1
|
Wang C, Cao M, Zhao J, Hu A, Liu X, Chen Z, Zhang C, Li H. Epidermal and dermal cells from adult rat eccrine sweat gland-containing skin can reconstruct the three-dimensional structure of eccrine sweat glands. Acta Histochem 2024; 126:152120. [PMID: 38041896 DOI: 10.1016/j.acthis.2023.152120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Previously, we have demonstrated that eccrine sweat gland cells (ESGCs) can reconstruct the three-dimensional (3D) structure of eccrine sweat glands (ESGs). However, there is still a need to explore source cells capable of regenerating ESG to address the issue of ESG regeneration in ESGC-deficient conditions, such as severe burns. METHODS The epidermal cells and dermal cells in adult rat ventral foot skin (ESG-bearing) were isolated. The isolated single epidermal cells and dermal cells were mixed with Matrigel, and then the mixture was implanted into the axillary/inguinal fat pads of nude mice. Five weeks after implantation, the Matrigel plugs were harvested and the morphology and differentiation of the cells were examined by H&E staining and fluorescent immunohistochemical staining for ESG markers, such as Na+ -K+ -2Cl- cotransporter 1 (NKCC1), Na+ -K+ -ATPase (NKA), Foxa1 and K14. RESULTS The epidermal cells and dermal cells of adult rat ventral foot skin can reconstruct 3D structure and express specific markers of ESGs in skin, such as NKCC1, NKA and Foxa1, indicating the ESG-phenotypic differentiation of the 3D structures. Double immunofluorescence staining showed that some 3D structures expressed both the myoepithelial cell marker alpha-SMA and the common marker K14 of duct cells and myoepithelial cells, while some 3D structures expressed only K14, indicating that ESG-like 3D structures differentiated into duct-like and secretory coiled cells. CONCLUSION Epidermal and dermal cells from adult ESG-bearing skin can be used as a cell source for ESG regeneration.
Collapse
Affiliation(s)
- Cangyu Wang
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Manxiu Cao
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Junhong Zhao
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Anqi Hu
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiang Liu
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Zihua Chen
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and Fourth Medical Center of PLA General Hospital, Beijing, China.
| | - Haihong Li
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China; Department of Burns and Plastic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China.
| |
Collapse
|
2
|
Chen Z, Zhao J, Wang C, Liu X, Chen Z, Zhou J, Zhang L, Zhang C, Li H. Epithelial polarity-driven membrane separation but not cavitation regulates lumen formation of rat eccrine sweat glands. Acta Histochem 2023; 125:152093. [PMID: 37757514 DOI: 10.1016/j.acthis.2023.152093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Each eccrine sweat gland (ESG) is a single-tubular structure with a central lumen, and the formation of hollow lumen in the initial solid cell mass is a key developmental process. To date, there are no reports on the mechanism of native ESG lumen formation. METHODS To investigate the lumen morphogenesis and the lumen formation mechanisms of Sprague-Dawley (SD) rat ESGs, SD rat hind-footpads at E20.5, P1-P5, P7, P9, P12, P21, P28 and P56 were obtained. The lumen morphogenesis of ESGs was examined by HE staining and immunofluorescence staining for polarity markers. The possible mechanisms of lumen formation were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay and autophagy marker LC3B immunofluorescence staining, and further explored by ouabain intervention experiment. RESULTS In SD rat ESGs, the microlumen was formed at P1, and the small intact lumen with apical-basal polarity appeared at P3. The expression of apical marker F-actin, basal marker Laminin, basolateral marker E-cadherin was consistent with the timing of lumen formation of SD rat ESGs. During rat ESG development, apoptosis and autophagy were not detected. However, inhibition of Na+-K+-ATPase (NKA) with ouabain resulted in decreased lumen size, although neither the timing of lumen formation nor the expression of polarity proteins was altered. CONCLUSIONS Epithelial polarity-driven membrane separation but not cavitation regulates lumen formation of SD rat ESGs. NKA-regulated fluid accumulation drives lumen expansion.
Collapse
Affiliation(s)
- Zixiu Chen
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Jinzhou Medical University Graduate Training Base, Shiyan, Hubei Province, China
| | - Junhong Zhao
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Jinzhou Medical University Graduate Training Base, Shiyan, Hubei Province, China
| | - Cangyu Wang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Jinzhou Medical University Graduate Training Base, Shiyan, Hubei Province, China
| | - Xiang Liu
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Jinzhou Medical University Graduate Training Base, Shiyan, Hubei Province, China
| | - Zihua Chen
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Jinzhou Medical University Graduate Training Base, Shiyan, Hubei Province, China
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Hospital of Central South University, Changsha, Hunan, China
| | - Lei Zhang
- Mental Health Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China.
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and Fourth Medical Center of PLA General Hospital, Beijing, China.
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Jinzhou Medical University Graduate Training Base, Shiyan, Hubei Province, China; Department of Burns and Plastic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China.
| |
Collapse
|
3
|
Cao M, Zhang L, Cheng J, Wang C, Zhao J, Liu X, Yan Y, Tang Y, Chen Z, Li H. Differential antigen expression between human apocrine sweat glands and eccrine sweat glands. Eur J Histochem 2022; 67:3559. [PMID: 36546419 PMCID: PMC9827426 DOI: 10.4081/ejh.2023.3559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Bromhidrosis has a great negative impact on personal occupation and social psychology. It is not yet clear whether bromhidrosis is caused by apocrine sweat glands or the co-action of apocrine sweat glands and eccrine sweat glands. To distinguish between apocrine sweat glands and eccrine sweat glands, specific antigen markers for apocrine sweat glands and eccrine sweat glands must be found first. In the study, we detected the expression of K7, K18, K19, Na+-K+-2Cl- cotransporter 1 (NKCC1), carbonic anhydrase II (CAII), Forkhead transcription factor a1 (Foxa1), homeobox transcription factor engrailed homeobox1 (En1), gross cystic disease fluid protein-15 (GCDFP-15), mucin-1 (MUC-1), cluster of differentiation 15 (CD15) and apolipoprotein (APOD) in eccrine sweat glands and apocrine sweat glands by immunofluorescence staining. The results showed that K7, K18, K19, Foxa1, GCDFP-15 and MUC-1 were expressed in both apocrine and eccrine sweat glands, CD15 and APOD were only expressed in apocrine sweat glands, and CAII, NKCC1 and En1 were only expressed in eccrine sweat glands. We conclude that CD15 and APOD can serve as specific markers for apocrine sweat glands, while CAII, NKCC1 and En1 can serve as specific markers for eccrine sweat glands to differentiate the two sweat glands.
Collapse
Affiliation(s)
- Manxiu Cao
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei,*These authors contributed equally to this work
| | - Lei Zhang
- Department of Mental Health, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, Guangdong,*These authors contributed equally to this work
| | - Jiaqi Cheng
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei,*These authors contributed equally to this work
| | - Cangyu Wang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei
| | - Junhong Zhao
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei
| | - Xiang Liu
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei
| | - Yongjing Yan
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei
| | - Yue Tang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei
| | - Zixiu Chen
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei,Department of Wound Repair; Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, Guangdong, China,Correspondence: Prof. Haihong Li, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China.
| |
Collapse
|
4
|
Sosa F, Carmickle AT, Oliveira LJ, Sagheer M, Saleem M, Yu FH, Altman MD, Dikmen S, Denicol AC, Sonstegard TS, Larson CC, Hansen PJ. Effects of the bovine SLICK1 mutation in PRLR on sweat gland area, FOXA1 abundance, and global gene expression in skin. J Dairy Sci 2022; 105:9206-9215. [PMID: 36085108 DOI: 10.3168/jds.2022-22272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022]
Abstract
The SLICK1 mutation in the prolactin receptor (PRLR) results in a short-hair coat and increased ability to regulate body temperature during heat stress. It is unclear whether the mutation affects capacity for sweating. The objective of this observational study was to evaluate whether the SLICK1 mutation in PRLR alters characteristics of skin related to sweat gland abundance or function. Skin biopsies from 31 Holstein heifers, including 14 wild-type (SL-/-) and 17 heterozygous slick (SL+/-), were subjected to histological analysis to determine the percent of the surface area of skin sections that are occupied by sweat glands. We detected no effect of genotype on this variable. Immunohistochemical analysis of the forkhead transcription factor A1 (FOXA1), a protein essential for sweating in mice, from 6 SL-/- and 6 SL+/- heifers indicated twice as much FOXA1 in sweat glandular epithelia of SL+/- heifers as in SL-/- heifers. Results from RNA sequencing of skin biopsies from 5 SL-/- and 7 SL+/- heifers revealed few genes that were differentially expressed and none that have been associated with sweat gland development or function. In conclusion, results do not support the idea that the SLICK1 mutation changes the abundance of sweat glands in skin, but do show that functional properties of sweat glands, as indicated by increased abundance of immunoreactive FOXA1, are modified by inheritance of the mutation in PRLR.
Collapse
Affiliation(s)
- F Sosa
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - A T Carmickle
- Department of Animal Science, University of California-Davis, Davis 95616
| | - L J Oliveira
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens 30602
| | - M Sagheer
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - M Saleem
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910; Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - F H Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville 32610
| | - M D Altman
- Department of Animal Science, University of California-Davis, Davis 95616
| | - S Dikmen
- Faculty of Veterinary Medicine, Department of Animal Science, University of Uludag, Bursa, 16059, Turkey
| | - A C Denicol
- Department of Animal Science, University of California-Davis, Davis 95616
| | | | - C C Larson
- Okeechobee County Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Okeechobee 34972
| | - P J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910.
| |
Collapse
|
5
|
Wang Y, Yao B, Duan X, Li J, Song W, Enhejirigala, Li Z, Yuan X, Kong Y, Zhang Y, Fu X, Huang S. Notch1 down-regulation in lineage-restricted niches is involved in the development of mouse eccrine sweat glands. J Mol Histol 2022; 53:857-867. [PMID: 36006534 DOI: 10.1007/s10735-022-10098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Eccrine sweat gland (SG) restrictedly exists in mouse foot pads indicating that mouse plantar dermis (PD) contains the SG lineage-restricted niches. However, it is still unclear how these niches can affect stem cell fate towards SG. In this study, we tried to find the key cues by which stem cells sense and interact with the SG lineage-specific niches both in vivo and in vitro. Firstly, we used transcriptomics RNA sequencing analysis to screen differentially expressed genes between SG cells and epidermal stem cells (ES), and used proteomic analysis to screen differentially expressed proteins between PD and dorsal dermis (DD). Notch1 was found differentially expressed in both gene and protein levels, and was closely related to SG morphogenesis based on Gene Ontology (GO) enrichment analysis. Secondly, the spatial-temporal changes of Notch1 during embryonic and post-natal development of SG were detected. Thirdly, mouse mesenchymal stem cells (MSCs) were introduced into SG-like cells in vitro in order to further verify the possible roles of Notch1. Results revealed that Notch1 was continuously down-regulated along with the process of SG morphogenesis in vivo, and also along with the process that MSCs differentiated into SG-like cells in vitro. Hence, we suggest that Notch1 possibly acts as with roles of "gatekeeper" during SG development and regulates the interactions between stem cells and the SG lineage-specific niches. This study might help for understanding mechanisms of embryonic SG organogenesis.
Collapse
Affiliation(s)
- Yuzhen Wang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command, 589 Yunzhong Road, Pingcheng District, 037006, Datong, Shanxi, P. R. China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, P. R. China
| | - Xianlan Duan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,School of Medicine, Nankai University, 94 Wei Jing Road, 300071, Tianjin, P.R. China
| | - Jianjun Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, 28 Fu Xing Road, 100853, Beijing, P.R. China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China
| | - Enhejirigala
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Institute of Basic Medical Research, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P.R. China.,College of Graduate, Tianjin Medical University, 22 Qi Xiang Tai Road, 300050, Tianjin, P.R. China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,School of Medicine, Nankai University, 94 Wei Jing Road, 300071, Tianjin, P.R. China
| | - Yi Kong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Department of Clinical Laboratory, the First Medical Center, Chinese PLA General Hospital, 28 Fu Xing Road, 100853, Beijing, P.R. China
| | - Yijie Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.
| |
Collapse
|
6
|
Chen Z, Zhao J, Yan Y, Zhang L, Du L, Liu X, Cao M, Wang C, Tang Y, Li H. Differential distribution and genetic determination of eccrine sweat glands and hair follicles in the volar skin of C57BL/6 mice and SD rats. BMC Vet Res 2022; 18:316. [PMID: 35974330 PMCID: PMC9380334 DOI: 10.1186/s12917-022-03416-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eccrine sweat glands (ESGs) and hair follicles (HFs) are the prominent skin appendages regulating human body temperature. C57BL/6 mice and Sprague-Dawley (SD) rats are the most commonly used model animals for studying ESGs and HFs. Previous studies have shown the distribution of ESGs and HFs in volar hindfeet of C57BL/6 mice, but there are few or no reports on the distribution of ESGs and HFs in volar forefeet of C57BL/6 mice and volar feet of SD rats. Here, we investigated the differential distribution and genetic determination of ESGs and HFs in the volar skin of C57BL/6 mice and SD rats through gross observation, iodine-starch sweat test, double staining with Nile Blue A and Oil Red O, hematoxylin and eosin (HE) staining, double immunofluorescence staining of LIM Homeobox 2 (LHX2)/Na+-K+-ATPase α1(NKA) or LHX2/Na+-K+-2Cl- cotransporter 1 (NKCC1), and qRT-PCR detection of ESG-related gene Engrailed 1 (En1) and HF-related gene LHX2. RESULTS The results showed ESGs but no HFs in the footpads of C57BL/6 mice and SD rats, both ESGs and HFs in the inter-footpads (IFPs) of C57BL/6 mice, and neither ESGs nor HFs in the IFPs of SD rats. The relative quantitative change in En1 was consistent with the differential distribution of ESGs, and the relative quantitative change of LHX2 was consistent with the differential distribution of HFs. CONCLUSION C57BL/6 mice and SD rats had their own characteristics in the distribution of ESGs and HFs in the volar skin, and researchers should choose mice or rats, and even forefeet or hindfeet as their research object according to different purposes. The study provides a basis for selection of optimal animal models to study development, wound healing and regeneration of skin appendages.
Collapse
Affiliation(s)
- Zixiu Chen
- Jinzhou Medical University Graduate Training Base, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Junhong Zhao
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China.,Hubei Clinical Medical Research Center of Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yongjing Yan
- Jinzhou Medical University Graduate Training Base, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Lei Zhang
- Mental Health Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China.,Hubei Clinical Medical Research Center of Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiang Liu
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Manxiu Cao
- Jinzhou Medical University Graduate Training Base, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Cangyu Wang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yue Tang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Haihong Li
- Jinzhou Medical University Graduate Training Base, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China. .,Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China. .,Hubei Clinical Medical Research Center of Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China. .,Department of Wound Repair; Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| |
Collapse
|
7
|
Zhao J, Zhang L, Du L, Chen Z, Tang Y, Chen L, Liu X, You L, Zhang Y, Fu X, Li H. Foxa1 mediates eccrine sweat gland development through transcriptional regulation of Na-K-ATPase expression. Braz J Med Biol Res 2022; 55:e12149. [PMID: 35976271 PMCID: PMC9377534 DOI: 10.1590/1414-431x2022e12149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Eccrine sweat glands (ESGs) perform critical functions in temperature regulation in humans. Foxa1 plays an important role in ESG maturation and sweat secretion. Its molecular mechanism, however, remains unknown. This study investigated the expression of Foxa1 and Na-K-ATPase (NKA) in rat footpads at different development stages using immunofluorescence staining, qRT-PCR, and immunoblotting. Also, bioinformatics analysis and Foxa1 overexpression and silencing were employed to evaluate Foxa1 regulation of NKA. The results demonstrated that Foxa1 was consistently expressed during the late stages of ESGs and had a significant role in secretory coil maturation during sweat secretion. Furthermore, the mRNA abundance and protein expression of NKA had similar accumulation trends to those of Foxa1, confirming their underlying connections. Bioinformatics analysis revealed that Foxa1 may interact with these two proteins via binding to conserved motifs in their promoter regions. Foxa1 gain-of-function and loss-of-function experiments in Foxa1-modified cells demonstrated that the activities of NKA were dependent on the presence of Foxa1. Collectively, these data provided evidence that Foxa1 may influence ESG development through transcriptional regulation of NKA expression.
Collapse
Affiliation(s)
- Junhong Zhao
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei Zhang
- Mental Health Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zixiu Chen
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yue Tang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lijun Chen
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiang Liu
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei You
- School of Basic Medicine, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yonghong Zhang
- School of Basic Medicine, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
8
|
Lin Y, Chen L, Zhang M, Xie S, Du L, Zhang X, Li H. Eccrine Sweat Gland and Its Regeneration: Current Status and Future Directions. Front Cell Dev Biol 2021; 9:667765. [PMID: 34395417 PMCID: PMC8355620 DOI: 10.3389/fcell.2021.667765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/09/2021] [Indexed: 02/05/2023] Open
Abstract
Eccrine sweat glands (ESGs) play an important role in temperature regulation by secreting sweat. Insufficiency or dysfunction of ESGs in a hot environment or during exercise can lead to hyperthermia, heat exhaustion, heatstroke, and even death, but the ability of ESGs to repair and regenerate themselves is very weak and limited. Repairing the damaged ESGs and regenerating the lost or dysfunctional ESGs poses a challenge for dermatologists and bum surgeons. To promote and accelerate research on the repair and regeneration of ESGs, we summarized the development, structure and function of ESGs, and current strategies to repair and regenerate ESGs based on stem cells, scaffolds, and possible signaling pathways involved.
Collapse
Affiliation(s)
- Yao Lin
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liyun Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Mingjun Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sitian Xie
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiang Zhang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Haihong Li
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Haihong Li,
| |
Collapse
|
9
|
Zhang L, Zhang X, Du L, Zhang C, Li H. Cholinergic- rather than adrenergic-induced sweating play a role in developing and developed rat eccrine sweat glands. Exp Anim 2020; 70:218-224. [PMID: 33298631 PMCID: PMC8150243 DOI: 10.1538/expanim.20-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Both cholinergic and adrenergic stimulation can induce sweat secretion in human eccrine sweat glands, but whether cholinergic and adrenergic stimulation play same roles in rat eccrine sweat glands is still controversial. To explore the innervations, and adrenergic- and cholinergic-induced secretory response in developing and developed rat eccrine sweat glands, rat hind footpads from embryonic day (E) 15.5-20.5, postanal day (P) 1-14, P21 and adult were fixed, embedded, sectioned and subjected to immunofluorescence staining for general fiber marker protein gene product 9.5 (PGP 9.5), adrenergic fiber marker tyrosine hydroxylase (TH) and cholinergic fiber marker vasoactive intestinal peptide (VIP), and cholinergic- and adrenergic-induced sweat secretion was detected at P1-P21 and adult rats by starch-iodine test. The results showed that eccrine sweat gland placodes of SD rats were first appeared at E19.5, and the expression of PGP 9.5 was detected surrounding the sweat gland placodes at E19.5, TH at P7, and VIP at P11. Pilocarpine-induced sweat secretion was first detected at P16 in hind footpads by starch-iodine test. There was no measurable sweating when stimulated by alpha- or beta-adrenergic agonists at all the examined time points. We conclude that rat eccrine sweat glands, just as human eccrine sweat glands, co-express adrenergic and cholinergic fibers, but different from human eccrine sweat glands, cholinergic- rather than adrenergic-induced sweating plays a role in the developing and developed rat eccrine sweat glands.
Collapse
Affiliation(s)
- Lei Zhang
- Mental Health Center, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei Province, P.R. China
| | - Xiang Zhang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei Province, P.R. China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei Province, P.R. China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and Fourth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei Province, P.R. China
| |
Collapse
|
10
|
Yuan L, Li Q, Bai D, Shang X, Hu F, Chen Z, An T, Chen Y, Zhang X. La 2O 3 Nanoparticles Induce Reproductive Toxicity Mediated by the Nrf-2/ARE Signaling Pathway in Kunming Mice. Int J Nanomedicine 2020; 15:3415-3431. [PMID: 32523341 PMCID: PMC7236057 DOI: 10.2147/ijn.s230949] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Lanthanum oxide (La2O3) nanoparticles (NPs) have been widely used in catalytic and photoelectric applications, but the reproductive toxicity is still unclear. This study evaluated the reproductive toxicity of two different-sized La2O3 particles in the testes. Materials and Methods Fifty Kunming mice were randomly divided into five groups. Mice were treated with La2O3 NPs by repeated intragastric administration for 90 days (control, nano-sized with 5, 10, 50 mg/kg BW and micro-sized with 50 mg/kg BW). Mice in the control group were treated with de-ionised water without La2O3 NPs. Sperm parameters, testicular histopathology, TEM assessment, hormone assay and nuclear factor erythroid 2-related factor 2 (Nrf-2) pathway were performed and evaluated. Results The body weight of mice treated with La2O3 NPs or not had no difference; sperm parameters and histological assessment showed that La2O3 NPs could induce reproductive toxicity in the testicle. Serum testosterone and gonadotropin-releasing hormone (GnRH) in the NH (nano-sized with 50 mg/kg BW) group were markedly decreased relative to control group, and an increase of luteinizing hormone (LH) in NH group was detected . Additionally, transmission electron microscopy revealed that the ultrastructural abnormalities induced by La2O3 NPs were more severe than La2O3 MPs in the testes. Furthermore, La2O3 NPs treatment inhibited the translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2) from the cytoplasm into the nucleus as well as the expression of downstream genes NAD(P)H quinone oxidoreductase1 (NQO1), hemeoxygenase 1 (HO-1) and (glutathione peroxidase) GSH-Px, thus abrogating Nrf-2-mediated defense mechanisms against oxidative stress. Conclusions The results of this study demonstrated that La2O3 NPs improved the spermatogenesis defects in mice. La2O3 NPs inhibited Nrf-2/ARE signaling pathway that resulted in apoptosis in the mice testes.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenfei Chen
- Environmental Monitoring Center Tang Shan, Tangshan 063210, Hebei, People's Republic of China
| | | | - Yajing Chen
- College of Pharmacy of North China University of Science and Technology, Tangshan 063210, Hebei, People's Republic of China
| | | |
Collapse
|
11
|
Sun Y, Yang Q, Bai W, Wang W, Li Y, Luo X, Wang S, Jia J, Wang K, Qin L. Changes in skin temperature of ovariectomized rats under different incubation temperatures. Geriatr Gerontol Int 2020; 20:621-628. [PMID: 32237028 DOI: 10.1111/ggi.13913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/10/2020] [Accepted: 03/07/2020] [Indexed: 11/30/2022]
Abstract
AIM This study aimed to investigate changes in skin temperature in the main body regions of ovariectomized rats under different incubation temperatures to identify regions that are similar to hot flashes experienced by menopausal women. METHODS A total of 96 adult female Sprague-Dawley rats were randomly divided into sham, ovariectomized and ovariectomized with estrogen treatment groups, with treatment lasting for 4 weeks. After 3 weeks of treatment, each group was randomly divided into five subgroups and placed in separate incubators set at 4, 15, 25, and 37°C. Changes in the skin temperature in seven main regions (head, neck, chest, abdomen, back, tail, and paws) for four time intervals (0-3 min, 3-5 min, 5-10 min and 10-15 min) were monitored using infrared thermography. RESULTS All rats showed rapid changes in skin temperature followed by a gradual slowdown under different incubation temperatures. However, changes in ovariectomized rats were significantly different from that in normal rats, and changes on the back, tail and paws were more rapid and lasted longer. Estrogen treatment effectively controlled these abnormalities of ovariectomized rats. CONCLUSIONS Temperature responses in the back, tail and paws in ovariectomized rats might be similar to the face, neck and upper chest in menopausal women, where the symptoms of hot flashes are most obvious, which suggests that the back, tail and paws could be regarded as the focus of research on hot flashes, and offer theoretical foundations for mechanisms behind the occurrence of hot flashes in specific regions. Geriatr Gerontol Int 2020; ••: ••-••.
Collapse
Affiliation(s)
- Yanrong Sun
- Department of Anatomy and Histoembryology, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Qiyue Yang
- Department of Anatomy and Histoembryology, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Wenpei Bai
- Department of Gynecology and Obstetrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenjuan Wang
- Department of Anatomy and Histoembryology, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Yao Li
- Department of Cardiology, Peking University People's Hospital, Beijing, China
| | - Xiaofeng Luo
- Department of Stomatology, General Hospital of Armed Police, Beijing, China
| | - Sinan Wang
- Department of Stomatology, General Hospital of Armed Police, Beijing, China
| | - Jing Jia
- Department of Stomatology, General Hospital of Armed Police, Beijing, China
| | - Ke Wang
- Department of Anatomy and Histoembryology, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Lihua Qin
- Department of Anatomy and Histoembryology, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| |
Collapse
|
12
|
Margolis CA, Schneider P, Huttner K, Kirby N, Houser TP, Wildman L, Grove GL, Schneider H, Casal ML. Prenatal Treatment of X-Linked Hypohidrotic Ectodermal Dysplasia using Recombinant Ectodysplasin in a Canine Model. J Pharmacol Exp Ther 2019; 370:806-813. [PMID: 31000577 PMCID: PMC6812859 DOI: 10.1124/jpet.118.256040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/08/2019] [Indexed: 11/22/2022] Open
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED) is caused by defects in the EDA gene that inactivate the function of ectodysplasin A1 (EDA1). This leads to abnormal development of eccrine glands, hair follicles, and teeth, and to frequent respiratory infections. Previous studies in the naturally occurring dog model demonstrated partial prevention of the XLHED phenotype by postnatal administration of recombinant EDA1. The results suggested that a single or two temporally spaced injections of EDI200 prenatally might improve the clinical outcome in the dog model. Fetuses received ultrasound-guided EDI200 intra-amniotically at gestational days 32 and 45, or 45 or 55 alone (of a 65-day pregnancy). Growth rates, lacrimation, hair growth, meibomian glands, sweating, dentition, and mucociliary clearance were compared in treated and untreated XLHED-affected dogs, and in heterozygous and wild-type control dogs. Improved phenotypic outcomes were noted in the earlier and more frequently treated animals. All animals treated prenatally showed positive responses compared with untreated dogs with XLHED, most notably in the transfer of moisture through paw pads, suggesting improved onset of sweating ability and restored meibomian gland development. These results exemplify the feasibility of ultrasound-guided intra-amniotic injections for the treatment of developmental disorders, with improved formation of specific EDA1-dependent structures in dogs with XLHED.
Collapse
Affiliation(s)
- Carol A Margolis
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Pascal Schneider
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Kenneth Huttner
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Neil Kirby
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Timothy P Houser
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Lee Wildman
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Gary L Grove
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Holm Schneider
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Margret L Casal
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| |
Collapse
|
13
|
Cao L, Chen L, Li H, Wei Z, Xie S, Zhang M, Lin Y, Huang H. Differential antigen expression between human eccrine sweat glands and hair follicles/pilosebaceous units. J Mol Histol 2019; 50:335-342. [PMID: 31062203 DOI: 10.1007/s10735-019-09830-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
|
14
|
Zhang M, Li H, Xie S, Chen L. Time course of differentiation of different cell types in 3D-reconstructed eccrine sweat glands. J Mol Histol 2018; 49:567-575. [PMID: 30238337 DOI: 10.1007/s10735-018-9795-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023]
Abstract
Epidermal basal cells invaginate into the dermis to form sweat ducts, which then grow downwards further to form secretory coils during the ontogenesis of eccrine sweat glands, but the time course of differentiation of different cell types in 3D-reconstructed eccrine sweat glands remain unclear. In this study, secretory cell-specific marker K7, clear secretory cell-specific marker CA II, dark secretory cell-specific marker GCDFP-15, myoepithelial cell-specific marker α-SMA, inner duct cell-specific marker S100P and outer duct cell-specific marker S100A2 were detected by immunofluorescence staining. The results showed that S100P and S100A2 were first detected at 2 weeks post implantation, K7 and α-SMA at 3 weeks, and GCDFP-15 and CA II at 4 weeks. The differentiation of ducts preceded secretory coils in 3D-reconstructed eccrine sweat glands. After 8 weeks post implantation, the distribution of these markers in 3D-reconstructed eccrine sweat glands was similar to that in native ones, and the percentage of the 3D-reconstructed glands expressing these markers maintained steady. We conclude that although the 3D-reconstructed and native eccrine sweat glands originated from different cells, the differentiation of different cell types in 3D-reconstructed eccrine sweat glands parallels the sequence observed during embryonic development.
Collapse
Affiliation(s)
- Mingjun Zhang
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Haihong Li
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China.
| | - Sitian Xie
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Liyun Chen
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| |
Collapse
|
15
|
Jiang B, Xu F, Li L, Chen W, Hong S, Chen R. The inhibition of glycosaminoglycan incorporation influences the cell proliferation and cytodifferentiation in cultured embryonic mouse molars. J Mol Histol 2018; 50:11-19. [PMID: 30498999 DOI: 10.1007/s10735-018-9803-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/08/2018] [Indexed: 01/19/2023]
Abstract
The extracellular matrix (ECM) contains a variety of complex macromolecules including proteoglycans (PGs) and glycosaminoglycans (GAGs). PG consists of a protein core with covalently attached carbohydrate side chains called GAGs. Several PGs, including versican, biglycan, decorin and syndecan are involved in odontogenesis while the role of GAGs in those PGs in this process remains unclarified. The purpose of this study was to investigate the influence of GAGs on tooth development. The mandibular first molars at early bell stage were cultivated with or without 4-methylumbelliferyl-β-D-xyloside (Xyl-MU). The cultured tooth germs were metabolically labelled with [35S] Na2SO4, then PGs in tooth germs and cultured medium were extracted separately and analyzed by gel filtration. Morphological changes were evaluated on days 2, 4, 6, and histological changes were examined by hematoxylin-eosin (HE) staining and transmission electron microscope (TEM). Related proteins and genes of cytodifferentiation were further examined by immunohistochemistry (IHC) and quantitive real-time PCR (qPCR) respectively. Meanwhile, BrdU incorporation assay was used to explore the effect of Xyl-MU on the cell proliferation of cultured tooth germs. The results demonstrated that the incorporation of GAGs to PGs in cultured tooth germs was heavily inhibited by Xyl-MU. Accompanied by the inhibition of GAGs incorporation, Xyl-MU altered tooth morphogenesis and delayed the differentiation of ameloblasts and odontoblasts. Proliferation of inner enamel epithelium (IEE) was also inhibited. Therefore, we draw a conclusion that the inhibition of GAGs incorporation influences the cell proliferation and cytodifferentiation in cultured embryonic mouse molars.
Collapse
Affiliation(s)
- Beizhan Jiang
- Department of Operative Dentistry and Endodontics, School & Hosipital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai, 200072, China.
| | - Fangfang Xu
- Department of Operative Dentistry and Endodontics, School & Hosipital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Lefeng Li
- Department of Operative Dentistry and Endodontics, School & Hosipital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Weiting Chen
- Department of Operative Dentistry and Endodontics, School & Hosipital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Shebin Hong
- Department of Operative Dentistry and Endodontics, School & Hosipital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Rongmei Chen
- Department of Operative Dentistry and Endodontics, School & Hosipital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai, 200072, China
| |
Collapse
|
16
|
Li H, Chen L, Zhang M, Xie S, Cheng L. Expression and localization of Forkhead transcription factor A1 in the three-dimensional reconstructed eccrine sweat glands. Acta Histochem 2018; 120:520-524. [PMID: 29909922 DOI: 10.1016/j.acthis.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/24/2018] [Accepted: 06/11/2018] [Indexed: 02/05/2023]
Abstract
Previously studies showed that Forkhead transcription factor A1 (FoxA1) was associated with sweat secretion. To investigate the expression and localization of FoxA1 in the three-dimensional (3D) reconstructed eccrine sweat glands, eccrine sweat gland cells were transplanted subcutaneously into nude mice with Matrigel, and at 2, 3, 4, 5, 6, 8, 10 and 12 weeks post-transplantation, the reconstructed eccrine sweat glands were removed and immunostained for FoxA1 and co-immunostained for FoxA1 and eccrine sweat markers, K7, carbonic anhydrase II (CA Ⅱ), gross cystic disease fluid protein-15 (GCDFP-15) and α-smooth muscle actin (α-SMA), and FoxA1 and sweat secretion-related proteins, Na+-K+-ATPase α and Na+-K+-2Cl- cotransporter 1 (NKCC1). The results showed that FoxA1-positive cells weren't detected until 3 weeks post-implantation, a time point of the differntiation of secretory coil-like structures. From the fourth week on, the number of FoxA1-positive cells increased and thereafter maintained at a high number. Double immunofluorescence staining showed that FoxA1-positive cells co-expressed dark cell marker GCDFP-15 and myoepithelial cell marker α-SMA, as well as secretion-related proteins, Na+-K+-ATPase α and NKCC1 in both the native and reconstructed eccrine sweat glands. In conclusion, FoxA1 might be related to the development and differentiation of secretory coil-like structures, as well as the secretory function of the 3D reconstructed eccrine sweat glands.
Collapse
Affiliation(s)
- Haihong Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China; Research Center for Translational Medicine, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
| | - Liyun Chen
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Mingjun Zhang
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Sitian Xie
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Liuhanghang Cheng
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| |
Collapse
|
17
|
Zhang M, Li H, Chen L, Fang S, Xie S, Lin C. Three-dimensional reconstructed eccrine sweat glands with vascularization and cholinergic and adrenergic innervation. J Mol Histol 2018; 49:339-345. [PMID: 29667149 DOI: 10.1007/s10735-018-9773-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/16/2018] [Indexed: 02/05/2023]
Abstract
Functional integrity of the regenerated tissues requires not only structural integrity but also vascularization and innervation. We previously demonstrated that the three-dimensional (3D) reconstructed eccrine sweat glands had similar structures as those of the native ones did, but whether the 3D reconstructed glands possessing vascularization and innervation was still unknown. In the study, Matrigel-embedded eccrine sweat gland cells were implanted under the inguinal skin. Ten weeks post-implantation, the vascularization, and innervation in the 10-week reconstructed eccrine sweat glands and native human eccrine sweat glands were detected by immunofluorescence staining. The results showed that the fluorescent signals of general neuronal marker protein gene product 9.5, adrenergic nerve fiber marker tyrosine hydroxylase, and cholinergic nerve fiber markers acetylcholinesterase and vasoactive intestinal peptide embraced the 3D reconstructed glands in circular patterns, as the signals appeared in native eccrine sweat glands. There were many CD31- and von Willebrand factor-positive vessels growing into the plugs. We demonstrated that the 3D reconstructed eccrine sweat glands were nourished by blood vessels, and we for the first time demonstrated that the engineering sweat glands were innervated by both cholinergic and adrenergic fibers. In conclusion, the 3D reconstructed eccrine sweat glands may have functions as the native ones do.
Collapse
Affiliation(s)
- Mingjun Zhang
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Haihong Li
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
| | - Liyun Chen
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Shuhua Fang
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Sitian Xie
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China
| |
Collapse
|
18
|
Li H, Zhang M, Chen L, Zhang B, Zhang C. Expression of S100A2 and S100P in human eccrine sweat glands and their application in differentiating secretory coil-like from duct-like structures in the 3D reconstituted eccrine sweat spheroids. J Mol Histol 2017; 48:219-223. [PMID: 28353163 DOI: 10.1007/s10735-017-9721-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/20/2017] [Indexed: 02/05/2023]
Abstract
Secretory coils and ducts are two components of eccrine sweat glands with different structures and functions. In our previous study, we combined keratins and α-SMA to distinguish between secretory coils and ducts. However, the key deficiency of the method was that none of the antibodies used was specific for ducts. In this study, we first examined the co-localization of K5/K7, α-SMA/K14, K7/S100P and α-SMA/S100A2 by double-immunofluorescence staining to confirm the localization of S100P and S100A2 in native human eccrine sweat glands, and second we identified secretory coil-like and duct-like structures in the 3D reconstituted eccrine sweat gland spheroids by double-immunofluorescence staining for K7/S100P and α-SMA/S100A2. In native human eccrine sweat glands, S100A2 immunoreactivity was confined to the outer layer and S100P to the inner layer of the duct. In 12-week Matrigel plugs containing eccrine sweat gland cells, double-immunofluorescence staining for K7/S100P and α-SMA/S100A2 could easily distinguish duct-like structures from secretory coil-like structures. We conclude that S100A2 and S100P can be used as specific duct markers in eccrine sweat glands, and combined use of S100P or S100A2 with keratins enables easy to distinction between secretory coils and ducts.
Collapse
Affiliation(s)
- Haihong Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
- Research Center for Translational Medicine, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
| | - Mingjun Zhang
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Liyun Chen
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Bingna Zhang
- Research Center for Translational Medicine, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Cuiping Zhang
- Wound Healing and Cell Biology Laboratory, The First Affiliated Hospital, Chinese People's Liberation Army General Hospital, 51 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
19
|
Li X, Li H, Zhang M, Chen L, Zhang B. Cell proliferation and differentiation during the three dimensional reconstitution of eccrine sweat glands. J Mol Histol 2017; 48:113-120. [PMID: 28093664 DOI: 10.1007/s10735-017-9710-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/04/2017] [Indexed: 02/05/2023]
Abstract
The aim of this study is to characterize the cell proliferation and proliferating cell types during three-dimensional reconstitution of eccrine sweat glands. Eccrine sweat gland cells suspended in Matrigel were injected subcutaneously into the inguinal regions of nude mice. At 1, 2, 4, 6, 8, 14, 21, 28, 35 and 42 days post-implantation, Matrigel plugs were immunostained for Ki67, to detect cycling cells, and the Ki67 labeling index at different time points was calculated. Three pairs of antibodies, Ki67/K7, Ki67/K14 and Ki67/α-SMA, were used to identify proliferating cell types in the plugs, on days 28, 35 and 42, by immunofluorescence double staining. The Ki67 labeling index on the first day of implantation was 30.53%, rapidly reached a peak value of 81.43% at 2 days post-implantation, and then decreased gradually to a low of 2.87% at 42 days. Double immunofluorescence staining showed that K14/Ki67 double-stained cells accounted for 80% of the Ki67-positive cells, whereas K7/Ki67 and α-SMA/Ki67 double-stained cells each accounted for 10% of the Ki67-positive population on days 28, 35, or 42 post-implantation. We conclude that eccrine sweat gland cells rapidly enter the cell cycle after implantation, but quickly show decreased cell proliferation and increased cell differentiation.
Collapse
Affiliation(s)
- Xuexue Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Haihong Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, People's Republic of China.
- Research Center for Translational Medicine, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, People's Republic of China.
| | - Mingjun Zhang
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Liyun Chen
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Bingna Zhang
- Research Center for Translational Medicine, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, People's Republic of China
| |
Collapse
|