1
|
Wang J, Tao Q, Huang K, Wang Y, Hu L, Ren A, Wang H, Wan Y, Li J, Yi L, Ruan Y, Wanyan Z, Wu F, Zhai Z, Liu C. Chemotherapy-induced cellular senescence promotes stemness of aggressive B-cell non-Hodgkin's lymphoma via CCR7/ARHGAP18/IKBα signaling activation. J Immunother Cancer 2025; 13:e009356. [PMID: 39773566 PMCID: PMC11749403 DOI: 10.1136/jitc-2024-009356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Resistance to existing therapies is a major cause of treatment failure in patients with refractory and relapsed B-cell non-Hodgkin's lymphoma (r/r B-NHL). Therapy-induced senescence (TIS) is one of the most important mechanisms of drug resistance. METHODS This study used single-cell RNA sequencing to analyze doxorubicin-induced senescent B-NHL cells. C-C chemokine receptor 7 (CCR7) expression in patients with aggressive B-NHL was assessed using immunohistochemistry and flow cytometry. Lentiviral transfection was used to target CCR7 expression in Raji and SU-DHL-2 cells. Protein localization was visualized through immunofluorescence, while western blotting and co-immunoprecipitation were used to analyze protein expression and interactions. Cell proliferation was measured with the Cell Counting Kit-8 assay, and senescent cells were detected using senescence-associated β-galactosidase staining. The stemness of cells was evaluated through colony and sphere formation assays. Transwell assays assessed cell migration and invasion. Finally, inhibitors GS143 and Y27632 were used to examine the effect of IKBα and ARHGAP/RhoA inhibition on B-NHL-TIS. RESULTS Here we identified a distinct group of TIS, composed of memory B-cell population characterized by strong positive expression of CCR7, which was significantly elevated in TIS population compared with normal proliferating and autonomously senescent lymphoma cell populations. Additionally, CCR7 expression was significantly upregulated in patients with r/r B-NHL, and was an independent prognostic factor in B-NHL, with high CCR7 expression being strongly associated with poor prognosis. In vitro results indicated that CCL21 induced migration and invasion of B-NHL cells via CCR7, while blocking CCR7 reduced doxorubicin-induced migration and invasion of these cells. Furthermore, B-NHL-TIS regulated by CCR7 and exhibited enhanced phenotypic and functional stemness features, including the upregulation of stemness markers, increased colony-forming, invasive and migratory capabilities. Mechanistically, blocking CCR7 reversed the stemness characteristics of senescent B-NHL cells by inhibiting the activation of ARHGAP18/IKBα signaling. CONCLUSIONS Together, TIS promotes the stemness of B-NHL cells via CCR7/ARHGAP18/IKBα signaling activation and targeting CCR7/ARHGAP18 might overcome the chemoresistance of senescent B-NHL cells by inhibiting stemness acquisition and maintenance.
Collapse
Affiliation(s)
- Jiyu Wang
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianshan Tao
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Keke Huang
- Department of Internal Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yangyang Wang
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Linhui Hu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huiping Wang
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Wan
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinlan Li
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liuying Yi
- Department of Hematology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yanjie Ruan
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhixiang Wanyan
- Department of Emergency, The Third People's Hospital of Hefei, Hefei, Anhui, China
| | - Fan Wu
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Wang T, Li X, Tao Y, Wang X, Li L, Liu J. METTL3-mediated NDUFB5 m6A modification promotes cell migration and mitochondrial respiration to promote the wound healing of diabetic foot ulcer. J Transl Med 2024; 22:643. [PMID: 38982516 PMCID: PMC11234709 DOI: 10.1186/s12967-024-05463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is the most devastating complication of diabetes mellitus (DM) and plays a major role in disability and death in DM patients. NADH: ubiquinone oxidoreductase subunit B5 (NDUFB5) plays an important role in maintaining mitochondrial respiration, but whether it is involved in regulating the progression of advanced glycation end products (AGEs)-mediated DFU is still unclear. METHODS Firstly, the role of AGEs on cell viability, migration, and mitochondrial respiration in human umbilical vein endothelial cells (HUVECs) was explored in vitro. Next, NDUFB5 expression was detected in human samples and AGEs-treated HUVECs, and NDUFB5's effect on AGEs-induced HUVECs injury and skin wound in diabetic mice was further clarified. In addition, the role of m6A modification mediated by methyltransferase-like 3 (METTL3) in regulating NDUFB5 expression and AGEs-induced HUVECs injury was investigated. RESULTS NDUFB5 promoted cell viability, migration, and mitochondrial respiration in AGEs-treated HUVECs, whereas mitochondrial fusion promoter M1 facilitated cell viability, migration, and mitochondrial oxiadative respiration in NDUFB5 knockdown HUVECs. Meanwhile, NDUFB5 promotes skin wound healing in diabetic mice. Besides, METTL3-mediated m6A modification and insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) enhanced NDUFB5 expression in HUVECs. Furthermore, METTL3 promoted cell viability, migration, and mitochondrial respiration in AGEs-treated HUVECs by increasing NDUFB5. CONCLUSION METTL3-mediated NDUFB5 m6A modification inhibits AGEs-induced cell injury in HUVECs. METTL3 and NDUFB5 might serve as potential targets for DFU therapy in the future.
Collapse
Affiliation(s)
- Tao Wang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Xu Li
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Yue Tao
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Xiaojun Wang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Limeng Li
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Jianjun Liu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China.
| |
Collapse
|
3
|
Chen G, Cheng K, Niu Y, Zhu L, Wang X. (-)-Epicatechin gallate prevents inflammatory response in hypoxia-activated microglia and cerebral edema by inhibiting NF-κB signaling. Arch Biochem Biophys 2022; 729:109393. [PMID: 36084697 DOI: 10.1016/j.abb.2022.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
High-altitude cerebral edema (HACE), a potentially lethal disease, is associated with a time-dependent exposure to altitude-related hypobaric hypoxia (HH) and has reportedly been associated with microglia hyperactivation. Catechins are substances with good antioxidant properties, among which (-)-epigallocatechin gallate (EGCG) may play a neuroprotective role through the inhibition of microglia overactivation; however, the function of its analog- (-)-epicatechin gallate (ECG)-requires further elucidation. The aim of the present study was to investigate whether ECG prevented HACE by inhibiting HH-activated microglia. Primary microglia exposed to lipopolysaccharide (LPS)/ATP were co-treated with EGCG, ECG, and (-)-epigallocatechin, and ECG and EGCG exerted significant anti-inflammatory and neuroprotective effects. ECG inhibited the NF-κB pathway to prevent the activation of microglia induced by 1% O2. In addition, ECG ameliorated the increase in brain water content and aquaporin 4 expression induced by HH in mice. ECG also reduced the number of Iba1+ microglia in the brain, the release of proinflammatory factors, and the recruitment of microglia to blood vessels in HH-exposed mice. The outcomes of the present study revealed that ECG alleviated hypoxic hyperactivated microglia, reduced the neuroinflammation and blood-brain barrier permeability, and prevented HACE by inhibiting NF-κB signaling.
Collapse
Affiliation(s)
- Guijuan Chen
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Kang Cheng
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yun Niu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
4
|
Wang X, Chen G, Wan B, Dong Z, Xue Y, Luo Q, Wang D, Lu Y, Zhu L. NRF1-mediated microglial activation triggers high-altitude cerebral edema. J Mol Cell Biol 2022; 14:6608944. [PMID: 35704676 PMCID: PMC9486928 DOI: 10.1093/jmcb/mjac036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
High-altitude cerebral edema (HACE) is a potentially fatal encephalopathy associated with a time-dependent exposure to the hypobaric hypoxia of altitude. The formation of HACE is affected by both vasogenic and cytotoxic edema. The over-activated microglia potentiate the damage of blood-brain barrier (BBB) and exacerbate cytotoxic edema. In light with the activation of microglia in HACE, we aimed to investigate whether the over-activated microglia were the key turning point of acute mountain sickness to HACE. In in vivo experiments, by exposing mice to hypobaric hypoxia (7000 m above sea level) to induce HACE model, we found that microglia were activated and migrated to blood vessels. Microglia depletion by PLX5622 obviously relieved brain edema. In in vitro experiments, we found that hypoxia induced cultured microglial activation, leading to the destruction of endothelial tight junction and astrocyte swelling. Up-regulated nuclear respiratory factor 1 (NRF1) accelerated pro-inflammatory factors through transcriptional regulation on nuclear factor kappa B p65 (NF-κB p65) and mitochondrial transcription factor A (TFAM) in activated microglia under hypoxia. NRF1 also up-regulated phagocytosis by transcriptional regulation on caveolin-1 (CAV-1) and adaptor-related protein complex 2 subunit beta (AP2B1). The present study reveals a new mechanism in HACE: hypoxia over-activates microglia through up-regulation of NRF1, which both induces inflammatory response through transcriptionally activating NF-κB p65 and TFAM, and enhances phagocytic function through up-regulation of CAV-1 and AP2B1; hypoxia-activated microglia destroy the integrity of BBB and release pro-inflammatory factors that eventually induce HACE.
Collapse
Affiliation(s)
| | - Guijuan Chen
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Baolan Wan
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Zhangji Dong
- Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226019, China
| | - Yan Xue
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Qianqian Luo
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Yapeng Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Li Zhu
- Correspondence to: Li Zhu, E-mail:
| |
Collapse
|
5
|
Yu Q, Wang D, Fan S, Tang X, He J, Peng J, Qi D. Protective effects of adipose-derived biogenic nanoparticles on the pulmonary microvascular endothelial barrier in mice with ventilator-induced lung injury via the TRPV4/ROCK1 signalling pathway. Pulm Pharmacol Ther 2022; 73-74:102123. [PMID: 35306165 DOI: 10.1016/j.pupt.2022.102123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE The "obesity paradox" phenomenon occurs in critically ill patients who receive mechanical ventilation. Our previous studies found that the adipose-derived exosomes secreted by obese mice have a protective effect on the pulmonary microvascular endothelial barrier. However, the extraction of exosomes is cumbersome, their yield is low, and their storage is difficult. After further research, we discovered a new type of adipose-derived bioactive material called: lipoaspirate nanoparticles (Lipo-NPs). METHODS Lipo-NPs were extracted and identified using a tangential flow filtration system. The Lipo-NPs were used as an intervention in ventilator-induced lung injury (VILI) models in vivo and in vitro to investigate whether they have a protective effect on lung tissue damage (haematoxylin and eosin staining), lung barrier function (lung wet/dry [W/D] weight ratio, protein concentration in bronchoalveolar lavage fluid (BALF), and Vascular endothelial (VE)-expression), as well as their related mechanisms. RESULTS In both in vivo and in vitro studies, Lipo-NPs can attenuate lung injury, reduce lung W/D ratio and protein concentration in BALF, and augment the expression of the adhesion link-protein VE-cadherin, thus playing a protective role in lung barrier function. This protective effect involves the activation of the transient receptor potential vanilloid 4 (TRPV4)/Rho-associated kinase1 (ROCK1) signalling pathway. We further verified the role of this signalling pathway via activation and inhibition of TRPV4 and ROCK1. Moreover, phosphorylation of myosin light chain 2 (MLC2) regulates F-actin and is a target of the ROCK pathway. CONCLUSION Lipo-NPs can enhance the expression of VE-cadherin by inhibiting the TRPV4/ROCK1/pMLC2 signalling pathway in the mechanical ventilation model, thereby exerting a protective effect on the VILI pulmonary microvascular endothelial barrier.
Collapse
Affiliation(s)
- Qian Yu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shulei Fan
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xumao Tang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing He
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junnan Peng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Qi
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Wei L, Mo W, Lan S, Yang H, Huang Z, Liang X, Li L, Xian J, Xie X, Qin Y, Lin F, Luo Z. GLP-1 RA Improves Diabetic Retinopathy by Protecting the Blood-Retinal Barrier through GLP-1R-ROCK-p-MLC Signaling Pathway. J Diabetes Res 2022; 2022:1861940. [PMID: 36387940 PMCID: PMC9649324 DOI: 10.1155/2022/1861940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND GLP-1 receptor agonists (GLP-1RA) are common clinical agents that are clinically protective against diabetic complications, such as diabetic retinopathy (DR). Previous studies have shown that the RhoA/ROCK pathway plays an important role in the development of DR. However, the specific mechanism of action between GLP-1RA and DR remains unclear. The aim of this study was thus to investigate the main mechanism involved in the protective effect of GLP-1RA on DR. METHODS Type 2 diabetic mice were fed a high-sugar, high-fat diet. Changes in the retinal structure were observed via HE staining and transmission electron microscopy. The expression of retinal GLP-1R, blood-retinal barrier- (BRB-) related proteins, inflammatory factors, and related pathway proteins were studied via Western blot or immunohistochemistry/immunofluorescence analysis. RESULTS GLP-1RA treatment reduced the blood glucose and lipid levels as well as the body weight of the diabetic mice while also improving retinal thickness, morphology, and vascular ultrastructure. Moreover, restored GLP-1R expression, increased Occludin and ZO-1 levels, and decreased albumin expression led to reduced retinal leakage and improved the BRB by inhibiting the RhoA/ROCK pathway. CONCLUSIONS We found that the protective effect of GLP-1RA on the retina may be realized through the GLP-1R-ROCK-p-MLC signaling pathway.
Collapse
Affiliation(s)
- Liufeng Wei
- Department of Laboratory, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Weiwei Mo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
- Department of Renal Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545000 Guangxi, China
| | - Shanshan Lan
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Haiyan Yang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Zhenxing Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Xinghuan Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Li Li
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Jing Xian
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Xuemei Xie
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Faquan Lin
- Department of Laboratory, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| |
Collapse
|
7
|
Dibus M, Brábek J, Rösel D. A Screen for PKN3 Substrates Reveals an Activating Phosphorylation of ARHGAP18. Int J Mol Sci 2020; 21:ijms21207769. [PMID: 33092266 PMCID: PMC7594087 DOI: 10.3390/ijms21207769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Protein kinase N3 (PKN3) is a serine/threonine kinase implicated in tumor progression of multiple cancer types, however, its substrates and effector proteins still remain largely understudied. In the present work we aimed to identify novel PKN3 substrates in a phosphoproteomic screen using analog sensitive PKN3. Among the identified putative substrates we selected ARHGAP18, a protein from RhoGAP family, for validation of the screen and further study. We confirmed that PKN3 can phosphorylate ARHGAP18 in vitro and we also characterized the interaction of the two proteins, which is mediated via the N-terminal part of ARHGAP18. We present strong evidence that PKN3-ARHGAP18 interaction is increased upon ARHGAP18 phosphorylation and that the phosphorylation of ARHGAP18 by PKN3 enhances its GAP domain activity and contributes to negative regulation of active RhoA. Taken together, we identified new set of potential PKN3 substrates and revealed a new negative feedback regulatory mechanism of Rho signaling mediated by PKN3-induced ARHGAP18 activation.
Collapse
Affiliation(s)
- Michal Dibus
- Department of Cell Biology, Charles University, Viničná 7, 12800 Prague, Czech Republic; (M.D.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, Viničná 7, 12800 Prague, Czech Republic; (M.D.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Charles University, Viničná 7, 12800 Prague, Czech Republic; (M.D.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
- Correspondence:
| |
Collapse
|