lipids, but not in free form. In addition, the correlation between expression level of Neu5Gc and biological factors such as BMI, age, and sex was investigated. This method can be widely used in studies requiring sialic acid-related measurements such as disease diagnosis or prediction of immunogenicity in biopharmaceuticals as it is both fast and highly sensitive.
Collapse
Affiliation(s)
- Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.,Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Jaekyoung Ko
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.,Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Daum Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.,Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Heejin Jeong
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.,Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Myung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.,Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Unyong Kim
- Biocomplete Co., Ltd., Seoul, 08389, Republic of Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Budang Hospital, Seongnam, 13620, Republic of Korea
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yoon Jin Choi
- Department of Internal Medicine, Seoul National University Budang Hospital, Seongnam, 13620, Republic of Korea. .,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea. .,Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
17
|
Hobbs M, Jahan M, Ghorashi SA, Wang B. Current Perspective of Sialylated Milk Oligosaccharides in Mammalian Milk: Implications for Brain and Gut Health of Newborns. Foods 2021; 10:foods10020473. [PMID: 33669968 PMCID: PMC7924844 DOI: 10.3390/foods10020473] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are the third most abundant solid component after lactose and lipids of breast milk. All mammal milk contains soluble oligosaccharides, including neutral milk oligosaccharides (NMOs) without sialic acid (Sia) moieties and acidic oligosaccharides or sialylated milk oligosaccharides (SMOs) with Sia residues at the end of sugar chains. The structural, biological diversity, and concentration of milk oligosaccharides in mammalian milk are significantly different among species. HMOs have multiple health benefits for newborns, including development of immune system, modification of the intestinal microbiota, anti-adhesive effect against pathogens, and brain development. Most infant formulas lack oligosaccharides which resemble HMOs. Formula-fed infants perform poorly across physical and psychological wellbeing measures and suffer health disadvantages compared to breast-fed infants due to the differences in the nutritional composition of breast milk and infant formula. Of these milk oligosaccharides, SMOs are coming to the forefront of research due to the beneficial nature of Sia. This review aims to critically discuss the current state of knowledge of the biology and role of SMOs in human milk, infant formula milks, and milk from several other species on gut and brain health of human and animal offspring.
Collapse
Affiliation(s)
- Madalyn Hobbs
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
| | - Marefa Jahan
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
- School of Animal & Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Seyed A. Ghorashi
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
| | - Bing Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
- School of Animal & Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Correspondence: ; Tel.: +61-2-6933-4549
| |
Collapse
|
18
|
de Fátima Martins M, Honório-Ferreira A, S Reis M, Cortez-Vaz C, Gonçalves CA. Sialic acids expression in newborn rat lungs: implications for pulmonary developmental biology. Acta Histochem 2020; 122:151626. [PMID: 33068965 DOI: 10.1016/j.acthis.2020.151626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 08/15/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022]
Abstract
Mammalian lung development proceeds during the postnatal period and continues throughout life. Intricate tubular systems of airways and vessels lined by epithelial cells are developed during this process. All cells, and particularly epithelial cells, carry an array of glycans on their surfaces. N-acetylneuraminic (Neu5Ac) and N-glycolylneuraminic (Neu5Gc) acids, two most frequently-occurring sialic acid residues, are essential determinants during development and in the homeostasis of cells and organisms. However, systematic data about the presence of cell surface sialic acids in the postnatal lung and their content is still scarce. In the present study, we addressed the histochemical localization of Neu5Ac > Neu5Gc in 0-day-old rat lungs. Furthermore, both residues were separated, identified and quantified in lung membranes isolated from 0-day-old rat lungs using high-performance liquid chromatography (HPLC) methodologies. Finally, we compared these results with those previously reported by us for adult rat lungs. The Neu5Ac > Neu5Gc residues were located on the surface of ciliated and non-ciliated cells and the median values for both residues in the purified lung membranes of newborn rats were 5.365 and 1.935 μg/mg prot., respectively. Comparing these results with those reported for the adults, it was possible to observe a significant difference between the levels of Neu5Ac and Neu5Gc (p < 0.001). A more substantial change was found for the case of Neu5Ac. The preponderance of Neu5Ac and its expressive increase during the postnatal development points towards a more prominent role of this residue. Bearing in mind that sialic acids are negatively charged molecules, the high content of Neu5Ac could contribute to the formation of an anion "shield" and have a role in pulmonary development and physiology.
Collapse
Affiliation(s)
- Maria de Fátima Martins
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal.
| | - Ana Honório-Ferreira
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal
| | - Marco S Reis
- CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Catarina Cortez-Vaz
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal
| | - Carlos Alberto Gonçalves
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal
| |
Collapse
|
19
|
Jahan M, Thomson PC, Wynn PC, Wang B. The non-human glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chem 2020; 343:128439. [PMID: 33127222 DOI: 10.1016/j.foodchem.2020.128439] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/05/2023]
Abstract
Red meat-derived sialic acid (Sia), N-glycolylneuraminic acid (Neu5Gc), promotes the risk of carcinoma and inflammation. Expression in skeletal muscle and organs across animal species remains unknown. We measured Neu5Gc in skeletal muscle and organ tissues from nine species using UHPLC and found that: (1) neu5Gc concentration in skeletal muscle was highest in goats (166 ± 48.7 µg/g protein), followed by cattle, pig, sheep, horse, cat and deer: >75% was conjugated. No Neu5Gc was detected in kangaroo and dog muscles; (2) total Neu5Gc in organ meats was generally about 2-54% higher than in muscle. Surprisingly Neu5Gc was absent in seven organs of female deer; (3) nine commercial ovine meat cuts contained similar Neu5Gc levels. Thus, red meat Neu5Gc concentration is tissue and species-specific and absent in muscle and organ tissue of some species. Our study provides guidelines for animal meat preferences for consumers and sheds light on the functionality of Neu5Gc.
Collapse
Affiliation(s)
- Marefa Jahan
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Peter C Thomson
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Life and Environmental Sciences, University of Sydney. Camden, NSW 2750, Australia
| | - Peter C Wynn
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Bing Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
20
|
Martins MDF, Reis MS, Honório-Ferreira A, Gonçalves CA. Presence of N-acetylneuraminic acid in the lung during postnatal development. Eur J Histochem 2020; 64:3124. [PMID: 32378837 PMCID: PMC7212207 DOI: 10.4081/ejh.2020.3124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022] Open
Abstract
Sialic acids, particularly N-acetylneuraminic acid (Neu5Ac), are present as terminal components of rich and complex oligosaccharide chains, which are termed glycans, and are exhibited on the cell surfaces, especially on epithelial cells. Crucial in the 'social behavior' of the cell, sialic acids play vital roles in many physiological and pathological phenomena. The aim of the present study was to separate, identify, and quantify Neu5Ac in purified lung membranes from 4-, 14-, and 21-day-old animals, followed by the statistical analysis of these results with our previously reported data (0-day-old and adult results). Complementary, ultrastructural methodologies were used. The differences in the Neu5Ac values obtained across the examined postnatal-lung development relevant ages studied were found to be statistically significant. A substantial increase in the mean level of this compound was found during the period of 'bulk' alveolarization, which takes place from postnatal day 4 to 14 (P4-P14). The comparison of the mean levels of Neu5Ac, during microvascular maturation (mainly between P12 and P21), reveals that the difference, although statistically significant, is the least significant difference among all the pair-wise differences between the developmental stages. The presence of sub-terminal N-acetylgalactosamine (GalNAc)/Galactose (Gal) residues with terminal sialic acids on the bronchioloalveolar cell surfaces was confirmed using lung ultra-thin sections of adult and 0-day-old animals. These results showed that, although Neu5Ac levels increase throughout postnatal lung development, this sialic acid was substantially added to epithelial cell surfaces during the "bulk" alveolarization period, while its presence was less important during the microvascular maturation period. Bearing in mind that sialic acids are negatively charged and create charge repulsions between adjacent cells, we hypothesized that they can substantially contribute to postnatal alveolar formation and maturation.
Collapse
Affiliation(s)
- Maria de Fátima Martins
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra; Centro Hospitalar e Universitário de Coimbra.
| | - Marco S Reis
- Department of Chemical Engineering, University of Coimbra.
| | - Ana Honório-Ferreira
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra.
| | - Carlos Alberto Gonçalves
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra; Centro Hospitalar e Universitário de Coimbra.
| |
Collapse
|
21
|
Song KH, Kwak CH, Chung TW, Ha SH, Park JY, Ha KT, Cho SH, Lee YC, Kim CH. Intestine specific regulation of pig cytidine-5'-monophospho-N-acetylneuraminic acid hydroxylase gene for N-glycolylneuraminic acid biosynthesis. Sci Rep 2019; 9:4292. [PMID: 30862964 PMCID: PMC6414617 DOI: 10.1038/s41598-019-40522-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/14/2019] [Indexed: 11/22/2022] Open
Abstract
N-glycolylneuraminic acid (Neu5Gc), a generic form of sialic acid, is enzymatically synthesized by cytidine-5'-monophospho-N-acetylneuraminic acid hydroxylase (CMAH). Although expression of pig CMAH gene pcmah encoding CMAH has been reported to be regulated by pathogenic infection and developmental processes, little is known about the mechanisms underlying the regulation of pcmah gene expression. The objective of this study was to determine mechanism(s) involved in intestine specific regulation of pcmah gene by identifying several cis-acting elements and nuclear transcription factors that could directly interact with these cis-acting elements. We identified intestine specific promoter region (Pi) of pcmah gene located at upstream regions of the 5'flanking region of exon 1a and found that the promoter region is responsible for the transcriptional regulation of 5'pcmah-1. Based on reporter assays using serially constructed luciferase genes with each deleted promoter, we demonstrated that the Pi promoter activity was more active in intestinal IPI-2I cells than that in kidney PK15 cells, corresponding to both mRNA expression patterns in the two cell lines. In addition, we found that Sp1 transcription factor was necessary for basal activity of Pi promoter and that Ets-1 contributed to intestine-specific activity of Pi promoter. This study helps us understand transcriptional regulation of pcmah in the intestine of pig tissues. It also allows us to consider potential roles of Neu5Gc in interaction with environmental factors present in the intestinal tissue during pathogenic infection and developmental process.
Collapse
Affiliation(s)
- Kwon-Ho Song
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, 16419, Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, 16419, Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Korea
| | - Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, 16419, Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, 16419, Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Korea
| | - Seung-Hak Cho
- Korea National Institute of Health, Division of Bacterial Disease Research, 202, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, Dong-A University, Busan, 49315, Korea.
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, 16419, Korea.
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Seoul, 06351, Korea.
| |
Collapse
|
22
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Obelitz-Ryom K, Rendboe AK, Nguyen DN, Rudloff S, Brandt AB, Nielsen DS, Heckmann AB, Chichlowski M, Sangild PT, Thymann T, Bering SB. Bovine Milk Oligosaccharides with Sialyllactose for Preterm Piglets. Nutrients 2018; 10:nu10101489. [PMID: 30322051 PMCID: PMC6213258 DOI: 10.3390/nu10101489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022] Open
Abstract
Oligosaccharides support gut development and bacterial colonization in term infants, but it is unknown if they benefit preterm infants. Using preterm pigs, we investigated effects of bovine milk supplements enriched with oligosaccharides to improve gut development and colonization. Caesarean-delivered preterm pigs (n = 57) were reared for 19 days. The pigs were fed bovine milk supplemented with an oligosaccharide-enriched whey containing sialyllactose, or a heterogeneous oligosaccharide ingredient. To evaluate the influence of artificial rearing, near-term, vaginally born pigs raised by their sow (n = 12) were compared with artificially reared, caesarean-delivered near-term pigs (n = 14). In preterm pigs, the clinical outcome, gut function, gut microbiota, and systemic immunity were similar among dietary treatments. Natural rearing increased growth rates, gut functions, colon short chain fatty acid concentrations and bacterial diversity, relative to artificial rearing. In conclusion, supplements with bovine milk oligosaccharides were well tolerated, but did not improve gut maturation or clinical outcomes in artificially reared preterm piglets. Immaturity at birth, coupled with artificial rearing, may render the neonate unresponsive to the gut-protective effects of milk oligosaccharides. Whether bovine milk oligosaccharides may affect other endpoints (e.g., brain functions) in conditions of immaturity remains to be investigated.
Collapse
Affiliation(s)
- Karina Obelitz-Ryom
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| | - Amalie Katrine Rendboe
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| | - Silvia Rudloff
- Institute of Nutritional Science, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
| | - Anne Bladt Brandt
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| | | | | | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| | - Stine Brandt Bering
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
24
|
Okerblom J, Varki A. Biochemical, Cellular, Physiological, and Pathological Consequences of Human Loss of N-Glycolylneuraminic Acid. Chembiochem 2017; 18:1155-1171. [PMID: 28423240 DOI: 10.1002/cbic.201700077] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 12/15/2022]
Abstract
About 2-3 million years ago, Alu-mediated deletion of a critical exon in the CMAH gene became fixed in the hominin lineage ancestral to humans, possibly through a stepwise process of selection by pathogen targeting of the CMAH product (the sialic acid Neu5Gc), followed by reproductive isolation through female anti-Neu5Gc antibodies. Loss of CMAH has occurred independently in some other lineages, but is functionally intact in Old World primates, including our closest relatives, the chimpanzee. Although the biophysical and biochemical ramifications of losing tens of millions of Neu5Gc hydroxy groups at most cell surfaces remains poorly understood, we do know that there are multiscale effects functionally relevant to both sides of the host-pathogen interface. Hominin CMAH loss might also contribute to understanding human evolution, at the time when our ancestors were starting to use stone tools, increasing their consumption of meat, and possibly hunting. Comparisons with chimpanzees within ethical and practical limitations have revealed some consequences of human CMAH loss, but more has been learned by using a mouse model with a human-like Cmah inactivation. For example, such mice can develop antibodies against Neu5Gc that could affect inflammatory processes like cancer progression in the face of Neu5Gc metabolic incorporation from red meats, display a hyper-reactive immune system, a human-like tendency for delayed wound healing, late-onset hearing loss, insulin resistance, susceptibility to muscular dystrophy pathologies, and increased sensitivity to multiple human-adapted pathogens involving sialic acids. Further studies in such mice could provide a model for other human-specific processes and pathologies involving sialic acid biology that have yet to be explored.
Collapse
Affiliation(s)
- Jonathan Okerblom
- Biomedical Sciences Graduate Program, University of California in San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0687, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, GRTC) and, Center for Academic Research and Training in Anthropogeny, CARTA), Departments of Medicine and Cellular and Molecular Medicine, University of California in San Diego, La Jolla, CA, 92093-0687, USA
| |
Collapse
|