1
|
Yuan Y, Cao K, Gao P, Wang Y, An W, Dong Y. Extracellular vesicles and bioactive peptides for regenerative medicine in cosmetology. Ageing Res Rev 2025; 107:102712. [PMID: 40032214 DOI: 10.1016/j.arr.2025.102712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
As life quality improves and the life pressure increases, people's awareness of maintaining healthy skin and hair grows. However, the use of bioactive peptides in regenerative medical aesthetics is often constrained by the high molecular weight, which impedes skin penetration. In contrast, extracellular vesicles not only possess regenerative properties but also serve as effective carriers for bioactive peptides. Given their anti-inflammatory and bactericidal properties, capacity to promote angiogenesis, optimize collagen alignment, facilitate re-epithelialization and stimulate hair growth, extracellular vesicles become an emerging and promising solution for skin regeneration treatments. The combination of peptides and extracellular vesicles enhances therapeutic efficacy and improves the bioavailability of bioactive peptides. In this review, we summarize the functions of bioactive peptides and plant- and animal-derived extracellular vesicles in regenerative medicine with cosmetology, along with examples of their combined applications. Additionally, we provide an overview of peptides and extracellular vesicles currently available on the market and in clinical practice, discussing the challenges and solutions associated with their use.
Collapse
Affiliation(s)
- Yize Yuan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kailu Cao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peifen Gao
- National Vaccine & Serum Institute, China National Biotech Group, Sinopharm Group, Beijing 101111, China
| | - Yinan Wang
- National Vaccine & Serum Institute, China National Biotech Group, Sinopharm Group, Beijing 101111, China
| | - Wenlin An
- National Vaccine & Serum Institute, China National Biotech Group, Sinopharm Group, Beijing 101111, China.
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Bian Z, Zhai Y, Zhang Y, Wang T, Li H, Ouyang J, Liu C, Wang S, Hu Z, Chang X, Zhang C, Liu M, Li C. Senescent cartilage endplate stem cells-derived exosomes induce oxidative stress injury in nucleus pulposus cells and aggravate intervertebral disc degeneration by regulating FOXO3. Free Radic Biol Med 2025; 233:39-54. [PMID: 40118349 DOI: 10.1016/j.freeradbiomed.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Intervertebral disc degeneration (IVDD) is the leading cause of low back pain and associated disability worldwide. The cartilage endplate (CEP) is a critical structure in maintaining the homeostasis of the intervertebral disc, by exosomes (Exos)-mediated intracellular communication between cartilage endplate stem cells (CESCs) and nucleus pulposus cells (NPCs). However, whether the senescence of CESCs influences the functionality of CESCs-derived Exos (CESCs-Exos) and participates in the progress of IVDD remains unclear. In this study, we explored the role and mechanism of the Exos-based intracellular communication between senescent CESCs and NPCs in IVDD. CESCs isolated from aged individuals (S-CESCs) exhibited high levels of senescence compared with CESCs isolated from young individuals (Y-CESCs). Exos from Y-CESCs (Y-Exos) and from S-CESCs (S-Exos) were extracted and identified. Surprisingly, we found that S-Exos lost the therapeutic effects as the Y-Exos exhibited in mitigating IVDD, and even aggravated IVDD by inducing oxidative stress injury in NPCs. MicroRNA-sequencing revealed significant upregulation of miR-29b-3p expression in S-Exos. Through microRNA target prediction, dual luciferase assays, RNA-sequencing, lentivirus-mediated overexpression and suppression, we demonstrated that miR-29b-3p regulates the expression of FOXO3 and downstream antioxidant enzymes to induce oxidative stress injury in NPCs. In vivo experiments further verified that countering miR-29b-3p by antagomir reversed the detrimental effects of S-Exos in exacerbating IVDD. This work elucidates the role and mechanism of senescent CESCs in disrupting redox homeostasis in the nucleus pulposus and exacerbating IVDD by Exos-mediated intracellular communication and offers an experimental foundation for the selection of proper CESCs-Exos to obtain better therapeutic effects in IVDD.
Collapse
Affiliation(s)
- Zhiqun Bian
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China.
| | - Yuyao Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Tianling Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Hao Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Jian Ouyang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Chao Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Siya Wang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhilei Hu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China.
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China.
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China.
| |
Collapse
|
3
|
Niu Z, Cui M, Fu Y, Zhou L, Wang J, Lei Y, Fan X, Wang Q, Yang J. A bibliometric analysis of exosomes in aging from 2007 to 2023. Front Med (Lausanne) 2025; 11:1488536. [PMID: 39911664 PMCID: PMC11794001 DOI: 10.3389/fmed.2024.1488536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 02/07/2025] Open
Abstract
Background Aging is the primary factor contributing to the development of aging-related diseases. As research on exosomes continues to advance, its relationship with aging and aging-related diseases has become a hot topic This article analyzes the research hotspots of exosomes in aging and aging-related diseases, aiming to fill the gap in bibliometric research in this field and help researchers better understand the current status and future trends of both fundamental and clinical research in this field. Methods The articles were retrieved and exported from WoSCC on December 18, 2023. The visual analysis of countries and regions, institutions, authors, references, and keywords in exosomes of aging was conducted using VOSviewer 1.6.18, CiteSpace 6.2.R7, and Bibliometrix. Results The bibliometric analysis included 1628 articles. China and the United States emerged as the top two leading countries in this field. A total of 2,321 research institutions from 78 countries and regions were primarily led by China and the United States. Both Kapogiannis D and Goetzl E were active authors in this field. Thery C, Valadi H, and Raposo G were the important promoters in this field. Thery C proposed the method of differential centrifugation and density gradient centrifugation to extract exosomes. Valadi H discovered cells could send RNA-messages to each other by loading them into exosome-vesicles. The journal with the highest number of articles was International Journal of Molecular Sciences, while PLoS One was the most frequently cited journal. The keyword analysis revealed that future research on exosomes in aging will possibly focus on "inflammation, cellular senescence, angiogenesis, insulin resistance, and Alzheimer's disease." Conclusion We identified the research trends of exosomes in the field of aging through this bibliometric analysis. The present study provides valuable new perspectives on the history and current status of exosomes in the field of aging and aging-related diseases, and also offering guidance for future research directions.
Collapse
Affiliation(s)
- Zenghui Niu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meiyu Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingkun Fu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lingfeng Zhou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiali Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yan Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinrong Fan
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiang Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Huang M, Liu Y, Zhang L, Wang S, Wang X, He Z. Advancements in Research on Mesenchymal Stem-Cell-Derived Exosomal miRNAs: A Pivotal Insight into Aging and Age-Related Diseases. Biomolecules 2024; 14:1354. [PMID: 39595531 PMCID: PMC11592330 DOI: 10.3390/biom14111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into various cell types and play a crucial role in repairing aging tissues and diseased organs. Aging manifests as a gradual loss of cellular, tissue, and organ function, leading to the progression of pathologies. Exosomes (Exos) are extracellular vesicles secreted by cells, which maintain cellular homeostasis, clear cellular debris, and facilitate communication between cells and organs. This review provides a comprehensive summary of the mechanisms for the synthesis and sorting of MSC-Exo miRNAs and summarizes the current research status of MSCs-Exos in mitigating aging and age-related diseases. It delves into the underlying molecular mechanisms, which encompass antioxidative stress, anti-inflammatory response, and the promotion of angiogenesis. Additionally, this review also discusses potential challenges in and future strategies for advancing MSC-Exo miRNA-based therapies in the treatment of aging and age-related diseases.
Collapse
Affiliation(s)
- Minglei Huang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; (M.H.); (Y.L.); (S.W.)
| | - Ye Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; (M.H.); (Y.L.); (S.W.)
| | - Longze Zhang
- Scientific Research Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi 563000, China;
| | - Shuangmin Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; (M.H.); (Y.L.); (S.W.)
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; (M.H.); (Y.L.); (S.W.)
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
5
|
Aravindraja C, Jeepipalli S, Duncan WD, Vekariya KM, Rahaman SO, Chan EKL, Kesavalu L. Streptococcus gordonii Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics. Int J Mol Sci 2024; 25:6217. [PMID: 38892405 PMCID: PMC11172800 DOI: 10.3390/ijms25116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Streptococcus gordonii (S. gordonii, Sg) is one of the early colonizing, supragingival commensal bacterium normally associated with oral health in human dental plaque. MicroRNAs (miRNAs) play an important role in the inflammation-mediated pathways and are involved in periodontal disease (PD) pathogenesis. PD is a polymicrobial dysbiotic immune-inflammatory disease initiated by microbes in the gingival sulcus/pockets. The objective of this study is to determine the global miRNA expression kinetics in S. gordonii DL1-infected C57BL/6J mice. All mice were randomly divided into four groups (n = 10 mice/group; 5 males and 5 females). Bacterial infection was performed in mice at 8 weeks and 16 weeks, mice were euthanized, and tissues harvested for analysis. We analyzed differentially expressed (DE) miRNAs in the mandibles of S. gordonii-infected mice. Gingival colonization/infection by S. gordonii and alveolar bone resorption (ABR) was confirmed. All the S. gordonii-infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, and a significant increase in mandible and maxilla ABR (p < 0.0001). miRNA profiling revealed 191 upregulated miRNAs (miR-375, miR-34b-5p) and 22 downregulated miRNAs (miR-133, miR-1224) in the mandibles of S. gordonii-infected mice at the 8-week mark. Conversely, at 16 weeks post-infection, 10 miRNAs (miR-1902, miR-203) were upregulated and 32 miRNAs (miR-1937c, miR-720) were downregulated. Two miRNAs, miR-210 and miR-423-5p, were commonly upregulated, and miR-2135 and miR-145 were commonly downregulated in both 8- and 16-week-infected mice mandibles. Furthermore, we employed five machine learning (ML) algorithms to assess how the number of miRNA copies correlates with S. gordonii infections in mice. In the ML analyses, miR-22 and miR-30c (8-week), miR-720 and miR-339-5p (16-week), and miR-720, miR-22, and miR-339-5p (combined 8- and 16-week) emerged as the most influential miRNAs.
Collapse
Affiliation(s)
- Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Syam Jeepipalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - William D. Duncan
- Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Krishna Mukesh Vekariya
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Edward K. L. Chan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
6
|
Jibing C, Weiping L, Yuwei Y, Bingzheng F, Zhiran X. Exosomal microRNA-Based therapies for skin diseases. Regen Ther 2024; 25:101-112. [PMID: 38178928 PMCID: PMC10765304 DOI: 10.1016/j.reth.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024] Open
Abstract
Based on engineered cell/exosome technology and various skin-related animal models, exosomal microRNA (miRNA)-based therapies derived from natural exosomes have shown good therapeutic effects on nine skin diseases, including full-thickness skin defects, diabetic ulcers, skin burns, hypertrophic scars, psoriasis, systemic sclerosis, atopic dermatitis, skin aging, and hair loss. Comparative experimental research showed that the therapeutic effect of miRNA-overexpressing exosomes was better than that of their natural exosomes. Using a dual-luciferase reporter assay, the targets of all therapeutic miRNAs in skin cells have been screened and confirmed. For these nine types of skin diseases, a total of 11 animal models and 21 exosomal miRNA-based therapies have been developed. This review provides a detailed description of the animal models, miRNA therapies, disease evaluation indicators, and treatment results of exosomal miRNA therapies, with the aim of providing a reference and guidance for future clinical trials. There is currently no literature on the merits or drawbacks of miRNA therapies compared with standard treatments.
Collapse
Affiliation(s)
| | | | | | - Feng Bingzheng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xu Zhiran
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
7
|
Kita A, Yamamoto S, Saito Y, Chikenji TS. Cellular senescence and wound healing in aged and diabetic skin. Front Physiol 2024; 15:1344116. [PMID: 38440347 PMCID: PMC10909996 DOI: 10.3389/fphys.2024.1344116] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Cellular senescence is a biological mechanism that prevents abnormal cell proliferation during tissue repair, and it is often accompanied by the secretion of various factors, such as cytokines and chemokines, known as the senescence-associated secretory phenotype (SASP). SASP-mediated cell-to-cell communication promotes tissue repair, regeneration, and development. However, senescent cells can accumulate abnormally at injury sites, leading to excessive inflammation, tissue dysfunction, and intractable wounds. The effects of cellular senescence on skin wound healing can be both beneficial and detrimental, depending on the condition. Here, we reviewed the functional differences in cellular senescence that emerge during wound healing, chronic inflammation, and skin aging. We also review the latest mechanisms of wound healing in the epidermis, dermis, and subcutaneous fat, with a focus on cellular senescence, chronic inflammation, and tissue regeneration. Finally, we discuss the potential clinical applications of promoting and inhibiting cellular senescence to maximize benefits and minimize detrimental effects.
Collapse
Affiliation(s)
- Arisa Kita
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | |
Collapse
|
8
|
Wang Y, Shen X, Song S, Chen Y, Wang Y, Liao J, Chen N, Zeng L. Mesenchymal stem cell-derived exosomes and skin photoaging: From basic research to practical application. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:556-566. [PMID: 37605539 DOI: 10.1111/phpp.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Skin photoaging is a condition caused by long-term exposure to ultraviolet irradiation, resulting in a variety of changes in the skin, such as capillary dilation, increased or absent pigmentation, dryness, sagging, and wrinkles. Stem cells possess a remarkable antioxidant capacity and the ability to proliferate, differentiate, and migrate, and their main mode of action is through paracrine secretion, with exosomes being the primary form of secretion. Stem cell-derived exosomes contain a variety of growth factors and cytokines and may have great potential to promote skin repair and delay skin ageing. METHODS This review focuses on the mechanisms of UV-induced skin photoaging, the research progress of stem cell exosomes against skin photoaging, emerging application approaches and limitations in the application of exosome therapy. RESULT Exosomes derived from various stem cells have the potential to prevent skin photoaging. CONCLUSION The combination with novel materials may be a key step for their practical application, which could be an important direction for future basic research and practical applications.
Collapse
Affiliation(s)
- Yihao Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xu Shen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Shenghua Song
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yan Chen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yiping Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Junlin Liao
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Nian Chen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Li Zeng
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|