1
|
de Moura AL, Brum PC, de Carvalho AETS, Spadari RC. Effect of stress on the chronotropic and inotropic responses to β-adrenergic agonists in isolated atria of KOβ2 mice. Life Sci 2023; 322:121644. [PMID: 37004731 DOI: 10.1016/j.lfs.2023.121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Altered sensitivity to the chronotropic and inotropic effects of catecholamines and reduction in β1/β2-adrenoceptor (β1/β2-AR) ratio were reported in failing and in senescent human heart, as well as in isolated atria and ventricle of rats submitted to stress. This was due to downregulation of β1-AR with or without up-regulation of β2-AR. AIMS To investigate the stress-induced behavior of β1-AR in the heart of mice expressing a non-functional β2-AR subtype. The guiding hypothesis is that the absence of β2-AR signaling will not affect the behavior of β1-AR during stress and that those are independent processes. MATERIALS AND METHODS The chronotropic and inotropic responses to β-AR agonists in isolated atria of stressed mice expressing a non-functional β2-AR were analyzed. The mRNA and protein expressions of β1- and β2-AR were also determined. KEY FINDINGS No deaths were observed in mice under stress protocol. Atria of stressed mice displayed reduced sensitivity to isoprenaline compared to the controls, an effect that was abolished by the β2- and β1-AR antagonists 50 nM ICI118,551 and 300 nM CGP20712A, respectively. Sensitivity and maximum response to the β-agonists dobutamine and salbutamol were not altered by stress or ICI118,551. The responses to dobutamine and salbutamol were prevented by CGP20712A. The expression of β1-AR was reduced at protein levels. SIGNIFICANCE Collectively, our data provide evidence that the cardiac β2-AR is not essential for survival in a stressful situation and that the stress-induced reduction of β1-AR expression was independent of the β2-AR presence.
Collapse
|
2
|
RGS4 inhibition and the effects of adrenoceptor and cholinoceptor agonists on isolated left atrium and aorta of normal and diabetic rats. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Erdogan BR, Michel MC, Arioglu-Inan E. Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart. Cells 2020; 9:cells9122548. [PMID: 33256212 PMCID: PMC7759850 DOI: 10.3390/cells9122548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a chronic, endocrine disorder that effects millions of people worldwide. Cardiovascular complications are the major cause of diabetes-related morbidity and mortality. Cardiac β1- and β2-adrenoceptor (AR) stimulation mediates positive inotropy and chronotropy, whereas β3-AR mediates negative inotropic effect. Changes in β-AR responsiveness are thought to be an important factor that contributes to the diabetic cardiac dysfunction. Diabetes related changes in β-AR expression, signaling, and β-AR mediated cardiac function have been studied by several investigators for many years. In the present review, we have screened PubMed database to obtain relevant articles on this topic. Our search has ended up with wide range of different findings about the effect of diabetes on β-AR mediated changes both in molecular and functional level. Considering these inconsistent findings, the effect of diabetes on cardiac β-AR still remains to be clarified.
Collapse
Affiliation(s)
- Betul R. Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
- Correspondence:
| |
Collapse
|
4
|
Petrushanko IY, Mitkevich VA, Makarov AA. Molecular Mechanisms of the Redox Regulation of the Na,K-ATPase. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920050139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
5
|
Jiao L, Machuki JO, Wu Q, Shi M, Fu L, Adekunle AO, Tao X, Xu C, Hu X, Yin Z, Sun H. Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2020; 318:H820-H829. [PMID: 32083972 DOI: 10.1152/ajpheart.00734.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estrogen deficiency is considered to be an important factor leading to cardiovascular diseases (CVDs). Indeed, the prevalence of CVDs in postmenopausal women exceeds that of premenopausal women and men of the same age. Recent research findings provide evidence that estrogen plays a pivotal role in the regulation of calcium homeostasis and therefore fine-tunes normal cardiomyocyte contraction and relaxation processes. Disruption of calcium homeostasis is closely associated with the pathological mechanism of CVDs. Thus, this paper maps out and summarizes the effects and mechanisms of estrogen on calcium handling proteins in cardiac myocytes, including L-type Ca2+ channel, the sarcoplasmic reticulum Ca2+ release channel named ryanodine receptor, sarco(endo)plasmic reticulum Ca2+-ATPase, and sodium-calcium exchanger. In so doing, we provide theoretical and experimental evidence for the successful design of estrogen-based prevention and treatment therapies for CVDs.
Collapse
Affiliation(s)
- Lijuan Jiao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingjin Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Xi Tao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenxi Xu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xide Hu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zeyuan Yin
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Cecconi A, Salamanca J, Alvarado T, Antuña P, Pozo E, Viliani D, Nogales-Romo MT, Rivero F, Hernandez Muñiz S, Olivera MJ, Caballero P, Jimenez-Borreguero LJ, Alfonso F. Predictors of oedema in Tako-Tsubo cardiomyopathy: new insights into the diabetes paradox. J Cardiovasc Med (Hagerstown) 2019; 20:406-408. [PMID: 30664537 DOI: 10.2459/jcm.0000000000000766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alberto Cecconi
- Servicio de Cardiología
- Both Alberto Cecconi and Jorge Salamanca equally participated in this manuscript
| | - Jorge Salamanca
- Servicio de Cardiología
- Both Alberto Cecconi and Jorge Salamanca equally participated in this manuscript
| | | | | | | | | | | | | | | | - Maria Jose Olivera
- Servicio de Radiología, Hospital Universitario de La Princesa, Madrid, Spain
| | - Paloma Caballero
- Servicio de Radiología, Hospital Universitario de La Princesa, Madrid, Spain
| | | | | |
Collapse
|
7
|
Cook RF, Bussey CT, Fomison‐Nurse IC, Hughes G, Bahn A, Cragg PA, Lamberts RR. β
2
‐Adrenoceptors indirectly support impaired β
1
‐adrenoceptor responsiveness in the isolated type 2 diabetic rat heart. Exp Physiol 2019; 104:808-818. [DOI: 10.1113/ep087437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/18/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Rosalind F. Cook
- Department of Physiology – HeartOtagoSchool of Biomedical SciencesUniversity of Otago Dunedin New Zealand
| | - Carol T. Bussey
- Department of Physiology – HeartOtagoSchool of Biomedical SciencesUniversity of Otago Dunedin New Zealand
| | - Ingrid C. Fomison‐Nurse
- Department of Physiology – HeartOtagoSchool of Biomedical SciencesUniversity of Otago Dunedin New Zealand
| | - Gillian Hughes
- Department of Physiology – HeartOtagoSchool of Biomedical SciencesUniversity of Otago Dunedin New Zealand
| | - Andrew Bahn
- Department of Physiology – HeartOtagoSchool of Biomedical SciencesUniversity of Otago Dunedin New Zealand
| | - Patricia A. Cragg
- Department of Physiology – HeartOtagoSchool of Biomedical SciencesUniversity of Otago Dunedin New Zealand
| | - Regis R. Lamberts
- Department of Physiology – HeartOtagoSchool of Biomedical SciencesUniversity of Otago Dunedin New Zealand
| |
Collapse
|
8
|
Machuki J, Zhang H, Harding S, Sun H. Molecular pathways of oestrogen receptors and β-adrenergic receptors in cardiac cells: Recognition of their similarities, interactions and therapeutic value. Acta Physiol (Oxf) 2018; 222. [PMID: 28994249 PMCID: PMC5813217 DOI: 10.1111/apha.12978] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/07/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Oestrogen receptors (ERs) and β-adrenergic receptors (βARs) play important roles in the cardiovascular system. Moreover, these receptors are expressed in cardiac myocytes and vascular tissues. Numerous experimental observations support the hypothesis that similarities and interactions exist between the signalling pathways of ERs (ERα, ERβ and GPR30) and βARs (β1 AR, β2 AR and β3 AR). The recently discovered oestrogen receptor GPR30 shares structural features with the βARs, and this forms the basis for the interactions and functional overlap. GPR30 possesses protein kinase A (PKA) phosphorylation sites and PDZ binding motifs and interacts with A-kinase anchoring protein 5 (AKAP5), all of which enable its interaction with the βAR pathways. The interactions between ERs and βARs occur downstream of the G-protein-coupled receptor, through the Gαs and Gαi proteins. This review presents an up-to-date description of ERs and βARs and demonstrates functional synergism and interactions among these receptors in cardiac cells. We explore their signalling cascades and the mechanisms that orchestrate their interactions and propose new perspectives on the signalling patterns for the GPR30 based on its structural resemblance to the βARs. In addition, we explore the relevance of these interactions to cell physiology, drugs (especially β-blockers and calcium channel blockers) and cardioprotection. Furthermore, a receptor-independent mechanism for oestrogen and its influence on the expression of βARs and calcium-handling proteins are discussed. Finally, we highlight promising therapeutic avenues that can be derived from the shared pathways, especially the phosphatidylinositol-3-OH kinase (PI3K/Akt) pathway.
Collapse
Affiliation(s)
- J.O. Machuki
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - H.Y. Zhang
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - S.E. Harding
- National Heart and Lung Institute; Imperial College; London UK
| | - H. Sun
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| |
Collapse
|
9
|
Role of the β 3-adrenergic receptor subtype in catecholamine-induced myocardial remodeling. Mol Cell Biochem 2018; 446:149-160. [PMID: 29363058 DOI: 10.1007/s11010-018-3282-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
β3-Adrenoceptors (AR) stimulate cardiac Na+/K+ pump in healthy hearts. β3-ARs are upregulated by persistent sympathetic hyperactivity; however, their effect on Na+/K+ ATPase activity and ventricular function in this condition is still unknown. Here, we investigate preventive effects of additional β3-AR activation (BRL) on Na+/K+ ATPase activity and in vivo hemodynamics in a model of noradrenaline-induced hypertrophy. Rats received NA or NA plus simultaneously administered BRL in vivo infusion for 14 days; their cardiac function was investigated by left ventricular pressure-volume analysis. Moreover, fibrosis and apoptosis were also assessed histologically. NA induced an hypertrophic pattern, as detected by morphological, histological, and biochemical markers. Additional BRL exposure reversed the hypertrophic pattern and restored Na+/K+ ATPase activity. NA treatment increased systolic function and depressed diastolic function (slowed relaxation). Additional BRL treatment reversed most NA-induced hemodynamic changes. NA decreased Na+/K+ pump α2 subunit expression selectively, a change also reversed by additional BRL treatment. Increasing β3-AR stimulation may prevent the consequences of chronic NA exposure on Na+/K+ pump and in vivo hemodynamics. β3-AR agonism may thus represent a new therapeutic strategy for pharmacological modulation of hypertrophy under conditions of chronically enhanced sympathetic activity.
Collapse
|
10
|
Cook RF, Bussey CT, Mellor KM, Cragg PA, Lamberts RR. β1-Adrenoceptor, but not β2-adrenoceptor, subtype regulates heart rate in type 2 diabetic ratsin vivo. Exp Physiol 2017; 102:911-923. [DOI: 10.1113/ep086293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/16/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Rosalind F. Cook
- Department of Physiology, Otago School of Medical Sciences, HeartOtago; University of Otago; Dunedin New Zealand
| | - Carol T. Bussey
- Department of Physiology, Otago School of Medical Sciences, HeartOtago; University of Otago; Dunedin New Zealand
| | - Kimberley M. Mellor
- Department of Physiology, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - Patricia A. Cragg
- Department of Physiology, Otago School of Medical Sciences, HeartOtago; University of Otago; Dunedin New Zealand
| | - Regis R. Lamberts
- Department of Physiology, Otago School of Medical Sciences, HeartOtago; University of Otago; Dunedin New Zealand
| |
Collapse
|
11
|
Seeling T, Čikoš Š, Grybel KJ, Janštová Ž, Pendzialek SM, Schindler M, Špirková A, Santos AN. A Diabetic Pregnancy Alters the Expression of Stress-Related Receptors in Gastrulating Rabbit Blastocyst and in the Reproductive Tract. Reprod Sci 2017; 25:174-184. [DOI: 10.1177/1933719117707055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tom Seeling
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Štefan Čikoš
- Institute of Animal Physiology, Slovak Academy of Science, Kosice, Slovakia
| | - Katarzyna J. Grybel
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Žofia Janštová
- Institute of Animal Physiology, Slovak Academy of Science, Kosice, Slovakia
| | - S. Mareike Pendzialek
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Maria Schindler
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Alexandra Špirková
- Institute of Animal Physiology, Slovak Academy of Science, Kosice, Slovakia
| | - Anne Navarrete Santos
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
12
|
Bundgaard H, Axelsson A, Hartvig Thomsen J, Sørgaard M, Kofoed KF, Hasselbalch R, Fry NAS, Valeur N, Boesgaard S, Gustafsson F, Køber L, Iversen K, Rasmussen HH. The first-in-man randomized trial of a beta3 adrenoceptor agonist in chronic heart failure: the BEAT-HF trial. Eur J Heart Fail 2016; 19:566-575. [PMID: 27990717 DOI: 10.1002/ejhf.714] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022] Open
Abstract
AIMS The third isotype of beta adrenergic receptors (β3 ARs) has distinctly different effects on cardiomyocytes compared with β1 and β2 ARs. Stimulation of β3 ARs may reduce cardiomyocyte Na+ overload and reduce oxidative stress in heart failure (HF). We examined if treatment with the β3 AR agonist mirabegron increases LVEF in patients with HF. METHODS AND RESULTS In a double-blind trial we randomly assigned 70 patients with NYHA class II-III HF and LVEF <40% at screening-echocardiography to receive mirabegron or placebo for 6 months as add-on to optimized standard therapy. The primary endpoint was an increase in LVEF after 6 months as measured by computed tomography (CT). Changes in LVEF after 6 months between treatment groups were not significantly different (0.4%, -3.5 to 3.8%, P = 0.82). In an exploratory analysis, based on an expectation that the pathophysiological substrate targeted with treatment is dependent on the baseline LVEF, patients with LVEF <40% by CT given mirabegron had a significant increase in LVEF while no increase was seen in patients given placebo. The changes were significantly different between groups (5.5%, 0.6-10.4%, P < 0.03). Additionally, there was interaction between baseline LVEF and change in LVEF in the entire group of patients treated with mirabegron (R2 = 0.40, β = -0.63, P < 0.001), but not in the placebo group (R2 = 0.00, β = -0.01, P = 0.95). Treatment was generally well tolerated. Three patients in each group had fatal or life-threatening events. CONCLUSIONS The primary endpoint was not reached. Exploratory analysis indicated that β3 AR stimulation by mirabegron increased LVEF in patients with severe HF. Treatment appeared safe. Additional studies in severe HF are needed. TRIAL REGISTRATION NCT01876433.
Collapse
Affiliation(s)
- Henning Bundgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna Axelsson
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Hartvig Thomsen
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Sørgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Klaus F Kofoed
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Radiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hasselbalch
- Department of Cardiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Nana Valeur
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Søren Boesgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Finn Gustafsson
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Cardiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Helge H Rasmussen
- Department of Cardiology, Royal North Shore Hospital and University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Derkach KV, Ignatieva PA, Bogush IV, Balluzek MF, Shpakov AO. Changes in the hormonal status of cardiovascular and the thyroid systems in rats with 18-month type 2 diabetes mellitus. ADVANCES IN GERONTOLOGY 2016. [DOI: 10.1134/s2079057016040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Derkach KV, Bondareva VM, Moiseyuk IV, Shpakov AO. The effect of 2-month bromocriptine treatment on the activity of the adenylyl cyclase signaling system in the myocardium and testes of rats with type 2 diabetes. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x15050041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Karimi Galougahi K, Liu CC, Garcia A, Fry NA, Hamilton EJ, Figtree GA, Rasmussen HH. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade. Am J Physiol Cell Physiol 2015; 309:C286-95. [PMID: 26063704 PMCID: PMC4556897 DOI: 10.1152/ajpcell.00071.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/09/2015] [Indexed: 01/20/2023]
Abstract
Dysregulated nitric oxide (NO)- and superoxide (O2 (·-))-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na(+)-K(+) pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na(+)-K(+) pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47(phox) to p22(phox) with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na(+)-K(+) pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22(phox) with p47(phox), abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na(+)-K(+) pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na(+)-K(+) pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes.
Collapse
Affiliation(s)
- Keyvan Karimi Galougahi
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Chia-Chi Liu
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and
| | - Alvaro Garcia
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and
| | - Natasha A Fry
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and
| | - Elisha J Hamilton
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and
| | - Gemma A Figtree
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Helge H Rasmussen
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
16
|
Kuznetsova LA, Sharova TS, Pertseva MN, Shpakov AO. Beta-adrenergic regulation of adenylyl cyclase signaling system in the myocardium and brain of rats with obesity and type 2 diabetes mellitus as affected by long-term intranasal insulin administration. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015030040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Thaung HPA, Yao Y, Bussey CT, Hughes G, Jones PP, Bahn A, Sammut IA, Lamberts RR. Chronic bilateral renal denervation reduces cardiac hypertrophic remodelling but not β-adrenergic responsiveness in hypertensive type 1 diabetic rats. Exp Physiol 2015; 100:628-39. [DOI: 10.1113/ep085021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/13/2015] [Indexed: 11/08/2022]
Affiliation(s)
- H. P. Aye Thaung
- Department of Physiology - HeartOtago, Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| | - Yimin Yao
- Department of Pharmacology and Toxicology, Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| | - Carol T. Bussey
- Department of Physiology - HeartOtago, Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| | - Gillian Hughes
- Department of Physiology - HeartOtago, Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| | - Peter P. Jones
- Department of Physiology - HeartOtago, Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| | - Andrew Bahn
- Department of Physiology - HeartOtago, Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| | - Ivan A. Sammut
- Department of Pharmacology and Toxicology, Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| | - Regis R. Lamberts
- Department of Physiology - HeartOtago, Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| |
Collapse
|
18
|
Shpakov AO. The role of disturbances in hormonal signaling systems in etiology and pathogenesis of diabetes mellitus. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093014060118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Derkach KV, Bondareva VM, Chistyakova OV, Berstein LM, Shpakov AO. The Effect of Long-Term Intranasal Serotonin Treatment on Metabolic Parameters and Hormonal Signaling in Rats with High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes. Int J Endocrinol 2015; 2015:245459. [PMID: 26124826 PMCID: PMC4466391 DOI: 10.1155/2015/245459] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022] Open
Abstract
In the last years the treatment of type 2 diabetes mellitus (DM2) was carried out using regulators of the brain signaling systems. In DM2 the level of the brain serotonin is reduced. So far, the effect of the increase of the brain serotonin level on DM2-induced metabolic and hormonal abnormalities has been studied scarcely. The present work was undertaken with the aim of filling this gap. DM2 was induced in male rats by 150-day high-fat diet and the treatment with low dose of streptozotocin (25 mg/kg) on the 70th day of experiment. From the 90th day, diabetic rats received for two months intranasal serotonin (IS) at a daily dose of 20 μg/rat. The IS treatment of diabetic rats decreased the body weight, and improved glucose tolerance, insulin-induced glucose utilization, and lipid metabolism. Besides, it restored hormonal regulation of adenylyl cyclase (AC) activity in the hypothalamus and normalized AC stimulation by β-adrenergic agonists in the myocardium. In nondiabetic rats the same treatment induced metabolic and hormonal alterations, some of which were similar to those in DM2 but expressed to a lesser extent. In conclusion, the elevation of the brain serotonin level may be regarded as an effective approach to treat DM2 and its complications.
Collapse
Affiliation(s)
- Kira V. Derkach
- Laboratory of Molecular Endocrinology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Avenue 44, Saint Petersburg 194223, Russia
| | - Vera M. Bondareva
- Laboratory of Molecular Endocrinology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Avenue 44, Saint Petersburg 194223, Russia
| | - Oxana V. Chistyakova
- Laboratory of Molecular Endocrinology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Avenue 44, Saint Petersburg 194223, Russia
| | - Lev M. Berstein
- Laboratory of Oncoendocrinology, N.N. Petrov Research Institute of Oncology, Leningradskaya Street 68, Pesochny, Saint Petersburg 197758, Russia
| | - Alexander O. Shpakov
- Laboratory of Molecular Endocrinology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Avenue 44, Saint Petersburg 194223, Russia
- *Alexander O. Shpakov:
| |
Collapse
|
20
|
Lamberts RR, Lingam SJ, Wang HY, Bollen IAE, Hughes G, Galvin IF, Bunton RW, Bahn A, Katare R, Baldi JC, Williams MJA, Saxena P, Coffey S, Jones PP. Impaired relaxation despite upregulated calcium-handling protein atrial myocardium from type 2 diabetic patients with preserved ejection fraction. Cardiovasc Diabetol 2014; 13:72. [PMID: 24708792 PMCID: PMC3997226 DOI: 10.1186/1475-2840-13-72] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/26/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Diastolic dysfunction is a key factor in the development and pathology of cardiac dysfunction in diabetes, however the exact underlying mechanism remains unknown, especially in humans. We aimed to measure contraction, relaxation, expression of calcium-handling proteins and fibrosis in myocardium of diabetic patients with preserved systolic function. METHODS Right atrial appendages from patients with type 2 diabetes mellitus (DM, n = 20) and non-diabetic patients (non-DM, n = 36), all with preserved ejection fraction and undergoing coronary artery bypass grafting (CABG), were collected. From appendages, small cardiac muscles, trabeculae, were isolated to measure basal and β-adrenergic stimulated myocardial function. Expression levels of calcium-handling proteins, sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) and phospholamban (PLB), and of β1-adrenoreceptors were determined in tissue samples by Western blot. Collagen deposition was determined by picro-sirius red staining. RESULTS In trabeculae from diabetic samples, contractile function was preserved, but relaxation was prolonged (Tau: 74 ± 13 ms vs. 93 ± 16 ms, non-DM vs. DM, p = 0.03). The expression of SERCA2a was increased in diabetic myocardial tissue (0.75 ± 0.09 vs. 1.23 ± 0.15, non-DM vs. DM, p = 0.007), whereas its endogenous inhibitor PLB was reduced (2.21 ± 0.45 vs. 0.42 ± 0.11, non-DM vs. DM, p = 0.01). Collagen deposition was increased in diabetic samples. Moreover, trabeculae from diabetic patients were unresponsive to β-adrenergic stimulation, despite no change in β1-adrenoreceptor expression levels. CONCLUSIONS Human type 2 diabetic atrial myocardium showed increased fibrosis without systolic dysfunction but with impaired relaxation, especially during β-adrenergic challenge. Interestingly, changes in calcium-handling protein expression suggests accelerated active calcium re-uptake, thus improved relaxation, indicating a compensatory calcium-handling mechanism in diabetes in an attempt to maintain diastolic function at rest despite impaired relaxation in the diabetic fibrotic atrial myocardium. Our study addresses important aspects of the underlying mechanisms of diabetes-associated diastolic dysfunction, which is crucial to developing new therapeutic treatments.
Collapse
Affiliation(s)
- Regis R Lamberts
- Department of Physiology - HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Shivanjali J Lingam
- Department of Physiology - HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Heng-Yu Wang
- Department of Physiology - HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Ilse AE Bollen
- Department of Physiology - HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Gillian Hughes
- Department of Physiology - HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Ivor F Galvin
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Richard W Bunton
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Andrew Bahn
- Department of Physiology - HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology - HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - J Chris Baldi
- Department of Medicine – HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Michael JA Williams
- Department of Medicine – HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Pankaj Saxena
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine – HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Peter P Jones
- Department of Physiology - HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Shpakov AO, Derkach KV, Chistyakova OV, Moyseyuk IV, Bondareva VM. The effect of long-term diabetes mellitus induced by treatment with streptozotocin in 6-week-old rats on functional activity of the adenylyl cyclase system. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1990519x14010118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
The functional state of hormone-sensitive adenylyl cyclase signaling system in diabetes mellitus. JOURNAL OF SIGNAL TRANSDUCTION 2013; 2013:594213. [PMID: 24191197 PMCID: PMC3804439 DOI: 10.1155/2013/594213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/05/2013] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) induces a large number of diseases of the nervous, cardiovascular, and some other systems of the organism. One of the main causes of the diseases is the changes in the functional activity of hormonal signaling systems which lead to the alterations and abnormalities of the cellular processes and contribute to triggering and developing many DM complications. The key role in the control of physiological and biochemical processes belongs to the adenylyl cyclase (AC) signaling system, sensitive to biogenic amines and polypeptide hormones. The review is devoted to the changes in the GPCR-G protein-AC system in the brain, heart, skeletal muscles, liver, and the adipose tissue in experimental and human DM of the types 1 and 2 and also to the role of the changes in AC signaling in the pathogenesis and etiology of DM and its complications. It is shown that the changes of the functional state of hormone-sensitive AC system are dependent to a large extent on the type and duration of DM and in experimental DM on the model of the disease. The degree of alterations and abnormalities of AC signaling pathways correlates very well with the severity of DM and its complications.
Collapse
|
23
|
Lehtoranta L, Vuolteenaho O, Laine VJ, Koskinen A, Soukka H, Kytö V, Määttä J, Haapsamo M, Ekholm E, Räsänen J. Maternal hyperglycemia leads to fetal cardiac hyperplasia and dysfunction in a rat model. Am J Physiol Endocrinol Metab 2013; 305:E611-9. [PMID: 23839525 DOI: 10.1152/ajpendo.00043.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accelerated fetal myocardial growth with altered cardiac function is a well-documented complication of human diabetic pregnancy, but its pathophysiology is still largely unknown. Our aim was to explore the mechanisms of fetal cardiac remodeling and cardiovascular hemodynamics in a rat model of maternal pregestational streptozotocin-induced hyperglycemia. The hyperglycemic group comprised 107 fetuses (10 dams) and the control group 219 fetuses (20 dams). Fetal cardiac function was assessed serially by Doppler ultrasonography. Fetal cardiac to thoracic area ratio, newborn heart weight, myocardial cell proliferative and apoptotic activities, and cardiac gene expression patterns were determined. Maternal hyperglycemia was associated with increased cardiac size, proliferative, apoptotic and mitotic activities, upregulation of genes encoding A- and B-type natriuretic peptides, myosin heavy chain types 2 and 3, uncoupling proteins 2 and 3, and the angiogenetic tumor necrosis factor receptor superfamily member 12A. The genes encoding Kv channel-interacting protein 2, a regulator of electrical cardiac phenotype, and the insulin-regulated glucose transporter 4 were downregulated. The heart rate was lower in fetuses of hyperglycemic dams. At 13-14 gestational days, 98% of fetuses of hyperglycemic dams had holosystolic atrioventricular valve regurgitation and decreased outflow mean velocity, indicating diminished cardiac output. Maternal hyperglycemia may lead to accelerated fetal myocardial growth by cardiomyocyte hyperplasia. In fetuses of hyperglycemic dams, expression of key genes that control and regulate cardiomyocyte electrophysiological properties, contractility, and metabolism are altered and may lead to major functional and clinical implications on the fetal heart.
Collapse
Affiliation(s)
- Lara Lehtoranta
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Developmental programming in response to intrauterine growth restriction impairs myoblast function and skeletal muscle metabolism. J Pregnancy 2012; 2012:631038. [PMID: 22900186 PMCID: PMC3415084 DOI: 10.1155/2012/631038] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 05/25/2012] [Indexed: 02/07/2023] Open
Abstract
Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.
Collapse
|
26
|
Daniels A, van Bilsen M, Janssen BJA, Brouns AE, Cleutjens JPM, Roemen THM, Schaart G, van der Velden J, van der Vusse GJ, van Nieuwenhoven FA. Impaired cardiac functional reserve in type 2 diabetic db/db mice is associated with metabolic, but not structural, remodelling. Acta Physiol (Oxf) 2010; 200:11-22. [PMID: 20175764 DOI: 10.1111/j.1748-1716.2010.02102.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM To identify the initial alterations in myocardial tissue associated with the early signs of diabetic cardiac haemodynamic dysfunction, we monitored changes in cardiac function, structural remodelling and gene expression in hearts of type 2 diabetic db/db mice. METHODS Cardiac dimensions and function were determined echocardiographically at 8, 12, 16 and 18 weeks of age. Left ventricular pressure characteristics were measured at 18 weeks under baseline conditions and upon dobutamine infusion. RESULTS The db/db mice were severely diabetic already at 8 weeks after birth, showing elevated fasting blood glucose levels and albuminuria. Nevertheless, echocardiography revealed no significant changes in cardiac function up to 18 weeks of age. At 18 weeks of age, left ventricular pressure characteristics were not significantly different at baseline between diabetic and control mice. However, dobutamine stress test revealed significantly attenuated cardiac inotropic and lusitropic responses in db/db mice. Post-mortem cardiac tissue analyses showed minor structural remodelling and no significant changes in gene expression levels of the sarcoplasmic reticulum calcium ATPase (SERCA2a) or beta1-adrenoceptor (beta1-AR). Moreover, the phosphorylation state of known contractile protein targets of protein kinase A (PKA) was not altered, indicating unaffected cardiac beta-adrenergic signalling activity in diabetic animals. By contrast, the substantially increased expression of uncoupling protein-3 (UCP3) and angiopoietin-like-4 (Angptl4), along with decreased phosphorylation of AMP-activated protein kinase (AMPK) in the diabetic heart, is indicative of marked changes in cardiac metabolism. CONCLUSION db/db mice show impaired cardiac functional reserve capacity during maximal beta-adrenergic stimulation which is associated with unfavourable changes in cardiac energy metabolism.
Collapse
Affiliation(s)
- A Daniels
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen X, Fahy AL, Green AS, Anderson MJ, Rhoads RP, Limesand SW. β2-Adrenergic receptor desensitization in perirenal adipose tissue in fetuses and lambs with placental insufficiency-induced intrauterine growth restriction. J Physiol 2010; 588:3539-49. [PMID: 20643771 DOI: 10.1113/jphysiol.2010.192310] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Placental insufficiency-induced intrauterine growth restriction (IUGR) fetuses have chronic hypoxaemia and elevated plasma catecholamine concentrations. In this study, we determined whether adrenergic responsiveness becomes desensitized in the perirenal adipose tissue of IUGR fetuses and lambs by measuring adrenergic receptor (AR) mRNA and protein levels. We also tested the ability of adrenaline to mobilize non-esterified fatty acids (NEFAs) in young lambs. Perirenal adipose tissue was collected from IUGR and control fetuses at 133 days of gestational age (dGA) and lambs at 18 days of age (dA). β(2)-AR mRNA concentrations were 59% and 74% lower (P < 0.05) in IUGR fetuses and lambs compared to controls, respectively, which also resulted in lower protein levels (P < 0.05). No treatment differences were detected for α(1A)-, α(1B)-, α(1D)-, α(2A)-, α(2B)-, α(2C)-, β(1)- and β(3)-AR expression. mRNA concentrations were also determined for hormone sensitive lipase (HSL), perilipin (lipid droplet-associated protein), and two adipokines, leptin and adiponectin. Adiponectin and HSL were not different between treatments at either age. Compared to controls, perilipin and leptin mRNA concentrations were lower (P < 0.05) in IUGR fetuses but not in lambs. Because of the β(2)-AR results, we challenged a second cohort of lambs with exogenous adrenaline at 21 dA. The ability of adrenaline to mobilize NEFA was 55 ± 15% lower (P < 0.05) in IUGRs than controls. Collectively, our findings indicate that elevated catecholamine exposure in utero causes desensitization of adipose tissue by down-regulation of β(2)-AR, and this persists in lambs. This impairment in adrenergic stimulated lipolysis might partially explain early onset obesity in IUGR offspring.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Department of Animal Sciences, University of Arizona, 1650 E. Limberlost Drive, Tucson, AZ 85719, USA
| | | | | | | | | | | |
Collapse
|
28
|
Wang Y, Luk AOY, Ma RCW, So WY, Tam CHT, Ng MCY, Yang X, Baum L, Lam V, Tong PCY, Chan JCN. Independent predictive roles of eotaxin Ala23Thr, paraoxonase 2 Ser311Cys and beta-adrenergic receptor Trp64Arg polymorphisms on cardiac disease in Type 2 Diabetes--an 8-year prospective cohort analysis of 1297 patients. Diabet Med 2010; 27:376-83. [PMID: 20536507 DOI: 10.1111/j.1464-5491.2010.02980.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To examine the independent and joint effects of multiple genetic variants on a cardiac end-point in an 8-year prospective study of a Chinese diabetic cohort. METHODS Seventy-seven single nucleotide polymorphisms (SNPs) of 53 candidate genes for inflammation, thrombosis, vascular tone regulation and lipid metabolism were genotyped in 1297 Chinese patients with no prior history of coronary heart disease (CHD) or heart failure at baseline. Cardiac end-point was defined by the occurrence of CHD and/or heart failure. RESULTS In Cox regression model, after adjustment for baseline confounding variables including age, sex, smoking status, duration of diabetes, glycaemic control, lipid levels, waist circumference, blood pressure, albuminuria and estimated glomerular filtration rate, genetic variants, including Ala/Ala of SCYA11 (eotaxin) Ala23Thr, Cys/Cys or Cys/Ser of PON2 (paraoxonase 2) Ser311Cys and Arg/Arg of ADRB3 (beta3-adrenergic receptor) Trp64Arg, were independently associated with incident cardiac end-point, with respective hazard ratios (95% confidence interval) of 1.70 (1.10-2.61, P=0.037), 1.42 (1.08-1.88, P=0.013) and 3.84 (1.18-12.50, P=0.025). Analysis of the joint effect of the risk alleles showed significant increased risk of the cardiac end-point with increasing number of risk alleles (P<0.001). The adjusted risk for the cardiac end-point was 4.11 (P=0.002) for patients carrying four risk alleles compared with those carrying one or no risk allele. CONCLUSIONS The independent risk conferred by genetic variants encoding pathways such as inflammation and lipid metabolism, not adequately reflected by conventional biomarkers, may identify high-risk individuals for intensified control of modifiable risk factors.
Collapse
Affiliation(s)
- Y Wang
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bidasee KR, Zheng H, Shao CH, Parbhu SK, Rozanski GJ, Patel KP. Exercise training initiated after the onset of diabetes preserves myocardial function: effects on expression of beta-adrenoceptors. J Appl Physiol (1985) 2008; 105:907-14. [PMID: 18583384 DOI: 10.1152/japplphysiol.00103.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was undertaken to assess cardiac function and characterize beta-adrenoceptor subtypes in hearts of diabetic rats that underwent exercise training (ExT) after the onset of diabetes. Type 1 diabetes was induced in male Sprague-Dawley rats using streptozotocin. Four weeks after induction, rats were randomly divided into two groups. One group was exercised trained for 3 wk while the other group remained sedentary. At the end of the protocol, cardiac parameters were assessed using M-mode echocardiography. A Millar catheter was also used to assess left ventricular hemodynamics with and without isoproterenol stimulation. beta-Adrenoceptors were assessed using Western blots and [(3)H]dihydroalprenolol binding. After 7 wk of diabetes, heart rate decreased by 21%, fractional shortening by 20%, ejection fraction by 9%, and basal and isoproterenol-induced dP/dt by 35%. beta(1)- and beta(2)-adrenoceptor proteins were reduced by 60% and 40%, respectively, while beta(3)-adrenoceptor protein increased by 125%. Ventricular homogenates from diabetic rats bound 52% less [(3)H]dihydroalprenolol, consistent with reductions in beta(1)- and beta(2)-adrenoceptors. Three weeks of ExT initiated 4 wk after the onset of diabetes minimized cardiac function loss. ExT also blunted loss of beta(1)-adrenoceptor expression. Interestingly, ExT did not prevent diabetes-induced reduction in beta(2)-adrenoceptor or the increase of beta(3)-adrenoceptor expression. ExT also increased [(3)H]dihydroalprenolol binding, consistent with increased beta(1)-adrenoceptor expression. These findings demonstrate for the first time that ExT initiated after the onset of diabetes blunts primarily beta(1)-adrenoceptor expression loss, providing mechanistic insights for exercise-induced improvements in cardiac function.
Collapse
Affiliation(s)
- Keshore R Bidasee
- Dept. of Pharmacology and Experimental Neuroscience, Univ. of Nebraska Medical Center, DRC 3047, Omaha, NE 68198-5800, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Reed G, Cefaratti C, Berti-Mattera LN, Romani A. Lack of insulin impairs Mg2+ homeostasis and transport in cardiac cells of streptozotocin-injected diabetic rats. J Cell Biochem 2008; 104:1034-53. [DOI: 10.1002/jcb.21690] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|