1
|
Spörndly-Nees E, Boberg J, Ekstedt E, Holm L, Fakhrzadeh A, Dunder L, Kushnir MM, Lejonklou MH, Lind PM. Low-dose exposure to Bisphenol A during development has limited effects on male reproduction in midpubertal and aging Fischer 344 rats. Reprod Toxicol 2018; 81:196-206. [PMID: 30121228 DOI: 10.1016/j.reprotox.2018.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/26/2018] [Accepted: 08/02/2018] [Indexed: 11/27/2022]
Abstract
Low doses of Bisphenol A (BPA) during development may affect reproduction. In this study, Fischer 344 rats were exposed to 0.5 or 50 μg BPA/kg bw/day via drinking water from gestational day 3.5 to postnatal day 22. Anogenital distance, organ weight, histopathology of reproductive organs, hormone analysis and sperm morphology were evaluated in male offspring. In this study no major effects of BPA on male reproduction in midpubertal (postnatal day 35) or adult (12-month-old) rats were revealed, apart from a higher prevalence of mild inflammatory cell infiltrate in cauda epididymis in adult rats exposed to 50 μg BPA/kg bw/day. No BPA-related effects on sexual development were seen but care should be taken when evaluating histopathology in midpuberty testis due to large morphological variation. Results from the present study show no major signs of altered male reproduction in rats exposed to low doses of BPA during gestation and lactation.
Collapse
Affiliation(s)
- Ellinor Spörndly-Nees
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, 75007, Sweden.
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, Technical University of Denmark, Building 202, 2800 Kgs Lyngby, Denmark
| | - Elisabeth Ekstedt
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, 75007, Sweden
| | - Lena Holm
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, 75007, Sweden
| | - Azadeh Fakhrzadeh
- Iranian Research Institute for Information Science and Technology (IranDoc) Tehran Province, No. 1090, Enghelab, Tehran, Iran
| | - Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Akademiska sjukhuset, 751 85 Uppsala, Uppsala University, Sweden
| | - Mark M Kushnir
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA; Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Margareta H Lejonklou
- Department of Medical Sciences, Occupational and Environmental Medicine, Akademiska sjukhuset, 751 85 Uppsala, Uppsala University, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Akademiska sjukhuset, 751 85 Uppsala, Uppsala University, Sweden
| |
Collapse
|
2
|
Zuo X, Rong B, Li L, Lv R, Lan F, Tong MH. The histone methyltransferase SETD2 is required for expression of acrosin-binding protein 1 and protamines and essential for spermiogenesis in mice. J Biol Chem 2018; 293:9188-9197. [PMID: 29716999 DOI: 10.1074/jbc.ra118.002851] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/26/2018] [Indexed: 11/06/2022] Open
Abstract
Spermatogenesis is precisely controlled by complex gene expression programs and involves epigenetic reprogramming, including histone modification and DNA methylation. SET domain-containing 2 (SETD2) is the predominant histone methyltransferase catalyzing the trimethylation of histone H3 lysine 36 (H3K36me3) and plays key roles in embryonic stem cell differentiation and somatic cell development. However, its role in male germ cell development remains elusive. Here, we demonstrate an essential role of Setd2 for spermiogenesis, the final stage of spermatogenesis. Using RNA-seq, we found that, in postnatal mouse testes, Setd2 mRNA levels dramatically increase in 14-day-old mice. Using a germ cell-specific Setd2 knockout mouse model, we also found that targeted Setd2 knockout in germ cells causes aberrant spermiogenesis with acrosomal malformation before step 8 of the round-spermatid stage, resulting in complete infertility. Furthermore, we noted that the Setd2 deficiency results in complete loss of H3K36me3 and significantly decreases expression of thousands of genes, including those encoding acrosin-binding protein 1 (Acrbp1) and protamines, required for spermatogenesis. Our findings thus reveal a previously unappreciated role of the SETD2-dependent H3K36me3 modification in spermiogenesis and provide clues to the molecular mechanisms in epigenetic disorders underlying male infertility.
Collapse
Affiliation(s)
- Xiaoli Zuo
- From the State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bowen Rong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China, and
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Ruitu Lv
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China, and
| | - Fei Lan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China, and
| | - Ming-Han Tong
- From the State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China,
| |
Collapse
|
3
|
Ruthig VA, Nielsen T, Riel JM, Yamauchi Y, Ortega EA, Salvador Q, Ward MA. Testicular abnormalities in mice with Y chromosome deficiencies. Biol Reprod 2017; 96:694-706. [PMID: 28339606 DOI: 10.1095/biolreprod.116.144006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 01/10/2017] [Indexed: 11/01/2022] Open
Abstract
We recently investigated mice with Y chromosome gene contribution limited to two, one, or no Y chromosome genes in respect to their ability to produce haploid round spermatids and live offspring following round spermatid injection. Here we explored the normalcy of germ cells and Sertoli cells within seminiferous tubules, and the interstitial tissue of the testis in these mice. We performed quantitative analysis of spermatogenesis and interstitial tissue on Periodic acid-Schiff and hematoxylin-stained mouse testis sections. The seminiferous epithelium of mice with limited Y gene contribution contained various cellular abnormalities, the total number of which was higher than in the males with an intact Y chromosome. The distribution of specific abnormality types varied among tested genotypes. The males with limited Y genes also had an increased population of testicular macrophages and internal vasculature structures. The data indicate that Y chromosome gene deficiencies in mice are associated with cellular abnormalities of the seminiferous epithelium and some changes within the testicular interstitium.
Collapse
Affiliation(s)
- Victor A Ruthig
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Torbjoern Nielsen
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montréal, Que., Canada.,Department of Psychiatry, Université de Montréal, Montréal, Que., Canada H3T 1J4
| | - Jonathan M Riel
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Yasuhiro Yamauchi
- Department of Gastroenterological Surgery, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Egle A Ortega
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | | | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
4
|
Gong J, Zhang Q, Wang Q, Ma Y, Du J, Zhang Y, Zhao X. Identification and verification of potential piRNAs from domesticated yak testis. Reproduction 2017; 155:117-127. [PMID: 29101267 PMCID: PMC5763474 DOI: 10.1530/rep-17-0592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/24/2017] [Accepted: 11/03/2017] [Indexed: 01/02/2023]
Abstract
PIWI-interacting RNAs (piRNA) are small non-coding RNA molecules expressed in animal germ cells that interact with PIWI family proteins to form RNA–protein complexes involved in epigenetic and post-transcriptional gene silencing of retrotransposons and other genetic elements in germ line cells, including reproductive stem cell self-sustainment, differentiation, meiosis and spermatogenesis. In the present study, we performed high-throughput sequencing of piRNAs in testis samples from yaks in different stages of sexual maturity. Deep sequencing of the small RNAs (18–40 nt in length) yielded 4,900,538 unique reads from a total of 53,035,635 reads. We identified yak small RNAs (18–30 nt) and performed functional characterization. Yak small RNAs showed a bimodal length distribution, with two peaks at 22 nt and >28 nt. More than 80% of the 3,106,033 putative piRNAs were mapped to 4637 piRNA-producing genomic clusters using RPKM. 6388 candidate piRNAs were identified from clean reads and the annotations were compared with the yak reference genome repeat region. Integrated network analysis suggested that some differentially expressed genes were involved in spermatogenesis through ECM–receptor interaction and PI3K-Akt signaling pathways. Our data provide novel insights into the molecular expression and regulation similarities and diversities in spermatogenesis and testicular development in yaks at different stages of sexual maturity.
Collapse
Affiliation(s)
- Jishang Gong
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Quanwei Zhang
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Qi Wang
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Youji Ma
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Jiaxiang Du
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Yong Zhang
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Xingxu Zhao
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| |
Collapse
|
5
|
Fakhrzadeh A, Spörndly-Nees E, Ekstedt E, Holm L, Luengo Hendriks CL. New computerized staging method to analyze mink testicular tissue in environmental research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:156-164. [PMID: 27271123 DOI: 10.1002/etc.3517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/07/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
Histopathology of testicular tissue is considered to be the most sensitive tool to detect adverse effects on male reproduction. When assessing tissue damage, seminiferous epithelium needs to be classified into different stages to detect certain cell damages; but stage identification is a demanding task. The authors present a method to identify the 12 stages in mink testicular tissue. The staging system uses Gata-4 immunohistochemistry to visualize acrosome development and proved to be both intraobserver-reproducible and interobserver-reproducible with a substantial agreement of 83.6% (kappa = 0.81) and 70.5% (kappa = 0.67), respectively. To further advance and objectify this method, they present a computerized staging system that identifies these 12 stages. This program has an agreement of 52.8% (kappa 0.47) with the consensus staging by 2 investigators. The authors propose a pooling of the stages into 5 groups based on morphology, stage transition, and toxicologically important endpoints. The computerized program then reached a substantial agreement of 76.7% (kappa = 0.69). The computerized staging tool uses local ternary patterns to describe the texture of the tubules and a support vector machine classifier to learn which textures correspond to which stages. The results have the potential to modernize the tedious staging process required in toxicological evaluation of testicular tissue, especially if combined with whole-slide imaging and automated tubular segmentation. Environ Toxicol Chem 2017;36:156-164. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
| | - Ellinor Spörndly-Nees
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Elisabeth Ekstedt
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lena Holm
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
6
|
Duan P, Hu C, Butler HJ, Quan C, Chen W, Huang W, Tang S, Zhou W, Yuan M, Shi Y, Martin FL, Yang K. Effects of 4-nonylphenol on spermatogenesis and induction of testicular apoptosis through oxidative stress-related pathways. Reprod Toxicol 2016; 62:27-38. [DOI: 10.1016/j.reprotox.2016.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
|
7
|
França LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 2016; 4:189-212. [PMID: 26846984 DOI: 10.1111/andr.12165] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
It has been one and a half centuries since Enrico Sertoli published the seminal discovery of the testicular 'nurse cell', not only a key cell in the testis, but indeed one of the most amazing cells in the vertebrate body. In this review, we begin by examining the three phases of morphological research that have occurred in the study of Sertoli cells, because microscopic anatomy was essentially the only scientific discipline available for about the first 75 years after the discovery. Biochemistry and molecular biology then changed all of biological sciences, including our understanding of the functions of Sertoli cells. Immunology and stem cell biology were not even topics of science in 1865, but they have now become major issues in our appreciation of Sertoli cell's role in spermatogenesis. We end with the universal importance and plasticity of function by comparing Sertoli cells in fish, amphibians, and mammals. In these various classes of vertebrates, Sertoli cells have quite different modes of proliferation and epithelial maintenance, cystic vs. tubular formation, yet accomplish essentially the same function but in strikingly different ways.
Collapse
Affiliation(s)
- L R França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - R A Hess
- Reproductive Biology and Toxicology, Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - J M Dufour
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - M C Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M D Griswold
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
8
|
Spörndly-Nees E, Ekstedt E, Magnusson U, Fakhrzadeh A, Luengo Hendriks CL, Holm L. Effect of pre-fixation delay and freezing on mink testicular endpoints for environmental research. PLoS One 2015; 10:e0125139. [PMID: 25933113 PMCID: PMC4416813 DOI: 10.1371/journal.pone.0125139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/16/2015] [Indexed: 12/01/2022] Open
Abstract
There is growing interest in using wild animals to monitor the real-life cocktail effect of environmental chemicals on male reproduction. However, practical difficulties, such as long distances to the laboratory, generally prolong the time between euthanisation and specimen handling. For instance, tissue fixation is often performed on frozen material or on material where deterioration has started, which may affect tissue morphology. This study examined the effect of pre-fixation delay and freezing on mink testicular endpoints in order to determine robust endpoints in suboptimally handled specimens. Sexually mature farmed mink (n=30) selected at culling were divided into six groups and subjected to different time intervals between euthanisation and fixation or freezing: 0 hours (fixed immediately post mortem), 6 hours, 18 hours, 30 hours, 42 hours, or frozen 6 hours post mortem and thawed overnight. Unaffected endpoints when pre-fixation storage was extended to 30 hours included: area and diameter of the seminiferous tubules, length and weight of the testes, and acrosomes marked with Gata-4. Epithelial height, Sertoli cells marked with Gata-4 and cell morphology were affected endpoints after 6 hours of storage. Freezing the tissue prior to fixation severely altered cell morphology and reduced testicular weight, tubular diameter and area. Morphological changes seen after 6 hours included shredded germ cells and excess cytoplasm in seminiferous tubular lumen, chromatin rearrangements and increased germ cell death. Extended delay before fixation and freezing affected many endpoints in the mink testicular tissue. Some of these endpoints may mimic chemically induced effects, which is important to consider when evaluating specimens from wild animals for environmental toxicity.
Collapse
Affiliation(s)
- Ellinor Spörndly-Nees
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Science, Uppsala, Sweden
- * E-mail:
| | - Elisabeth Ekstedt
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Ulf Magnusson
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Azadeh Fakhrzadeh
- Department of Information Technology, Division of Visual Information and Interaction, Centre for Image Analysis, Uppsala University, Uppsala, Sweden
| | - Cris L. Luengo Hendriks
- Department of Information Technology, Division of Visual Information and Interaction, Centre for Image Analysis, Uppsala University, Uppsala, Sweden
| | - Lena Holm
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Science, Uppsala, Sweden
| |
Collapse
|
9
|
Whirledge SD, Garcia JM, Smith RG, Lamb DJ. Ghrelin partially protects against cisplatin-induced male murine gonadal toxicity in a GHSR-1a-dependent manner. Biol Reprod 2015; 92:76. [PMID: 25631345 DOI: 10.1095/biolreprod.114.123570] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The chemotherapeutic drug cisplatin causes a number of dose-dependent side effects, including cachexia and testicular damage. Patients receiving a high cumulative dose of cisplatin may develop permanent azoospermia and subsequent infertility. Thus, the development of chemotherapeutic regimens with the optimal postsurvival quality of life (fertility) is of high importance. This study tested the hypothesis that ghrelin administration can prevent or minimize cisplatin-induced testicular damage and cachexia. Ghrelin and its receptor, the growth hormone secretagogue receptor (GHSR-1a), are expressed and function in the testis. Targeted deletion of ghrelin, or its receptor, significantly increases the rate of cell death in the testis, suggesting a protective role. Intraperitoneal administration of vehicle, ghrelin, or cisplatin alone or in combination with ghrelin, in cycles of 9 or 18 days, to adult male C57Bl/6 mice was performed. Body weight was measured daily and testicular and epididymal weight, sperm density and motility, testicular histology, and testicular cell death were analyzed at the time of euthanization. Ghrelin coadministration decreased the severity of cisplatin-induced cachexia and gonadal toxicity. Body, testicular, and epididymal weights significantly increased as testicular cell death decreased with ghrelin coadministration. The widespread damage to the seminiferous epithelium induced by cisplatin administration was less severe in mice simultaneously treated with ghrelin. Furthermore, ghrelin diminished the deleterious effects of cisplatin on testis and body weight homeostasis in wild-type but not Ghsr(-/-) mice, showing that ghrelin's actions are mediated via GHSR. Ghrelin or more stable GHSR agonists potentially offer a novel therapeutic approach to minimize the testicular damage that occurs after gonadotoxin exposure.
Collapse
Affiliation(s)
- Shannon D Whirledge
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jose M Garcia
- Division of Endocrinology, Diabetes, and Metabolism, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, Texas
| | - Roy G Smith
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida
| | - Dolores J Lamb
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas Scott Department of Urology, Baylor College of Medicine, Houston, Texas Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
10
|
Zhao Y, Bian G, Yu C, Liu F, Liu L, Guo H, Guo J, Ju G, Wang J. Cross-reactivity of anti-programmed death ligand 2 polyclonal antibody in mouse tissues. SCIENCE CHINA-LIFE SCIENCES 2012; 55:940-7. [PMID: 23090063 DOI: 10.1007/s11427-012-4379-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/19/2012] [Indexed: 02/04/2023]
Abstract
The inhibitory co-receptor programmed death 1 (PD-1, encoded by pdcd1) and its two ligands PD-L1 and PD-L2 comprise an important immune inhibitory signaling pathway for defense against microbes and for self-tolerance. Unlike other members of the B7-CD28 family, expression of PD-L1 and PD-L2 is not limited to the immune system. In this study, we determined that a polyclonal antibody (pAb) (R&D Systems) against extracellular domains of mouse PD-L2 (mPD-L2) could recognize antigen(s) in diverse mouse tissues, including the anterior and intermediate pituitary gland, olfactory bulbs and olfactory epithelium, tongue epithelium, keratinized epithelial cells and skin and whisker hair follicles. These findings differed from previous reports of mPD-L2 localization. Reverse transcription PCR and Western blot analyses, however, were unable to detect any mPD-L2 transcripts or proteins of the 25-kD predicted molecular weight in RNA and protein extracts, respectively, from the above tissues, suggesting that the anti-mPD-L2 pAb cross-reacts with certain novel antigen(s). Developmental studies revealed that the earliest expression of mPD-L2-like antigen was in the olfactory epithelium at embryonic day 12.5 (E12.5). At E14.5, mPD-L2-like antigen was present in the skin, tongue and follicles of the skin and whiskers. The distribution patterns of mPD-L2-like antigen remained similar from E18.5 to adulthood. The results of bioinformatic analysis and other experiments suggested neural cell adhesion molecule and hemicentin-1 as candidate proteins with cross-reactivity to the anti-mPD-L2 pAb. These results demonstrate that care is required in interpreting staining patterns generated when anti-PD-L2 pAb is used to locate PD-L2-expressing cells in the central nervous system and epithelial tissues, such as the olfactory epithelium. In addition, this anti-PD-L2 pAb may be used as an alternative antibody for labeling the olfactory epithelium during embryonic development in mice.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Testicular degeneration during spermatogenesis in the blue shark, Prionace glauca: Nonconformity with expression as seen in the diametric testes of other carcharhinids. J Morphol 2011; 272:938-48. [DOI: 10.1002/jmor.10958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/09/2011] [Accepted: 02/12/2011] [Indexed: 12/11/2022]
|
12
|
Kyrönlahti A, Euler R, Bielinska M, Schoeller EL, Moley KH, Toppari J, Heikinheimo M, Wilson DB. GATA4 regulates Sertoli cell function and fertility in adult male mice. Mol Cell Endocrinol 2011; 333:85-95. [PMID: 21172404 PMCID: PMC3026658 DOI: 10.1016/j.mce.2010.12.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/10/2010] [Accepted: 12/13/2010] [Indexed: 11/19/2022]
Abstract
Transcription factor GATA4 is expressed in Sertoli and Leydig cells and is required for proper development of the murine fetal testis. The role of GATA4 in adult testicular function, however, has remained unclear due to prenatal lethality of mice harboring homozygous mutations in Gata4. To characterize the function of GATA4 in the adult testis, we generated mice in which Gata4 was conditionally deleted in Sertoli cells using Cre-LoxP recombination with Amhr2-Cre. Conditional knockout (cKO) mice developed age-dependent testicular atrophy and loss of fertility, which coincided with decreases in the quantity and motility of sperm. Histological analysis demonstrated Sertoli cell vacuolation, impaired spermatogenesis, and increased permeability of the blood-testis barrier. RT-PCR analysis of cKO testes showed decreased expression of germ cell markers and increased expression of testicular injury markers. Our findings support the premise that GATA4 is a key transcriptional regulator of Sertoli cell function in adult mice.
Collapse
Affiliation(s)
- Antti Kyrönlahti
- Department of Pediatrics, Washington University, St. Louis, MO 63110
- Children s Hospital, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Rosemarie Euler
- Department of Pediatrics, Washington University, St. Louis, MO 63110
- Hochschule Mannheim - University of Applied Sciences, 68163 Mannheim, Germany
| | | | - Erica L. Schoeller
- Department of Obstetrics & Gynecology, Washington University, St. Louis, MO 63110
| | - Kelle H. Moley
- Department of Obstetrics & Gynecology, Washington University, St. Louis, MO 63110
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110
| | - Jorma Toppari
- Departments of Physiology and Pediatrics, University of Turku, Turku, Finland
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University, St. Louis, MO 63110
- Children s Hospital, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - David B. Wilson
- Department of Pediatrics, Washington University, St. Louis, MO 63110
- Department of Developmental Biology, Washington University, St. Louis, MO 63110
| |
Collapse
|
13
|
Current Opinion in Urology. Current world literature. Curr Opin Urol 2010; 20:533-8. [PMID: 20940575 DOI: 10.1097/mou.0b013e32834028bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|