1
|
Souza‐Silva IM, Carregari VC, Steckelings UM, Verano‐Braga T. Phosphoproteomics for studying signaling pathways evoked by hormones of the renin-angiotensin system: A source of untapped potential. Acta Physiol (Oxf) 2025; 241:e14280. [PMID: 39821680 PMCID: PMC11737475 DOI: 10.1111/apha.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
The Renin-Angiotensin System (RAS) is a complex neuroendocrine system consisting of a single precursor protein, angiotensinogen (AGT), which is processed into various peptide hormones, including the angiotensins [Ang I, Ang II, Ang III, Ang IV, Ang-(1-9), Ang-(1-7), Ang-(1-5), etc] and Alamandine-related peptides [Ang A, Alamandine, Ala-(1-5)], through intricate enzymatic pathways. Functionally, the RAS is divided into two axes with opposing effects: the classical axis, primarily consisting of Ang II acting through the AT1 receptor (AT1R), and in contrast the protective axis, which includes the receptors Mas, AT2R and MrgD and their respective ligands. A key area of RAS research is to gain a better understanding how signaling cascades elicited by these receptors lead to either "classical" or "protective" effects, as imbalances between the two axes can contribute to disease. On the other hand, therapeutic benefits can be achieved by selectively activating protective receptors and their associated signaling pathways. Traditionally, robust "hypothesis-driven" methods like Western blotting have built a solid knowledge foundation on RAS signaling. In this review, we introduce untargeted mass spectrometry-based phosphoproteomics, a "hypothesis-generating approach", to explore RAS signaling pathways. This technology enables the unbiased discovery of phosphorylation events, offering insights into previously unknown signaling mechanisms. We review the existing studies which used phosphoproteomics to study RAS signaling and discuss potential future applications of phosphoproteomics in RAS research including advantages and limitations. Ultimately, phosphoproteomics represents a so far underused tool for deepening our understanding of RAS signaling and unveiling novel therapeutic targets.
Collapse
Affiliation(s)
- Igor Maciel Souza‐Silva
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
| | - Victor Corasolla Carregari
- Laboratório de Neuroproteômica, Instituto de BiologiaUniversidade de CampinasSão PauloBrazil
- Department of Biochemistry and Molecular Biology, Protein Research GroupUniversity of Southern DenmarkOdense MDenmark
| | - U. Muscha Steckelings
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
| | - Thiago Verano‐Braga
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
- Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Instituto Nacional de Ciência e Tecnologia Em Nanobiofarmacêutica (INCT‐Nanobiofar)Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
2
|
Arumugam TV, Alli-Shaik A, Liehn EA, Selvaraji S, Poh L, Rajeev V, Cho Y, Cho Y, Kim J, Kim J, Swa HLF, Hao DTZ, Rattanasopa C, Fann DYW, Mayan DC, Ng GYQ, Baik SH, Mallilankaraman K, Gelderblom M, Drummond GR, Sobey CG, Kennedy BK, Singaraja RR, Mattson MP, Jo DG, Gunaratne J. Multiomics analyses reveal dynamic bioenergetic pathways and functional remodeling of the heart during intermittent fasting. eLife 2023; 12:RP89214. [PMID: 37769126 PMCID: PMC10538958 DOI: 10.7554/elife.89214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Intermittent fasting (IF) has been shown to reduce cardiovascular risk factors in both animals and humans, and can protect the heart against ischemic injury in models of myocardial infarction. However, the underlying molecular mechanisms behind these effects remain unclear. To shed light on the molecular and cellular adaptations of the heart to IF, we conducted comprehensive system-wide analyses of the proteome, phosphoproteome, and transcriptome, followed by functional analysis. Using advanced mass spectrometry, we profiled the proteome and phosphoproteome of heart tissues obtained from mice that were maintained on daily 12- or 16 hr fasting, every-other-day fasting, or ad libitum control feeding regimens for 6 months. We also performed RNA sequencing to evaluate whether the observed molecular responses to IF occur at the transcriptional or post-transcriptional levels. Our analyses revealed that IF significantly affected pathways that regulate cyclic GMP signaling, lipid and amino acid metabolism, cell adhesion, cell death, and inflammation. Furthermore, we found that the impact of IF on different metabolic processes varied depending on the length of the fasting regimen. Short IF regimens showed a higher correlation of pathway alteration, while longer IF regimens had an inverse correlation of metabolic processes such as fatty acid oxidation and immune processes. Additionally, functional echocardiographic analyses demonstrated that IF enhances stress-induced cardiac performance. Our systematic multi-omics study provides a molecular framework for understanding how IF impacts the heart's function and its vulnerability to injury and disease.
Collapse
Affiliation(s)
- Thiruma V Arumugam
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Asfa Alli-Shaik
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Elisa A Liehn
- National Heart Research Institute, National Heart Centre SingaporeSingaporeSingapore
- Institute for Molecular Medicine, University of Southern DenmarkOdenseDenmark
- National Institute of Pathology "Victor Babes"BucharestRomania
| | - Sharmelee Selvaraji
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of SingaporeSingaporeSingapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Vismitha Rajeev
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Yongeun Cho
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jongho Kim
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Joonki Kim
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- Natural Products Research Center, Korea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Hannah LF Swa
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - David Tan Zhi Hao
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Chutima Rattanasopa
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and ResearchSingaporeSingapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of SingaporeSingaporeSingapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - David Castano Mayan
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Sang-Ha Baik
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
| | - Brian K Kennedy
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Roshni R Singaraja
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| |
Collapse
|
3
|
Neuroprotection in Stroke-Focus on the Renin-Angiotensin System: A Systematic Review. Int J Mol Sci 2022; 23:ijms23073876. [PMID: 35409237 PMCID: PMC8998496 DOI: 10.3390/ijms23073876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 01/01/2023] Open
Abstract
Stroke is the primary cause of disability in the adult population. Hypertension represents the leading risk factor being present in almost half the patients. The renin-angiotensin system is involved in the physiopathology of stroke and has an essential impact on hypertension as a risk factor. This article targeted the role of the renin-angiotensin system in stroke neuroprotection by reviewing the current literature available. The mechanism of action of the renin-angiotensin system was observed through the effects on AT1, AT2, and Mas receptors. The neuroprotective properties ascertained by angiotensin in stroke seem to be independent of the blood pressure reduction mechanism, and include neuroregeneration, angiogenesis, and increased neuronal resistance to hypoxia. The future relationship of stroke and the renin-angiotensin system is full of possibilities, as new agonist molecules emerge as potential candidates to restrict the impairment caused by stroke.
Collapse
|
4
|
Investigation of the structure–activity relationship in a series of new LVV- and VV-hemorphin-7 analogues designed as potential anticonvulsant agents. Amino Acids 2022; 54:261-275. [DOI: 10.1007/s00726-021-03112-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022]
|
5
|
Todorov P, Peneva P, Georgieva S, Tchekalarova J, Rangelov M, Todorova N. Synthesis and characterization of new 5,5′-dimethyl- and 5,5′-diphenylhydantoin-conjugated hemorphin derivatives designed as potential anticonvulsant agents. NEW J CHEM 2022. [DOI: 10.1039/d1nj05235g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the synthesis and characterization of some novel N-modified hybrid analogues of hemorphins containing a C-5 substituted hydantoin residue as potential anticonvulsants and for the blockade of sodium channels are presented.
Collapse
Affiliation(s)
- Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia 1756, Bulgaria
| | - Petia Peneva
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia 1756, Bulgaria
| | - Stela Georgieva
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, Sofia 1756, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Miroslav Rangelov
- Institute of Organic Chemistry with centre of phytochemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
6
|
Oros-González A, Gallardo-Ortíz IA, Montes S, Del Valle-Mondragón L, Páez-Martínez N. Captopril and losartan attenuate behavioural sensitization in mice chronically exposed to toluene. Behav Brain Res 2021; 418:113640. [PMID: 34757000 DOI: 10.1016/j.bbr.2021.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
Inhalants are consumed worldwide for recreational purposes. The main component found in many inhalants is toluene. One of the most deleterious behavioural effects caused by chronic exposure to inhalants is addiction. This response has been associated with activation of the mesolimbic dopaminergic pathway, and it is known that the renin angiotensin system plays a role in the modulation of this dopaminergic system. In the present work, we hypothesize that blockade of the RAS with angiotensin converting enzyme inhibitors or angiotensin II type 1 receptor blockers is able to attenuate the addictive response induced by toluene. We exposed mice to toluene for four weeks to induce locomotor sensitization. In the second phase of the work, captopril or losartan were administered for 20 days. Subsequently, the expression of behavioural sensitization was evaluated with a toluene challenge. To exclude false associations between the observed responses and treatments, motor coordination and blood pressure were analysed in animals treated with captopril or losartan. At the end of the behavioural studies, animal brains were harvested and Ang II/Ang-(1-7) and Ang-(1-7)/Ang II ratios were analysed in the nucleus accumbens (NAc) and prefrontal cortex (PFCx). The results showed that toluene induced behavioural sensitization, while captopril or losartan treatment attenuated the expression of this response. No significant differences were observed in motor coordination or blood pressure. Repeated toluene administration decreased Ang-(1-7)/Ang II ratio in the PFCx. On the other hand, treatment with captopril or losartan decreased the Ang II/Ang-(1-7) ratio and enhanced the Ang-(1-7)/Ang II ratio in the NAc. This work suggests that blockade of RAS attenuates the toluene-induced behavioural sensitization.
Collapse
Affiliation(s)
- Alain Oros-González
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Itzell Alejandrina Gallardo-Ortíz
- Unidad de Biomedicina, Carrera de Enfermería, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México.
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, México
| | | | - Nayeli Páez-Martínez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México; Laboratorio Integrativo para el Estudio de Sustancias Inhalables Adictivas, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México, México.
| |
Collapse
|
7
|
Segarra AB, Prieto I, Banegas I, Martínez-Cañamero M, Villarejo AB, Domínguez-Vías G, de Gasparo M, Ramírez-Sánchez M. Interaction between Angiotensinase Activities in Pituitary and Adrenal Glands of Wistar-Kyoto and Spontaneously Hypertensive Rats under Hypotensive or Hypertensive Treatments. Int J Mol Sci 2021; 22:7823. [PMID: 34360587 PMCID: PMC8346081 DOI: 10.3390/ijms22157823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study, we analyzed the activity of several aminopeptidases (angiotensinases) involved in the metabolism of various angiotensin peptides, in pituitary and adrenal glands of untreated Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) or treated with the antihypertensive drugs captopril and propranolol or with the L-Arginine hypertensive analogue L-NG-Nitroarginine Methyl Ester (L-NAME). Intra- and inter-gland correlations between angiotensinase activities were also calculated. Membrane-bound alanyl-, cystinyl-, and glutamyl-aminopeptidase activities were determined fluorometrically using aminoacyl-β-naphthylamide as substrates. Depending on the type of angiotensinase analyzed, the results reflect a complex picture showing substantial differences between glands, strains, and treatments. Alanyl-aminopeptidase responsible for the metabolism of Ang III to Ang IV appears to be the most active angiotensinase in both pituitary and adrenals of WKY and particularly in SHR. Independently of treatment, most positive correlations are observed in the pituitary gland of WKY whereas such positive correlations are predominant in adrenals of SHR. Negative inter-gland correlations were observed in control SHR and L-NAME treated WKY. Positive inter-gland correlations were observed in captopril-treated SHR and propranolol-treated WKY. These results may reflect additional mechanisms for increasing or decreasing systolic blood pressure in WKY or SHR.
Collapse
Affiliation(s)
- Ana B. Segarra
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain; (A.B.S.); (I.P.); (I.B.); (M.M.-C.); (A.B.V.)
| | - Isabel Prieto
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain; (A.B.S.); (I.P.); (I.B.); (M.M.-C.); (A.B.V.)
| | - Inmaculada Banegas
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain; (A.B.S.); (I.P.); (I.B.); (M.M.-C.); (A.B.V.)
| | - Magdalena Martínez-Cañamero
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain; (A.B.S.); (I.P.); (I.B.); (M.M.-C.); (A.B.V.)
| | - Ana B. Villarejo
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain; (A.B.S.); (I.P.); (I.B.); (M.M.-C.); (A.B.V.)
| | - Germán Domínguez-Vías
- Department of Physiology, Faculty of Health Sciences, Ceuta, University of Granada, 18071 Granada, Spain;
| | - Marc de Gasparo
- Cardiovascular & Metabolic Syndrome Adviser, Rue es Planches 5, 2842 Rossemaison, Switzerland;
| | - Manuel Ramírez-Sánchez
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain; (A.B.S.); (I.P.); (I.B.); (M.M.-C.); (A.B.V.)
| |
Collapse
|
8
|
Aimo A, Vergaro G, Passino C, Clerico A. Evaluation of pathophysiological relationships between renin-angiotensin and ACE-ACE2 systems in cardiovascular disorders: from theory to routine clinical practice in patients with heart failure. Crit Rev Clin Lab Sci 2021; 58:530-545. [PMID: 34196254 DOI: 10.1080/10408363.2021.1942782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite the progressive improvements in diagnosis and therapy during the first 20 years of this century, the morbidity and mortality of patients with heart failure (HF) remain high, resulting in an enormous health and economic burden. Only a further improvement in understanding the pathophysiological mechanisms related to the development of cardiac injury and dysfunction can allow more innovative and personalized approaches to HF management. The renin-angiotensin system (RAS) has a critical role in cardiovascular physiology by regulating blood pressure and electrolyte balance. The RAS is mainly regulated by both angiotensin converting enzyme (ACE) and type 2 angiotensin converting enzyme (ACE2). However, the balance between the various peptides and peptidases constituting the RAS/ACE pathway remains in great part unraveled in patients with HF. This review summarizes the role of the RAS/ACE axis in cardiac physiology and HF pathophysiology as well as some analytical issues relevant to the clinical and laboratory assessment of inter-relationships between these two systems. There is evidence that RAS peptides represent a dynamic network of peptides, which are altered in different HF states and influenced by medical therapy. However, the mechanisms of signal transduction have not been fully elucidated under physiological and pathophysiological conditions. Further investigations are necessary to explore novel molecular mechanisms related to the RAS, which will provide alternative therapeutic agents. Moreover, monitoring the circulating levels of active RAS peptides in HF patients may enable a personalized approach by facilitating assessment of the pathophysiological status of several cardiovascular diseases and thus better selection of therapies for HF patients.
Collapse
Affiliation(s)
- Alberto Aimo
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giuseppe Vergaro
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudio Passino
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Aldo Clerico
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
9
|
Vanga SR, Åqvist J, Hallberg A, Gutiérrez-de-Terán H. Structural Basis of Inhibition of Human Insulin-Regulated Aminopeptidase (IRAP) by Benzopyran-Based Inhibitors. Front Mol Biosci 2021; 8:625274. [PMID: 33869280 PMCID: PMC8047434 DOI: 10.3389/fmolb.2021.625274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/10/2021] [Indexed: 12/01/2022] Open
Abstract
Inhibition of the insulin-regulated aminopeptidase (IRAP) improves memory and cognition in animal models. The enzyme has recently been crystallized and several series of inhibitors reported. We herein focused on one series of benzopyran-based inhibitors of IRAP known as the HFI series, with unresolved binding mode to IRAP, and developed a robust computational model to explain the structure-activity relationship (SAR) and potentially guide their further optimization. The binding model here proposed places the benzopyran ring in the catalytic binding site, coordinating the Zn2+ ion through the oxygen in position 3, in contrast to previous hypothesis. The whole series of HFI compounds was then systematically simulated, starting from this binding mode, using molecular dynamics and binding affinity estimated with the linear interaction energy (LIE) method. The agreement with experimental affinities supports the binding mode proposed, which was further challenged by rigorous free energy perturbation (FEP) calculations. Here, we found excellent correlation between experimental and calculated binding affinity differences, both between selected compound pairs and also for recently reported experimental data concerning the site directed mutagenesis of residue Phe544. The computationally derived structure-activity relationship of the HFI series and the understanding of the involvement of Phe544 in the binding of this scaffold provide valuable information for further lead optimization of novel IRAP inhibitors.
Collapse
Affiliation(s)
| | - Johan Åqvist
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Anders Hallberg
- Department of Pharmaceutical Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Neuropeptidase activity in the frontal cortex of Wistar-Kyoto and spontaneously hypertensive rats treated with vasoactive drugs: a bilateral study. J Hypertens 2020; 37:612-628. [PMID: 30044313 PMCID: PMC6365296 DOI: 10.1097/hjh.0000000000001884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background and objective: Hypertension can lead to mood disorders that may worsen or ameliorate depending on the type of antihypertensive prescribed. Depression is associated with modifications in basal brain asymmetry particularly that of the frontal cortex, which is involved in blood pressure control. Furthermore, different vasoactive drugs may change the brain's asymmetry in a manner that contributes to cognition status. We studied the bilateral activity of several neuropeptidases in frontal cortex as a reflect of the functional status of certain neuropeptides involved in mood. Methods: Using arylamide derivatives as substrates, we fluorometrically analysed the activity of these enzymes in the left and right frontal cortex of control untreated Wistar–Kyoto (WKY) and spontaneously hypertensive rats (SHRs) and compared their activities with WKY or SHR treated with the antihypertensive drugs captopril (CAP) and propranolol (PRO) or with the hypertensive N (G)-nitro-l-arginine methyl ester. SBP was also measured in all WKY and SHR groups. Results: Untreated WKY, WKY treated with CAP or PRO and SHR treated with CAP exhibited normotensive values of SBP. However, WKY treated with N (G)-nitro-l-arginine methyl ester as well as untreated SHR and SHR treated with PRO and N(G)-nitro-l-arginine methyl ester demonstrated hypertensive values of SBP. Changes in the bilateral distribution of neuropeptidases were depending on the strain, the enzyme analysed and the drug used. Normotensive WKY groups (WKY, CAP, PRO) revealed intrahemispheric correlations mainly in the left hemisphere. In contrast, WKY treated with N(G)-nitro-l-arginine methyl ester and SHR groups demonstrated intrahemispheric correlations mainly in the right hemisphere. Interhemispheric correlations were mostly observed in WKY as well as in SHR groups with antihypertensive treatments (CAP, PRO). Conclusion: Our results suggest specific brain bilateral patterns of neuropeptidase activities in WKY that change in SHR. This observation may be related to the cognitive disorders that have been described in these animals and that change under antihypertensive or hypertensive drug's treatments.
Collapse
|
11
|
Ivanova N, Tchekalarova J. The Potential Therapeutic Capacity of Inhibiting the Brain Renin-Angiotensin System in the Treatment of Co-Morbid Conditions in Epilepsy. CNS Drugs 2019; 33:1101-1112. [PMID: 31680223 DOI: 10.1007/s40263-019-00678-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Epilepsy is one of the most prevalent neurological diseases and although numerous novel anticonvulsants have been approved, the proportion of patients who are refractory to medical treatment of seizures and have progressive co-morbidities such as cognitive impairment and depression remains at about 20-30%. In the last decade, extensive research has identified a therapeutic capacity of the components of the brain renin-angiotensin system (RAS) in seizure- and epilepsy-related phenomena. Alleviating the activity of RAS in the central nervous system is considered to be a potential adjuvant strategy for the treatment of numerous detrimental consequences of epileptogenesis. One of the main advantages of RAS is associated with its modulatory influence on different neurotransmitter systems, thereby exerting a fine-tuning control mechanism for brain excitability. The most recent scientific findings regarding the involvement of the components of brain RAS show that angiotensin II (Ang II), angiotensin-converting enzyme (ACE), Ang II type 1 (AT1) and type 2 (AT2) receptors are involved in the control of epilepsy and its accompanying complications, and therefore they are currently of therapeutic interest in the treatment of this disease. However, data on the role of different components of brain RAS on co-morbid conditions in epilepsy, including hypertension, are insufficient. Experimental and clinical findings related to the involvement of Ang II, ACE, AT1, and AT2 receptors in the control of epilepsy and accompanying complications may point to new therapeutic opportunities and adjuvants for the treatment of common co-morbid conditions of epilepsy.
Collapse
Affiliation(s)
- Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria.
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria
| |
Collapse
|
12
|
Escobales N, Nuñez RE, Javadov S. Mitochondrial angiotensin receptors and cardioprotective pathways. Am J Physiol Heart Circ Physiol 2019; 316:H1426-H1438. [PMID: 30978131 PMCID: PMC6620675 DOI: 10.1152/ajpheart.00772.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
A growing body of data provides strong evidence that intracellular angiotensin II (ANG II) plays an important role in mammalian cell function and is involved in the pathogenesis of human diseases such as hypertension, diabetes, inflammation, fibrosis, arrhythmias, and kidney disease, among others. Recent studies also suggest that intracellular ANG II exerts protective effects in cells during high extracellular levels of the hormone or during chronic stimulation of the local tissue renin-angiotensin system (RAS). Notably, the intracellular RAS (iRAS) described in neurons, fibroblasts, renal cells, and cardiomyocytes provided new insights into regulatory mechanisms mediated by intracellular ANG II type 1 (AT1Rs) and 2 (AT2Rs) receptors, particularly, in mitochondria and nucleus. For instance, ANG II through nuclear AT1Rs promotes protective mechanisms by stimulating the AT2R signaling cascade, which involves mitochondrial AT2Rs and Mas receptors. The stimulation of nuclear ANG II receptors enhances mitochondrial biogenesis through peroxisome proliferator-activated receptor-γ coactivator-1α and increases sirtuins activity, thus protecting the cell against oxidative stress. Recent studies in ANG II-induced preconditioning suggest that plasma membrane AT2R stimulation exerts protective effects against cardiac ischemia-reperfusion by modulating mitochondrial AT1R and AT2R signaling. These studies indicate that iRAS promotes the protection of cells through nuclear AT1R signaling, which, in turn, promotes AT2R-dependent processes in mitochondria. Thus, despite abundant data on the deleterious effects of intracellular ANG II, a growing body of studies also supports a protective role for iRAS that could be of relevance to developing new therapeutic strategies. This review summarizes and discusses previous studies on the role of iRAS, particularly emphasizing the protective and counterbalancing actions of iRAS, mitochondrial ANG II receptors, and their implications for organ protection.
Collapse
Affiliation(s)
- Nelson Escobales
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| | - Rebeca E Nuñez
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| |
Collapse
|
13
|
Shen Y, Liu M, Xu M, Xu Z, Na Y, Zhang N, Geng F. Simultaneous determination of nine trace concentration angiotensin peptides in human serum using ultra high performance liquid chromatography with tandem mass spectrometry with sephadex LH-20 gel solid-phase extraction. J Sep Sci 2019; 42:2247-2254. [PMID: 31020766 DOI: 10.1002/jssc.201801276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/13/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system is a highly complex enzymatic system consisting of multiple peptide hormones, enzymes, and receptors. Here, an assay to simultaneously quantify eight angiotensin peptides and bradykinin in human serum was developed and validated, using ultra high performance liquid chromatography coupled with tandem mass spectrometry. A pre-concentration method of Sephadex LH-20 gel solid-phase extraction was first applied for analysis of angiotensin peptides from serum sample. The triple quadrupole mass spectrometer was operated in the positive ion mode and multiple reaction monitoring was used for drug quantification. The analytical time was within 5 min, much raising the analysis efficiency. Limits of detection ranged from 0.9 to 1.3 pg/mL, and displayed the same level of sensitivity compared with radioimmunoassay. The method was successfully applied to 22 healthy human serum samples, giving the concentrations of angiotensin I, angiotensin II, angiotensin III, angiotensin IV, angiotensin 1-9, angiotensin 1-7, angiotensin 1-5, Asn1 ,Val5 -Angiotensin II, and bradykinin for reference. This novel metabolic profile study of vasoactive peptides based on gel solid-phase extraction concentration provided not only an accurate quantitative assay of the serum concentrations, but also a promising methodology for evaluating the diagnostic values of the various peptides.
Collapse
Affiliation(s)
- Yue Shen
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, P. R. China
| | - Mingyang Liu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, P. R. China
| | - Mingyue Xu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, P. R. China
| | - Zhanling Xu
- Key Laboratory of Chinese Materia Medica, College of Jiamusi, College of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Yue Na
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, P. R. China
| | - Ning Zhang
- Key Laboratory of Chinese Materia Medica, College of Jiamusi, College of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Fang Geng
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, P. R. China
| |
Collapse
|
14
|
Krasniqi S, Daci A. Role of the Angiotensin Pathway and its Target Therapy in Epilepsy Management. Int J Mol Sci 2019; 20:ijms20030726. [PMID: 30744022 PMCID: PMC6386974 DOI: 10.3390/ijms20030726] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Despite extensive research on epileptogenesis, there is still a need to investigate new pathways and targeted therapeutic approaches in this complex process. Inflammation, oxidative stress, neurotoxicity, neural cell death, gliosis, and blood–brain barrier (BBB) dysfunction are the most common causes of epileptogenesis. Moreover, the renin–angiotensin system (RAS) affects the brain’s physiological and pathological conditions, including epilepsy and its consequences. While there are a variety of available pharmacotherapeutic approaches, information on new pathways is in high demand and the achievement of treatment goals is greatly desired. Therefore, targeting the RAS presents an interesting opportunity to better understand this process. This has been supported by preclinical studies, primarily based on RAS enzyme, receptor-inhibition, and selective agonists, which are characterized by pleiotropic properties. Although there are some antiepileptic drugs (AEDs) that interfere with RAS, the main targeted therapy of this pathway contributes in synergy with AEDs. However, the RAS-targeted treatment alone, or in combination with AEDs, requires clinical studies to contribute to, and clarify, the evidence on epilepsy management. There is also a genetic association between RAS and epilepsy, and an involvement of pharmacogenetics in RAS, so there are possibilities for the development of new diagnostic and personalized treatments for epilepsy.
Collapse
Affiliation(s)
- Shaip Krasniqi
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Prishtina, 10000 Prishtina, Kosovo.
| | - Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, 10000 Prishtina, Kosovo.
| |
Collapse
|
15
|
Hu Z, Wang L, Ma S, Kirisci L, Feng Z, Xue Y, Klunk WE, Kamboh MI, Sweet RA, Becker J, Lv Q, Lopez OL, Xie XQ. Synergism of antihypertensives and cholinesterase inhibitors in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:542-555. [PMID: 30386819 PMCID: PMC6205113 DOI: 10.1016/j.trci.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION We investigated the effect of antihypertensive (aHTN) medications and cholinesterase inhibitors (ChEIs) on the cognitive decline in patients with Alzheimer's disease (AD) and analyzed synergism by chemogenomics systems pharmacology mapping. METHODS We compared the effect of aHTN drugs on Mini-Mental State Examination scores in 617 AD patients with hypertension, and studied the synergistic effects. RESULTS The combination of diuretics, calcium channel blockers, and renin-angiotensin-aldosterone system blockers showed slower cognitive decline compared with other aHTN groups (Δβ = +1.46, P < .0001). aHTN medications slow down cognitive decline in ChEI users (Δβ = +0.56, P = .006), but not in non-ChEI users (Δβ = -0.31, P = .53). DISCUSSION aHTN and ChEI drugs showed synergistic effects. A combination of diuretics, renin-angiotensin-aldosterone system blockers, and calcium channel blockers had the slowest cognitive decline. The chemogenomics systems pharmacology-identified molecular targets provide system pharmacology interpretation of the synergism of the drugs in clinics. The results suggest that improving vascular health is essential for AD treatment and provide a novel direction for AD drug development.
Collapse
Affiliation(s)
- Ziheng Hu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lirong Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shifan Ma
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Levent Kirisci
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Xue
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - William E. Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Becker
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qianzhou Lv
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Vanga SR, Sävmarker J, Ng L, Larhed M, Hallberg M, Åqvist J, Hallberg A, Chai SY, Gutiérrez-de-Terán H. Structural Basis of Inhibition of Human Insulin-Regulated Aminopeptidase (IRAP) by Aryl Sulfonamides. ACS OMEGA 2018; 3:4509-4521. [PMID: 30023895 PMCID: PMC6045421 DOI: 10.1021/acsomega.8b00595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 05/07/2023]
Abstract
The insulin-regulated aminopeptidase (IRAP) is a membrane-bound zinc metallopeptidase with many important regulatory functions. It has been demonstrated that inhibition of IRAP by angiotensin IV (Ang IV) and other peptides, as well as more druglike inhibitors, improves cognition in several rodent models. We recently reported a series of aryl sulfonamides as small-molecule IRAP inhibitors and a promising scaffold for pharmacological intervention. We have now expanded with a number of derivatives, report their stability in liver microsomes, and characterize the activity of the whole series in a new assay performed on recombinant human IRAP. Several compounds, such as the new fluorinated derivative 29, present submicromolar affinity and high metabolic stability. Starting from the two binding modes previously proposed for the sulfonamide scaffold, we systematically performed molecular dynamics simulations and binding affinity estimation with the linear interaction energy method for the full compound series. The significant agreement with experimental affinities suggests one of the binding modes, which was further confirmed by the excellent correlation for binding affinity differences between the selected pair of compounds obtained by rigorous free energy perturbation calculations. The new experimental data and the computationally derived structure-activity relationship of the sulfonamide series provide valuable information for further lead optimization of novel IRAP inhibitors.
Collapse
Affiliation(s)
- Sudarsana Reddy Vanga
- Department
of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751
24 Uppsala, Sweden
| | - Jonas Sävmarker
- Department of Medicinal Chemistry and Science for Life Laboratory, Department
of Medicinal Chemistry, Uppsala University,
BMC, SE-751 24 Uppsala, Sweden
| | - Leelee Ng
- Biomedicine
Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Mats Larhed
- Department of Medicinal Chemistry and Science for Life Laboratory, Department
of Medicinal Chemistry, Uppsala University,
BMC, SE-751 24 Uppsala, Sweden
| | - Mathias Hallberg
- The
Beijer Laboratory, Department of Pharmaceutical Biosciences, Division
of Biological Research on Drug Dependence, Uppsala University, BMC, SE-751 23 Uppsala, Sweden
| | - Johan Åqvist
- Department
of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751
24 Uppsala, Sweden
| | - Anders Hallberg
- Department of Medicinal Chemistry and Science for Life Laboratory, Department
of Medicinal Chemistry, Uppsala University,
BMC, SE-751 24 Uppsala, Sweden
| | - Siew Yeen Chai
- Biomedicine
Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
- E-mail: . Phone: +61 3 990 52515. Fax: +61 3 990 52547 (S.Y.C.)
| | - Hugo Gutiérrez-de-Terán
- Department
of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751
24 Uppsala, Sweden
- E-mail: . Phone: +46 18 471 5056. Fax: +46 18 53 69 71 (H.G.-d.-T.)
| |
Collapse
|
17
|
Segarra AB, Prieto I, Martínez-Cañamero M, de Gasparo M, Luna JDD, Ramírez-Sánchez M. Thyroid Disorders Change the Pattern of Response of Angiotensinase Activities in the Hypothalamus-Pituitary-Adrenal Axis of Male Rats. Front Endocrinol (Lausanne) 2018; 9:731. [PMID: 30555423 PMCID: PMC6283893 DOI: 10.3389/fendo.2018.00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/16/2018] [Indexed: 11/17/2022] Open
Abstract
Thyroid disorders affect the hypothalamic-pituitary-adrenal axis with important consequences on the cardiovascular function in which the renin-angiotensin system plays a major role. Hypo and hyperthyroidism influence the classic main components of the renin-angiotensin system. However, the behavior of other elements of the renin-angiotensin system such as Ang III, Ang 2-10, Ang IV, or AT4, regulated by angiotensinase enzymes such as alanyl- (AlaAP), cystinyl- (CysAP), glutamyl- (GluAP), or aspartyl-aminopeptidase (AspAP), has not yet been described. In order to obtain a comprehensive view on the response of the renin-angiotensin system in the hypothalamic-pituitary-adrenal axis of animals with thyroid disorders, these enzyme activities were simultaneously analyzed fluorometrically, using arylamide derivatives as substrates in hypothalamus, anterior and posterior pituitary, adrenals and plasma of euthyroid, hypothyroid, and hyperthyroid rats, and their intra- and inter-tissue correlations were evaluated. The response is depending on the type of enzyme studied, its location and the thyroid status. Anterior pituitary, adrenals and plasma were mainly affected by the thyroid disorders. In the anterior pituitary, GluAP and AspAP increased in hypothyroid rats. In adrenals, AlaAP and CysAP decreased in hypothyroid whereas GluAP and AspAP decreased in hyperthyroid rats. In plasma, while AlaAP increased in hypo- and hyperthyroid rats, CysAP and GluAP decreased only in hyperthyroid. In comparison with euthyroid, intra-tissue correlations decreased in hypothyroid but inter-tissue correlations decreased mainly in hyperthyroid rats. Thyroid disorders also produced a disruption in the pattern of inter-tissue correlations observed in euthyroid. These results suggest that thyroid hormone levels hit components of the renin-angiotensin system and may influence the paracrine and endocrine cross talk between cells.
Collapse
Affiliation(s)
- Ana B. Segarra
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | - Isabel Prieto
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | - Marc de Gasparo
- Cardiovascular and Metabolic Syndrome Adviser, Rossemaison, Switzerland
| | - Juan de Dios Luna
- Department of Biostatistics, Medical School, University of Granada, Granada, Spain
| | - Manuel Ramírez-Sánchez
- Department of Health Sciences, University of Jaén, Jaén, Spain
- *Correspondence: Manuel Ramírez-Sánchez
| |
Collapse
|
18
|
Divergent profile between hypothalamic and plasmatic aminopeptidase activities in WKY and SHR. Influence of beta-adrenergic blockade. Life Sci 2017; 192:9-17. [PMID: 29155297 DOI: 10.1016/j.lfs.2017.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 11/20/2022]
Abstract
AIMS Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) differ in their renin-angiotensin system function and sympathetic tone. The metabolism of angiotensins and vasopressin depends on the action of certain aminopeptidases whose activity may be influenced by the autonomic nervous system. Their regulation may differ between WKY and SHR in hypothalamus and plasma according to the sympathetic tone. We analyzed aminopeptidases responsible for the hydrolysis of certain angiotensins, vasopressin, cholecystokinin or enkephalins in hypothalamus and plasma of WKY and SHR in untreated controls rats and under beta-adrenoceptor blockade. Systolic blood pressure, food intake, water intake and diuresis were measured as parameters modulated by the autonomic nervous system and the above mentioned peptides. MAIN METHODS Glutamyl-, aspartyl-, cystinyl- and alanyl-aminopeptidase activities were analyzed fluorimetrically in plasma and hypothalamus of control and propranolol-treated (100mg/kg/day administered in drinking water for 1month) WKY and SHR, using arylamide derivatives as substrates. KEY FINDINGS An opposite response of aminopeptidases to propranolol treatment between plasma and hypothalamus was observed in either WKY and SHR. Furthermore, the behavior of aminopeptidases was inversed between WKY and SHR either in hypothalamus and plasma: while the activity increased in hypothalamus and decreased in plasma of WKY, it decreased in hypothalamus and increased in plasma of SHR. SIGNIFICANCE These results revealed an inverse response of aminopeptidases between hypothalamus and plasma and also an opposite behavior of these enzymes between WKY and SHR in hypothalamus and plasma. These observations support the involvement of the sympathetic system in the modulation of aminopeptidase activities.
Collapse
|
19
|
Narwade SC, Mallick BN, Deobagkar DD. Transcriptome Analysis Reveals Altered Expression of Memory and Neurotransmission Associated Genes in the REM Sleep Deprived Rat Brain. Front Mol Neurosci 2017; 10:67. [PMID: 28367113 PMCID: PMC5355427 DOI: 10.3389/fnmol.2017.00067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Sleep disorders are associated with cognitive impairment. Selective rapid eye movement sleep (REMS) deprivation (REMSD) alters several physiological processes and behaviors. By employing NGS platform we carried out transcriptomic analysis in brain samples of control rats and those exposed to REMSD. The expression of genes involved in chromatin assembly, methylation, learning, memory, regulation of synaptic transmission, neuronal plasticity and neurohypophysial hormone synthesis were altered. Increased transcription of BMP4, DBH and ATP1B2 genes after REMSD supports our earlier findings and hypothesis. Alteration in the transcripts encoding histone subtypes and important players in chromatin remodeling was observed. The mRNAs which transcribe neurotransmitters such as OXT, AVP, PMCH and LNPEP and two small non-coding RNAs, namely RMRP and BC1 were down regulated. At least some of these changes are likely to regulate REMS and may participate in the consequences of REMS loss. Thus, the findings of this study have identified key epigenetic regulators and neuronal plasticity genes associated to REMS and its loss. This analysis provides a background and opens up avenues for unraveling their specific roles in the complex behavioral network particularly in relation to sustained REMS-loss associated changes.
Collapse
Affiliation(s)
- Santosh C Narwade
- Molecular Biology Research Laboratory, Center of Advanced Studies, Department of Zoology, Savitribai Phule Pune University Pune, India
| | | | - Deepti D Deobagkar
- Molecular Biology Research Laboratory, Center of Advanced Studies, Department of Zoology, Savitribai Phule Pune UniversityPune, India; Bioinformatics Center, Savitribai Phule Pune UniversityPune, India
| |
Collapse
|
20
|
Ismail MAM, Mateos L, Maioli S, Merino-Serrais P, Ali Z, Lodeiro M, Westman E, Leitersdorf E, Gulyás B, Olof-Wahlund L, Winblad B, Savitcheva I, Björkhem I, Cedazo-Mínguez A. 27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation. J Exp Med 2017; 214:699-717. [PMID: 28213512 PMCID: PMC5339669 DOI: 10.1084/jem.20160534] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/17/2016] [Accepted: 10/28/2016] [Indexed: 01/23/2023] Open
Abstract
Ismail et al. show that 27-hydroxycholesterol, a peripheral cholesterol metabolite capable of passing the blood–brain barrier, reduces brain glucose uptake by upregulating the renin-angiotensin system and inhibiting GLUT4. This alteration affects memory processes and is likely to have implications on neurodegenerative diseases. Hypercholesterolemia is associated with cognitively deteriorated states. Here, we show that excess 27-hydroxycholesterol (27-OH), a cholesterol metabolite passing from the circulation into the brain, reduced in vivo brain glucose uptake, GLUT4 expression, and spatial memory. Furthermore, patients exhibiting higher 27-OH levels had reduced 18F-fluorodeoxyglucose uptake. This interplay between 27-OH and glucose uptake revealed the engagement of the insulin-regulated aminopeptidase (IRAP). 27-OH increased the levels and activity of IRAP, countered the IRAP antagonist angiotensin IV (AngIV)–mediated glucose uptake, and enhanced the levels of the AngIV-degrading enzyme aminopeptidase N (AP-N). These effects were mediated by liver X receptors. Our results reveal a molecular link between cholesterol, brain glucose, and the brain renin-angiotensin system, all of which are affected in some neurodegenerative diseases. Thus, reducing 27-OH levels or inhibiting AP-N maybe a useful strategy in the prevention of the altered glucose metabolism and memory decline in these disorders.
Collapse
Affiliation(s)
- Muhammad-Al-Mustafa Ismail
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Laura Mateos
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Silvia Maioli
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Paula Merino-Serrais
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Zeina Ali
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Maria Lodeiro
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Eran Leitersdorf
- Center for Research, Prevention, and Treatment of Atherosclerosis, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Balázs Gulyás
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Olof-Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Irina Savitcheva
- Department of Radiology, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Angel Cedazo-Mínguez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| |
Collapse
|
21
|
Diwakarla S, Nylander E, Grönbladh A, Vanga SR, Shamsudin Y, Gutiérrez-de-Terán H, Sävmarker J, Ng L, Pham V, Lundbäck T, Jenmalm-Jensen A, Svensson R, Artursson P, Zelleroth S, Engen K, Rosenström U, Larhed M, Åqvist J, Chai SY, Hallberg M. Aryl Sulfonamide Inhibitors of Insulin-Regulated Aminopeptidase Enhance Spine Density in Primary Hippocampal Neuron Cultures. ACS Chem Neurosci 2016; 7:1383-1392. [PMID: 27501164 DOI: 10.1021/acschemneuro.6b00146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The zinc metallopeptidase insulin regulated aminopeptidase (IRAP), which is highly expressed in the hippocampus and other brain regions associated with cognitive function, has been identified as a high-affinity binding site of the hexapeptide angiotensin IV (Ang IV). This hexapeptide is thought to facilitate learning and memory by binding to the catalytic site of IRAP to inhibit its enzymatic activity. In support of this hypothesis, low molecular weight, nonpeptide specific inhibitors of IRAP have been shown to enhance memory in rodent models. Recently, it was demonstrated that linear and macrocyclic Ang IV-derived peptides can alter the shape and increase the number of dendritic spines in hippocampal cultures, properties associated with enhanced cognitive performance. After screening a library of 10 500 drug-like substances for their ability to inhibit IRAP, we identified a series of low molecular weight aryl sulfonamides, which exhibit no structural similarity to Ang IV, as moderately potent IRAP inhibitors. A structural and biological characterization of three of these aryl sulfonamides was performed. Their binding modes to human IRAP were explored by docking calculations combined with molecular dynamics simulations and binding affinity estimations using the linear interaction energy method. Two alternative binding modes emerged from this analysis, both of which correctly rank the ligands according to their experimental binding affinities for this series of compounds. Finally, we show that two of these drug-like IRAP inhibitors can alter dendritic spine morphology and increase spine density in primary cultures of hippocampal neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Leelee Ng
- Biomedicine Discovery Institute, Department of Physiology, Monash University , Clayton, Victoria 3800, Australia
| | - Vi Pham
- Biomedicine Discovery Institute, Department of Physiology, Monash University , Clayton, Victoria 3800, Australia
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics, Karolinska Institute , 171 77 Solna, Sweden
| | - Annika Jenmalm-Jensen
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics, Karolinska Institute , 171 77 Solna, Sweden
| | | | | | | | | | | | | | | | - Siew Yeen Chai
- Biomedicine Discovery Institute, Department of Physiology, Monash University , Clayton, Victoria 3800, Australia
| | | |
Collapse
|
22
|
Van der Poorten O, Knuhtsen A, Sejer Pedersen D, Ballet S, Tourwé D. Side Chain Cyclized Aromatic Amino Acids: Great Tools as Local Constraints in Peptide and Peptidomimetic Design. J Med Chem 2016; 59:10865-10890. [PMID: 27690430 DOI: 10.1021/acs.jmedchem.6b01029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected to the peptide backbone to provide control of χ1- and χ2-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors.
Collapse
Affiliation(s)
- Olivier Van der Poorten
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Astrid Knuhtsen
- Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 162, 2100 Copenhagen, Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 162, 2100 Copenhagen, Denmark
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
23
|
Ou Z, Jiang T, Gao Q, Tian YY, Zhou JS, Wu L, Shi JQ, Zhang YD. Mitochondrial-dependent mechanisms are involved in angiotensin II-induced apoptosis in dopaminergic neurons. J Renin Angiotensin Aldosterone Syst 2016; 17:17/4/1470320316672349. [PMID: 27733642 PMCID: PMC5843909 DOI: 10.1177/1470320316672349] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/29/2016] [Indexed: 01/08/2023] Open
Abstract
Introduction: We recently demonstrated that angiotensin II (Ang II) was involved in the etiology of Parkinson’s disease (PD) via induction of apoptosis of dopaminergic neurons, but the mechanisms are not completely elucidated. Here, we asked whether mitochondrial-dependent mechanisms contributed to the Ang II-induced dopaminergic neuronal apoptosis. Materials and methods: CATH.a cells were incubated with Ang II in combination with mitochondrial permeability transition pore (mPTP) inhibitors or angiotensin receptor antagonists, and apoptosis rate, caspase-3 activity, cytochrome c levels, and mPTP opening were assessed. Results: We showed that Ang II triggered apoptosis via a mitochondrial-dependent pathway, as elevated cytochrome c levels were observed in the cytosol. By employing cyclosporin A and sanglifehrin A, two specific mPTP inhibitors, we revealed that cytochrome c release from mitochondria into cytoplasm was ascribed to mPTP opening. Meanwhile, the aforementioned effects could be abrogated by an AT1 receptor antagonist losartan rather than an AT2 receptor antagonist PD123319. Conclusion: This study demonstrates that Ang II triggers mitochondrial-dependent apoptosis via facilitating mPTP opening through an AT1 receptor-mediated fashion in dopaminergic neurons. These findings give insight into the effect of Ang II in the etiology of PD, and reinforce the application of AT1 receptor antagonists for PD treatment.
Collapse
Affiliation(s)
- Zhou Ou
- Department of Neurology, Nanjing First Hospital, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, PR China
| | - Qing Gao
- Department of Neurology, Nanjing First Hospital, PR China
| | - You-Yong Tian
- Department of Neurology, Nanjing First Hospital, PR China
| | - Jun-Shan Zhou
- Department of Neurology, Nanjing First Hospital, PR China
| | - Liang Wu
- Department of Neurology, Nanjing First Hospital, PR China
| | - Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, PR China
| | | |
Collapse
|
24
|
Yeatman HR, Albiston AL, Burns P, Chai SY. Forebrain neurone-specific deletion of insulin-regulated aminopeptidase causes age related deficits in memory. Neurobiol Learn Mem 2016; 136:174-182. [PMID: 27713012 DOI: 10.1016/j.nlm.2016.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/19/2016] [Accepted: 09/25/2016] [Indexed: 12/27/2022]
Abstract
Central infusion of Insulin-Regulated Aminopeptidase (IRAP) inhibitors improves memory in both normal rodents and in models of memory deficit. However, in contrast, the global IRAP knockout mice (KO) demonstrate age-accelerated spatial memory deficits and no improvements in performance in any memory tasks. Potentially, the observed memory deficit could be due to the absence of IRAP in the developing brain. We therefore generated a postnatal forebrain neuron-specific IRAP knockout mouse line (CamKIIalphaCre; IRAPlox/lox). Unexpectedly, we demonstrated that postnatal deletion of IRAP in the brain results in significant deficits in both spatial reference and object recognition memory at three months of age, although spatial working memory remained intact. These results indicate a significant role for IRAP in postnatal brain development and normal function of the hippocampus in adulthood.
Collapse
Affiliation(s)
- Holly R Yeatman
- Florey Neuroscience Institutes and Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Anthony L Albiston
- College of Health and Biomedicine, VU St Albans, Victoria 3021, Australia
| | - Peta Burns
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Siew Yeen Chai
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
25
|
Galandrin S, Denis C, Boularan C, Marie J, M'Kadmi C, Pilette C, Dubroca C, Nicaise Y, Seguelas MH, N'Guyen D, Banères JL, Pathak A, Sénard JM, Galés C. Cardioprotective Angiotensin-(1-7) Peptide Acts as a Natural-Biased Ligand at the Angiotensin II Type 1 Receptor. Hypertension 2016; 68:1365-1374. [PMID: 27698068 DOI: 10.1161/hypertensionaha.116.08118] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/14/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022]
Abstract
Hyperactivity of the renin-angiotensin-aldosterone system through the angiotensin II (Ang II)/Ang II type 1 receptor (AT1-R) axis constitutes a hallmark of hypertension. Recent findings indicate that only a subset of AT1-R signaling pathways is cardiodeleterious, and their selective inhibition by biased ligands promotes therapeutic benefit. To date, only synthetic biased ligands have been described, and whether natural renin-angiotensin-aldosterone system peptides exhibit functional selectivity at AT1-R remains unknown. In this study, we systematically determined efficacy and potency of Ang II, Ang III, Ang IV, and Ang-(1-7) in AT1-R-expressing HEK293T cells on the activation of cardiodeleterious G-proteins and cardioprotective β-arrestin2. Ang III and Ang IV fully activate similar G-proteins than Ang II, the prototypical AT1-R agonist, despite weaker potency of Ang IV. Interestingly, Ang-(1-7) that binds AT1-R fails to promote G-protein activation but behaves as a competitive antagonist for Ang II/Gi and Ang II/Gq pathways. Conversely, all renin-angiotensin-aldosterone system peptides act as agonists on the AT1-R/β-arrestin2 axis but display biased activities relative to Ang II as indicated by their differences in potency and AT1-R/β-arrestin2 intracellular routing. Importantly, we reveal Ang-(1-7) a known Mas receptor-specific ligand, as an AT1-R-biased agonist, selectively promoting β-arrestin activation while blocking the detrimental Ang II/AT1-R/Gq axis. This original pharmacological profile of Ang-(1-7) at AT1-R, similar to that of synthetic AT1-R-biased agonists, could, in part, contribute to its cardiovascular benefits. Accordingly, in vivo, Ang-(1-7) counteracts the phenylephrine-induced aorta contraction, which was blunted in AT1-R knockout mice. Collectively, these data suggest that Ang-(1-7) natural-biased agonism at AT1-R could fine-tune the physiology of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Ségolène Galandrin
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Colette Denis
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Cédric Boularan
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Jacky Marie
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Céline M'Kadmi
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Claire Pilette
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Caroline Dubroca
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Yvan Nicaise
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Marie-Hélène Seguelas
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Du N'Guyen
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Jean-Louis Banères
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Atul Pathak
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Jean-Michel Sénard
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Céline Galés
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France.
| |
Collapse
|
26
|
Wincewicz D, Juchniewicz A, Waszkiewicz N, Braszko JJ. Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression. Pharmacol Biochem Behav 2016; 148:108-18. [PMID: 27375198 DOI: 10.1016/j.pbb.2016.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/10/2016] [Accepted: 06/29/2016] [Indexed: 01/19/2023]
Abstract
Physical and psychological aspects of chronic stress continue to be a persistent clinical problem for which new pharmacological treatment strategies are aggressively sought. By the results of our previous work it has been demonstrated that telmisartan (TLM), an angiotensin type 1 receptor (AT1) blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor gamma (PPARγ), alleviates stress-induced cognitive decline. Understanding of mechanistic background of this phenomenon is hampered by both dual binding sites of TLM and limited data on the consequences of central AT1 blockade and PPARγ activation. Therefore, a critical need exists for progress in the characterization of this target for pro-cognitive drug discovery. An unusual ability of novel ARBs to exert various PPARγ binding activities is commonly being viewed as predominant over angiotensin blockade in terms of neuroprotection. Here we aimed to verify this hypothesis using an animal model of chronic psychological stress (Wistar rats restrained 2.5h daily for 21days) with simultaneous oral administration of TLM (1mg/kg), GW9662 - PPARγ receptor antagonist (0.5mg/kg), or both in combination, followed by a battery of behavioral tests (open field, elevated plus maze, inhibitory avoidance - IA, object recognition - OR), quantitative determination of serum corticosterone (CORT) and evaluation of brain-derived neurotrophic factor (BDNF) gene expression in the medial prefrontal cortex (mPFC) and hippocampus (HIP). Stressed animals displayed decreased recall of the IA behavior (p<0.001), decreased OR (p<0.001), substantial CORT increase (p<0.001) and significantly downregulated expression of BDNF in the mPFC (p<0.001), which were attenuated in rats receiving TLM and TLM+GW9662. These data indicate that procognitive effect of ARBs in stressed subjects do not result from PPAR-γ activation, but AT1 blockade and subsequent hypothalamus-pituitary-adrenal axis deactivation associated with changes in primarily cortical gene expression. This study confirms the dual activities of TLM that controls hypertension and cognition through AT1 blockade.
Collapse
Affiliation(s)
- D Wincewicz
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15274 Bialystok, Poland; Department of Psychiatry, Medical University of Bialystok, Poland.
| | - A Juchniewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, Poland
| | - N Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, Poland
| | - J J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15274 Bialystok, Poland
| |
Collapse
|
27
|
Diwakarla S, Nylander E, Grönbladh A, Vanga SR, Khan YS, Gutiérrez-de-Terán H, Ng L, Pham V, Sävmarker J, Lundbäck T, Jenmalm-Jensen A, Andersson H, Engen K, Rosenström U, Larhed M, Åqvist J, Chai SY, Hallberg M. Binding to and Inhibition of Insulin-Regulated Aminopeptidase by Macrocyclic Disulfides Enhances Spine Density. Mol Pharmacol 2016; 89:413-24. [PMID: 26769413 DOI: 10.1124/mol.115.102533] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/13/2016] [Indexed: 01/28/2023] Open
Abstract
Angiotensin IV (Ang IV) and related peptide analogs, as well as nonpeptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocyclic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N terminus of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09, and of Ang IV in either the extended or γ-turn conformation at the C terminus to human IRAP were predicted by docking and molecular dynamics simulations. The binding free energies calculated with the linear interaction energy method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.
Collapse
Affiliation(s)
- Shanti Diwakarla
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Sudarsana Reddy Vanga
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Yasmin Shamsudin Khan
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Hugo Gutiérrez-de-Terán
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Leelee Ng
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Vi Pham
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Jonas Sävmarker
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Thomas Lundbäck
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Annika Jenmalm-Jensen
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Hanna Andersson
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Karin Engen
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Ulrika Rosenström
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Mats Larhed
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Johan Åqvist
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Siew Yeen Chai
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| |
Collapse
|
28
|
Prieto I, Segarra A, de Gasparo M, Ramírez-Sánchez M. Neuropeptidases, Stress, and Memory—A Promising Perspective. AIMS Neurosci 2016. [DOI: 10.3934/neuroscience.2016.4.487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
30
|
Malinauskas M, Wallenius V, Fändriks L, Casselbrant A. Local expression of AP/AngIV/IRAP and effect of AngIV on glucose-induced epithelial transport in human jejunal mucosa. J Renin Angiotensin Aldosterone Syst 2015; 16:1101-8. [PMID: 26311161 DOI: 10.1177/1470320315599514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/12/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recently it was shown that the classic renin-angiotensin system (RAS) is locally expressed in small intestinal enterocytes and exerts autocrine control of glucose transport. The aim of this study was to investigate if key components for the Angiotensin III (AngIII) and IV (AngIV) formation enzymes and the AngIV receptor, insulin-regulated aminopeptidase (IRAP), are present in the healthy jejunal mucosa. A second aim was to investigate AngIV effects on glucose-induced mucosal transport in vitro. MATERIAL AND METHODS Enteroscopy with mucosal biopsy sampling was performed in healthy volunteers. ELISA, Western blotting and immunohistochemistry were used to assess the protein levels and localization. The functional effect of AngIV was examined in Ussing chambers. RESULTS The substrate Angiotensin II, the enzymes aminopeptidases-A, B, M as well as IRAP were detected in the jejunal mucosa. Immunohistochemistry localized the enzymes to the apical brush-border membrane whereas IRAP was localized in the subapical cytosolic compartment in the enterocyte. AngIV increased the glucose-induced electrogenic transport in vitro. CONCLUSION The present study indicates the presence of substrates and enzymes necessary for AngIV formation as well as the receptor IRAP in the jejunal mucosa. The functional data suggest that AngIV regulates glucose uptake in the healthy human small intestine.
Collapse
Affiliation(s)
- M Malinauskas
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - V Wallenius
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - L Fändriks
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - A Casselbrant
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
31
|
Prieto I, Villarejo AB, Segarra AB, Wangensteen R, Banegas I, de Gasparo M, Vanderheyden P, Zorad S, Vives F, Ramírez-Sánchez M. Tissue distribution of CysAP activity and its relationship to blood pressure and water balance. Life Sci 2015; 134:73-8. [DOI: 10.1016/j.lfs.2015.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/02/2015] [Accepted: 04/18/2015] [Indexed: 12/31/2022]
|
32
|
Tolpygo SM, Pevtsova EI, Kotov AV. Behavioral and Hemodynamic Effects of Free and Protein-Bound Angiotensin IV in Rats in Experimental Hypo- and Hyperglycemia: Comparative Aspects. Bull Exp Biol Med 2015. [PMID: 26205719 DOI: 10.1007/s10517-015-2946-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In rats with acute hypo- and hyperglycemia the initial effects of free angiotensin IV and its complexes with functionally different carrier proteins (transport protein BSA, neuron-specific protein S100b) on hemodynamics and behavior of rats were qualitatively altered, in comparison with those in intact animals. At the same time, free angiotensin IV under conditions of hypo- and hyperglycemia paradoxically acquired functions of angiotensin II (moderate hypertension, tachycardia, polydipsia and activation of instrumental drinking behavior). Concurrently, complexes of angiotensin IV with BSA and S100b acquired functions of free angiotensin IV (hypotensia, suppression of drinking behavior). It is suggested that complexes of angiotensin IV with functionally different proteins are involved in a differentiated way first in compensation of behavior and hemodynamics impairment produced by acute and/or chronic hypo- and hyperglycemia, and then in qualitative transformation of these adaptive processes into stable pathological condition involving mechanisms of so called "metabolic memory".
Collapse
Affiliation(s)
- S M Tolpygo
- P. K. Anokhin Research Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow, Russia,
| | | | | |
Collapse
|
33
|
Borhade SR, Rosenström U, Sävmarker J, Lundbäck T, Jenmalm-Jensen A, Sigmundsson K, Axelsson H, Svensson F, Konda V, Sköld C, Larhed M, Hallberg M. Inhibition of Insulin-Regulated Aminopeptidase (IRAP) by Arylsulfonamides. ChemistryOpen 2014; 3:256-63. [PMID: 25558444 PMCID: PMC4280825 DOI: 10.1002/open.201402027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 01/07/2023] Open
Abstract
The inhibition of insulin-regulated aminopeptidase (IRAP, EC 3.4.11.3) by angiotenesin IV is known to improve memory and learning in rats. Screening 10 500 low-molecular-weight compounds in an enzyme inhibition assay with IRAP from Chinese Hamster Ovary (CHO) cells provided an arylsulfonamide (N-(3-(1H-tetrazol-5-yl)phenyl)-4-bromo-5-chlorothiophene-2-sulfonamide), comprising a tetrazole in the meta position of the aromatic ring, as a hit. Analogues of this hit were synthesized, and their inhibitory capacities were determined. A small structure-activity relationship study revealed that the sulfonamide function and the tetrazole ring are crucial for IRAP inhibition. The inhibitors exhibited a moderate inhibitory potency with an IC50=1.1±0.5 μm for the best inhibitor in the series. Further optimization of this new class of IRAP inhibitors is required to make them attractive as research tools and as potential cognitive enhancers.
Collapse
Affiliation(s)
- Sanjay R Borhade
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Ulrika Rosenström
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Jonas Sävmarker
- Beijer Laboratory, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm 171 77 (Sweden)
| | - Annika Jenmalm-Jensen
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm 171 77 (Sweden)
| | - Kristmundur Sigmundsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm 171 77 (Sweden)
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm 171 77 (Sweden)
| | - Fredrik Svensson
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Vivek Konda
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Christian Sköld
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Mats Larhed
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, BMC, Uppsala University P.O. Box 591, 751 24 Uppsala (Sweden) E-mail:
| |
Collapse
|
34
|
Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases. Prog Neurobiol 2014; 125:26-46. [PMID: 25455861 DOI: 10.1016/j.pneurobio.2014.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's (AD) and Parkinson's (PD) diseases are neurodegenerative diseases presently without effective drug treatments. AD is characterized by general cognitive impairment, difficulties with memory consolidation and retrieval, and with advanced stages episodes of agitation and anger. AD is increasing in frequency as life expectancy increases. Present FDA approved medications do little to slow disease progression and none address the underlying progressive loss of synaptic connections and neurons. New drug design approaches are needed beyond cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists. Patients with PD experience the symptomatic triad of bradykinesis, tremor-at-rest, and rigidity with the possibility of additional non-motor symptoms including sleep disturbances, depression, dementia, and autonomic nervous system failure. This review summarizes available information regarding the role of the brain renin-angiotensin system (RAS) in learning and memory and motor functions, with particular emphasis on research results suggesting a link between angiotensin IV (AngIV) interacting with the AT4 receptor subtype. Currently there is controversy over the identity of this AT4 receptor protein. Albiston and colleagues have offered convincing evidence that it is the insulin-regulated aminopeptidase (IRAP). Recently members of our laboratory have presented evidence that the brain AngIV/AT4 receptor system coincides with the brain hepatocyte growth factor/c-Met receptor system. In an effort to resolve this issue we have synthesized a number of small molecule AngIV-based compounds that are metabolically stable, penetrate the blood-brain barrier, and facilitate compromised memory and motor systems. These research efforts are described along with details concerning a recently synthesized molecule, Dihexa that shows promise in overcoming memory and motor dysfunctions by augmenting synaptic connectivity via the formation of new functional synapses.
Collapse
Affiliation(s)
- John W Wright
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA.
| | - Leen H Kawas
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| | - Joseph W Harding
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| |
Collapse
|
35
|
Engen K, Sävmarker J, Rosenström U, Wannberg J, Lundbäck T, Jenmalm-Jensen A, Larhed M. Microwave Heated Flow Synthesis of Spiro-oxindole Dihydroquinazolinone Based IRAP Inhibitors. Org Process Res Dev 2014. [DOI: 10.1021/op500237k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | - Thomas Lundbäck
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen
23A, SE-171 65 Solna, Sweden
| | - Annika Jenmalm-Jensen
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen
23A, SE-171 65 Solna, Sweden
| | | |
Collapse
|
36
|
Nikolaou A, Stijlemans B, Laoui D, Schouppe E, Tran HTT, Tourwé D, Chai SY, Vanderheyden PML, Van Ginderachter JA. Presence and regulation of insulin-regulated aminopeptidase in mouse macrophages. J Renin Angiotensin Aldosterone Syst 2014; 15:466-79. [DOI: 10.1177/1470320313507621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Alexandros Nikolaou
- Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Benoit Stijlemans
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Elio Schouppe
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Huyen TT Tran
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Dirk Tourwé
- Laboratory of Organic Chemistry, Vrije Universiteit Brussel, Belgium
| | - Siew Y Chai
- Department of Physiology, Monash University, Australia
| | | | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
37
|
Fournier A, Oprisiu-Fournier R, Serot JM, Godefroy O, Achard JM, Faure S, Mazouz H, Temmar M, Albu A, Bordet R, Hanon O, Gueyffier F, Wang J, Black S, Sato N. Prevention of dementia by antihypertensive drugs: how AT1-receptor-blockers and dihydropyridines better prevent dementia in hypertensive patients than thiazides and ACE-inhibitors. Expert Rev Neurother 2014; 9:1413-31. [DOI: 10.1586/ern.09.89] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Mechanisms of action of brain insulin against neurodegenerative diseases. J Neural Transm (Vienna) 2014; 121:611-26. [PMID: 24398779 DOI: 10.1007/s00702-013-1147-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022]
Abstract
Insulin, a pancreatic hormone, is best known for its peripheral effects on the metabolism of glucose, fats and proteins. There is a growing body of evidence linking insulin action in the brain to neurodegenerative diseases. Insulin present in central nervous system is a regulator of central glucose metabolism nevertheless this glucoregulation is not the main function of insulin in the brain. Brain is known to be specifically vulnerable to oxidative products relative to other organs and altered brain insulin signaling may cause or promote neurodegenerative diseases which invalidates and reduces the quality of life. Insulin located within the brain is mostly of pancreatic origin or is produced in the brain itself crosses the blood-brain barrier and enters the brain via a receptor-mediated active transport system. Brain Insulin, insulin receptor and insulin receptor substrate-mediated signaling pathways play important roles in the regulation of peripheral metabolism, feeding behavior, memory and maintenance of neural functions such as neuronal growth and differentiation, neuromodulation and neuroprotection. In the present review, we would like to summarize the novel biological and pathophysiological roles of neuronal insulin in neurodegenerative diseases and describe the main signaling pathways in use for therapeutic strategies in the use of insulin to the cerebral tissues and their biological applications to neurodegenerative diseases.
Collapse
|
39
|
Oprisiu-Fournier R, Faure S, Mazouz H, Boutitie F, Serot JM, Achard JM, Godefroy O, Hanon O, Temmar M, Albu A, Strandgaard S, Wang J, Black SE, Fournier A. Angiotensin AT1-receptor blockers and cerebrovascular protection: do they actually have a cutting edge over angiotensin-converting enzyme inhibitors? Expert Rev Neurother 2014; 9:1289-305. [DOI: 10.1586/ern.09.88] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Nelson L, Tabet N, Richardson C, Gard P. Antihypertensives, angiotensin, glucose and Alzheimer's disease. Expert Rev Neurother 2013; 13:477-82. [PMID: 23621305 DOI: 10.1586/ern.13.32] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Evidence supporting a link between vascular disorders such as hypertension and Alzheimer's disease (AD) is increasing. Population studies have suggested an association between hypertension and an increased risk of developing AD. A potential role for antihypertensive medications in the management of cognitive disorders has also been suggested, although findings are mixed. However, it is of interest that evidence is now leaning towards the possibility that some of these antihypertensive medications may improve cognition independent of their blood pressure lowering effects. Many of these drugs cross the blood-brain barrier and may influence neurotransmitters involved in cognition. Increasing knowledge of the actions of antihypertensives in the brain and the vascular system could lead to better treatment and/or prevention options for AD.
Collapse
Affiliation(s)
- Lucy Nelson
- Brighton and Sussex Medical School, Brighton, East Sussex, UK
| | | | | | | |
Collapse
|
41
|
Wright JW, Kawas LH, Harding JW. A Role for the Brain RAS in Alzheimer's and Parkinson's Diseases. Front Endocrinol (Lausanne) 2013; 4:158. [PMID: 24298267 PMCID: PMC3829467 DOI: 10.3389/fendo.2013.00158] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/09/2013] [Indexed: 12/30/2022] Open
Abstract
The brain renin-angiotensin system (RAS) has available the necessary functional components to produce the active ligands angiotensins II (AngII), angiotensin III, angiotensins (IV), angiotensin (1-7), and angiotensin (3-7). These ligands interact with several receptor proteins including AT1, AT2, AT4, and Mas distributed within the central and peripheral nervous systems as well as local RASs in several organs. This review first describes the enzymatic pathways in place to synthesize these ligands and the binding characteristics of these angiotensin receptor subtypes. We next discuss current hypotheses to explain the disorders of Alzheimer's disease (AD) and Parkinson's disease (PD), as well as research efforts focused on the use of angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs), in their treatment. ACE inhibitors and ARBs are showing promise in the treatment of several neurodegenerative pathologies; however, there is a need for the development of analogs capable of penetrating the blood-brain barrier and acting as agonists or antagonists at these receptor sites. AngII and AngIV have been shown to play opposing roles regarding memory acquisition and consolidation in animal models. We discuss the development of efficacious AngIV analogs in the treatment of animal models of AD and PD. These AngIV analogs act via the AT4 receptor subtype which may coincide with the hepatocyte growth factor/c-Met receptor system. Finally, future research directions are described concerning new approaches to the treatment of these two neurological diseases.
Collapse
Affiliation(s)
- John W. Wright
- Departments of Psychology, Integrative Physiology and Neuroscience, Program in Biotechnology, Washington State University, Pullman, WA, USA
| | - Leen H. Kawas
- Departments of Psychology, Integrative Physiology and Neuroscience, Program in Biotechnology, Washington State University, Pullman, WA, USA
| | - Joseph W. Harding
- Departments of Psychology, Integrative Physiology and Neuroscience, Program in Biotechnology, Washington State University, Pullman, WA, USA
| |
Collapse
|
42
|
Pereira MGAG, Souza LL, Becari C, Duarte DA, Camacho FRB, Oliveira JAC, Gomes MD, Oliveira EB, Salgado MCO, Garcia-Cairasco N, Costa-Neto CM. Angiotensin II-independent angiotensin-(1-7) formation in rat hippocampus: involvement of thimet oligopeptidase. Hypertension 2013; 62:879-85. [PMID: 24041943 DOI: 10.1161/hypertensionaha.113.01613] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The involvement and relevance of the renin-angiotensin system have been established clearly in cardiovascular diseases, and renin-angiotensin system involvement has also been investigated extensively in the central nervous system. Angiotensin II acts classically by binding to the AT1 and AT2 receptors. However, other pathways within the renin-angiotensin system have been described more recently, such as one in which angiotensin-(1-7) (Ang-(1-7)) binds to the receptor Mas. In the central nervous system specifically, it has been reported that this heptapeptide is involved in learning and memory processes that occur in central limbic regions, such as the hippocampus. Therefore, this prompted us to investigate the possible role of the Ang-(1-7)-receptor Mas pathway in epileptic seizures, which are also known to recruit limbic areas. In the present study, we show that Ang-(1-7) is the main metabolite of angiotensin I in rat hippocampi, and, strikingly, that thimet oligopeptidase is the main enzyme involved in the generation of Ang-(1-7). Furthermore, elevations in the levels of thimet oligopeptidase, Ang-(1-7), and of receptor Mas transcripts are observed in chronically stimulated epileptic rats, which suggest that the thimet oligopeptidase-Ang-(1-7)-receptor Mas axis may have a functional relevance in the pathophysiology of these animals. In summary, our data, which describe a new preferential biochemical pathway for the generation of Ang-(1-7) in the central nervous system and an increase in the levels of various elements of the related thimet oligopeptidase-Ang-(1-7)-receptor Mas pathway, unveil potential new roles of the renin-angiotensin system in central nervous system pathophysiology.
Collapse
Affiliation(s)
- Marilia G A G Pereira
- Faculty of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil. or or
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nguyen Dinh Cat A, Montezano AC, Touyz RM. Renin–angiotensin–aldosterone system: new concepts. Hypertension 2013. [DOI: 10.2217/ebo.12.463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Aurelie Nguyen Dinh Cat
- Aurelie Nguyen Dinh Cat is a Research Fellow in Rhian Touyz’s group. She has been working on the pathophysiological roles of the aldosterone and the mineralocorticoid receptor in the cardiovascular system and adipose tissue, focusing on the interaction between adipocytes and vessels
| | - Augusto C Montezano
- Augusto C Montezano is a Leadership Fellow at the College of Medicine, Veterinary and Life Sciences at the Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK. He is interested in understanding how osteogenic factors impact the renin–angiotensin–aldosterone system and oxidative stress in the cardiovascular system
| | - Rhian M Touyz
- Rhian M Touyz is a Clinician–Scientist focusing on molecular, cellular and vascular mechanisms of hypertension. She is Professor of Medicine and Director of the Institute of Cardiovascular and Medical Sciences, University of Glasgow. She was the Canada Research Chair in Hypertension at the Kidney Research Centre, Ottawa Hospital Research Institute/University of Ottawa (Canada). She received her degrees from the University of the Witwatersrand, South Africa. She has received numerous awards, including the
| |
Collapse
|
44
|
Distinct Molecular Effects of Angiotensin II and Angiotensin III in Rat Astrocytes. Int J Hypertens 2013; 2013:782861. [PMID: 23476748 PMCID: PMC3586509 DOI: 10.1155/2013/782861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 11/17/2022] Open
Abstract
It is postulated that central effects of angiotensin (Ang) II may be indirect due to rapid conversion to Ang III by aminopeptidase A (APA). Previously, we showed that Ang II and Ang III induced mitogen-activated protein (MAP) kinases ERK1/2 and stress-activated protein kinase/Jun-terminal kinases (SAPK/JNK) phosphorylation in cultured rat astrocytes. Most importantly, both peptides were equipotent in causing phosphorylation of these MAP kinases. In these studies, we used brainstem and cerebellum astrocytes to determine whether Ang II's phosphorylation of these MAP kinases is due to the conversion of the peptide to Ang III. We pretreated astrocytes with 10 μ M amastatin A or 100 μ M glutamate phosphonate, selective APA inhibitors, prior to stimulating with either Ang II or Ang III. Both peptides were equipotent in stimulating ERK1/2 and SAPK/JNK phosphorylation. The APA inhibitors failed to prevent Ang II- and Ang III-mediated phosphorylation of the MAP kinases. Further, pretreatment of astrocytes with the APA inhibitors did not affect Ang II- or Ang III-induced astrocyte growth. These findings suggest that both peptides directly induce phosphorylation of these MAP kinases as well as induce astrocyte growth. These studies establish both peptides as biologically active with similar intracellular and physiological effects.
Collapse
|
45
|
The brain-heart connection: frontal cortex and left ventricle angiotensinase activities in control and captopril-treated hypertensive rats-a bilateral study. Int J Hypertens 2013; 2013:156179. [PMID: 23476743 PMCID: PMC3583112 DOI: 10.1155/2013/156179] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
The model of neurovisceral integration suggests that the frontal cortex (FC) and the cardiovascular function are reciprocally and asymmetrically connected. We analyzed several angiotensinase activities in the heart left ventricle (VT) of control and captopril-treated SHR, and we search for a relationship between these activities and those determined in the left and right FC. Captopril was administered in drinking water for 4 weeks. Samples from the left VT and from the left and right FC were obtained. Soluble and membrane-bound enzymatic activities were measured fluorometrically using arylamides as substrates. The weight of heart significantly decreased after treatment with captopril, mainly, due to the reduction of the left VT weight. In the VT, no differences for soluble activities were observed between control and treated SHR. In contrast, a generalized significant reduction was observed for membrane-bound activities. The most significant correlations between FC and VT were observed in the right FC of the captopril-treated group. The other correlations, right FC versus VT and left FC versus VT in controls and left FC versus VT in the captopril group, were few and low. These results confirm that the connection between FC and cardiovascular system is asymmetrically organized.
Collapse
|
46
|
Nikolaou A, Eynde IVD, Tourwé D, Vauquelin G, Tóth G, Mallareddy JR, Poglitsch M, Van Ginderachter JA, Vanderheyden PM. [3H]IVDE77, a novel radioligand with high affinity and selectivity for the insulin-regulated aminopeptidase. Eur J Pharmacol 2013; 702:93-102. [DOI: 10.1016/j.ejphar.2013.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
47
|
Chow LH, Tao PL, Chen JC, Liao RM, Chang EP, Huang EYK. A possible correlation between oxytocin-induced and angiotensin IV-induced anti-hyperalgesia at the spinal level in rats. Peptides 2013; 39:21-8. [PMID: 23142109 DOI: 10.1016/j.peptides.2012.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022]
Abstract
In our previous study, we showed that intrathecal (i.t.) administration of angiotensin IV (Ang IV), an insulin-regulated aminopeptidase (IRAP) inhibitor, attenuated inflammatory hyperalgesia in rats. Using the plantar test in rats with carrageenan-induced paw inflammation, we investigated the possible mechanism(s) of this effect. Because i.t. oxytocin was reported to produce a dose-dependent anti-hyperalgesia in rats with inflammation, we speculate that there is a possible correlation between oxytocin-induced and Ang IV-induced anti-hyperalgesia. Using i.t. co-administered atosiban (oxytocin receptor antagonist), the anti-hyperalgesia by Ang IV was completely abolished. This indicated that oxytocin could be the major IRAP substrate responsible for the anti-hyperalgesia by Ang IV. When Ang IV was co-administered with a low dose of oxytocin, there was a significant enhancing effect of Ang IV on oxytocin-induced anti-hyperalgesia. In recent reports, electrical stimulation on the paraventricular hypothalamic nucleus (PVN) was proved to increase oxytocin release at the spinal cord. Our results also showed that Ang IV could prolong the anti-hyperalgesia induced by PVN stimulation. This suggests a possible protective effect of Ang IV on endogenous oxytocin degradation/dysfunctioning. Moreover, we examined the local effect of intraplantarly injected Ang IV in the same model. Our results showed no effect of local Ang IV on hyperalgesia and paw edema, indicating that Ang IV may not regulate the peripheral inflammatory process. Overall, our study suggests that Ang IV may act through the inhibition of the activity of IRAP to reduce the degradation of oxytocin at the spinal cord, thereby leading to anti-hyperalgesia in rats with inflammation.
Collapse
Affiliation(s)
- Lok-Hi Chow
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
Wright JW, Harding JW. Importance of the brain Angiotensin system in Parkinson's disease. PARKINSON'S DISEASE 2012; 2012:860923. [PMID: 23213621 PMCID: PMC3503402 DOI: 10.1155/2012/860923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) has become a major health problem affecting 1.5% of the world's population over 65 years of age. As life expectancy has increased so has the occurrence of PD. The primary direct consequence of this disease is the loss of dopaminergic (DA) neurons in the substantia nigra and striatum. As the intensity of motor dysfunction increases, the symptomatic triad of bradykinesia, tremors-at-rest, and rigidity occur. Progressive neurodegeneration may also impact non-DA neurotransmitter systems including cholinergic, noradrenergic, and serotonergic, often leading to the development of depression, sleep disturbances, dementia, and autonomic nervous system failure. L-DOPA is the most efficacious oral delivery treatment for controlling motor symptoms; however, this approach is ineffective regarding nonmotor symptoms. New treatment strategies are needed designed to provide neuroprotection and encourage neurogenesis and synaptogenesis to slow or reverse this disease process. The hepatocyte growth factor (HGF)/c-Met receptor system is a member of the growth factor family and has been shown to protect against degeneration of DA neurons in animal models. Recently, small angiotensin-based blood-brain barrier penetrant mimetics have been developed that activate this HGF/c-Met system. These compounds may offer a new and novel approach to the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- John W. Wright
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| | - Joseph W. Harding
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| |
Collapse
|
49
|
Activity-dependent alternative splicing increases persistent sodium current and promotes seizure. J Neurosci 2012; 32:7267-77. [PMID: 22623672 DOI: 10.1523/jneurosci.6042-11.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity of voltage-gated Na channels (Na(v)) is modified by alternative splicing. However, whether altered splicing of human Na(v)s contributes to epilepsy remains to be conclusively shown. We show here that altered splicing of the Drosophila Na(v) (paralytic, DmNa(v)) contributes to seizure-like behavior in identified seizure mutants. We focus attention on a pair of mutually exclusive alternate exons (termed K and L), which form part of the voltage sensor (S4) in domain III of the expressed channel. The presence of exon L results in a large, non-inactivating, persistent I(Nap). Many forms of human epilepsy are associated with an increase in this current. In wild-type (WT) Drosophila larvae, ∼70-80% of DmNa(v) transcripts contain exon L, and the remainder contain exon K. Splicing of DmNa(v) to include exon L is increased to ∼100% in both the slamdance and easily-shocked seizure mutants. This change to splicing is prevented by reducing synaptic activity levels through exposure to the antiepileptic phenytoin or the inhibitory transmitter GABA. Conversely, enhancing synaptic activity in WT, by feeding of picrotoxin is sufficient to increase I(Nap) and promote seizure through increased inclusion of exon L to 100%. We also show that the underlying activity-dependent mechanism requires the presence of Pasilla, an RNA-binding protein. Finally, we use computational modeling to show that increasing I(Nap) is sufficient to potentiate membrane excitability consistent with a seizure phenotype. Thus, increased synaptic excitation favors inclusion of exon L, which, in turn, further increases neuronal excitability. Thus, at least in Drosophila, this self-reinforcing cycle may promote the incidence of seizure.
Collapse
|
50
|
Abstract
The RAS (renin-angiotensin system) is one of the earliest and most extensively studied hormonal systems. The RAS is an atypical hormonal system in several ways. The major bioactive peptide of the system, AngII (angiotensin II), is neither synthesized in nor targets one specific organ. New research has identified additional peptides with important physiological and pathological roles. More peptides also mean newer enzymatic cascades that generate these peptides and more receptors that mediate their function. In addition, completely different roles of components that constitute the RAS have been uncovered, such as that for prorenin via the prorenin receptor. Complexity of the RAS is enhanced further by the presence of sub-systems in tissues, which act in an autocrine/paracrine manner independent of the endocrine system. The RAS seems relevant at the cellular level, wherein individual cells have a complete system, termed the intracellular RAS. Thus, from cells to tissues to the entire organism, the RAS exhibits continuity while maintaining independent control at different levels. The intracellular RAS is a relatively new concept for the RAS. The present review provides a synopsis of the literature on this system in different tissues.
Collapse
|