1
|
Zhang Y, Zhang R, Wang X, Shi L, Zhu H, Liu J. Potential role of ghrelin in neuroprotection and cognitive function: implications for diabetic cognitive impairment. PeerJ 2025; 13:e18898. [PMID: 39995985 PMCID: PMC11849504 DOI: 10.7717/peerj.18898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/03/2025] [Indexed: 02/26/2025] Open
Abstract
Ghrelin is a class of brain and intestinal peptides. It regulates food intake and body glucose levels and maintains cellular homeostasis. In recent years, research has revealed that ghrelin may positively impact learning and memory. Despite ghrelin's multiple functions in the central nervous system, its use as a therapeutic agent for neurologic dysfunction remains unclear. Diabetic cognitive impairment (DCI) is a severe neurological complication of diabetes mellitus. Its incidence is increasing as a comorbidity in endocrinology and neurology. Additionally, it is a risk factor for Alzheimer' s disease (AD). Ghrelin levels are altered in patients with diabetes mellitus combined with cognitive impairment. Furthermore, modulation of ghrelin levels improved cognitive function in rats with DCI. These findings suggest the potential therapeutic importance of ghrelin in the pathogenesis of DCI. This article presents a comprehensive review of the pathogenesis of DCI and its potential modulation by ghrelin and its mimics. Furthermore, this study elucidates the therapeutic prospects of ghrelin and its mimics for DCI, aiming to identify novel therapeutic targets and research avenues for the prevention and management of DCI in the future.
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xi’an, Xianyang, China
| | - Ruihua Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xi’an, Xianyang, China
| | - Xin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xi’an, Xianyang, China
| | - Leilei Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xi’an, Xianyang, China
| | - Hongzhe Zhu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xi’an, Xianyang, China
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xi’an, Xianyang, China
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory for Safety Monitoring of Food and Drug, Xianyang, China
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, China
| |
Collapse
|
2
|
Zhang X, Zeng Z, Liu Y, Liu D. Emerging Relevance of Ghrelin in Programmed Cell Death and Its Application in Diseases. Int J Mol Sci 2023; 24:17254. [PMID: 38139082 PMCID: PMC10743592 DOI: 10.3390/ijms242417254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Ghrelin, comprising 28 amino acids, was initially discovered as a hormone that promotes growth hormones. The original focus was on the effects of ghrelin on controlling hunger and satiation. As the research further develops, the research scope of ghrelin has expanded to a wide range of systems and diseases. Nevertheless, the specific mechanisms remain incompletely understood. In recent years, substantial studies have demonstrated that ghrelin has anti-inflammatory, antioxidant, antiapoptotic, and other effects, which could affect the signaling pathways of various kinds of programmed cell death (PCD) in treating diseases. However, the regulatory mechanisms underlying the function of ghrelin in different kinds of PCD have not been thoroughly illuminated. This review describes the relationship between ghrelin and four kinds of PCD (apoptosis, necroptosis, autophagy, and pyroptosis) and then introduces the clinical applications based on the different features of ghrelin.
Collapse
Affiliation(s)
- Xue Zhang
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Zihan Zeng
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Yaning Liu
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Dan Liu
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| |
Collapse
|
3
|
Yuan H, Wang B, Ye Z, Li S. Berberine Alleviates the Damage, Oxidative Stress and Mitochondrial Dysfunction of PC12 Cells Induced by High Glucose by Activating the KEAP1/Nrf2/ARE Pathway. Mol Biotechnol 2023; 65:1632-1643. [PMID: 36737555 DOI: 10.1007/s12033-022-00651-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023]
Abstract
Diabetic encephalopathy (DE) is one of the major chronic complications of diabetes mellitus. This study aims to investigate the inhibitory effect of berberine (BBR) on the damage of PC12 cells induced by high glucose (HG). Differentiated PC12 cells were treated with different concentrations of glucose/BBR. The cell morphology, cell viability, lactate dehydrogenase (LDH) activity, apoptosis, oxidative stress (OS), mitochondrial structure, mitochondrial membrane potential (MMP), mitochondrial complex I-V activity, and adenosine triphosphate (ATP) levels were evaluated. The mRNA and protein levels of the Keap1/Nrf2/ARE pathway-related genes were assessed by RT-qPCR and Western blot. High-dose BBR and HG jointly treated-PC12 cells were treated with Nrf2-specific inhibitor ML385 to further verify whether Nrf2 was the target of BBR. The results showed that BBR inhibited cell damage, OS, and mitochondrial dysfunction induced by HG. The inhibitory effect of high BBR was more significant. The Keap1/Nrf2/ARE pathway was inhibited in PC12 cells induced by HG. BBR could activate the Keap1/Nrf2/ARE pathway, thus up-regulating the expression levels of antioxidant enzymes. ML385 antagonized the ameliorating effect of BBR on OS and mitochondrial dysfunction. The conclusion is that BBR can activate the Keap1/Nrf2/ARE pathway, upregulate the expression patterns of antioxidant enzymes, and reduce cell damage, OS, and mitochondrial dysfunction of PC12 cells induced by HG.
Collapse
Affiliation(s)
- Haoyu Yuan
- Department of Endocrinology, Guangzhou University of Chinese Medicine, No.1 South Second Street, Fei'e West Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China
| | - Baohua Wang
- Department of Endocrinology, Guangzhou University of Chinese Medicine, No.1 South Second Street, Fei'e West Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China
| | - Zicheng Ye
- Department of Endocrinology, Guangzhou University of Chinese Medicine, No.1 South Second Street, Fei'e West Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China
| | - Saimei Li
- Department of Endocrinology, Guangzhou University of Chinese Medicine, No.1 South Second Street, Fei'e West Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
4
|
Liu XY, Wei DG, Li RS. Ghrelin attenuates inflammation in diabetic lung disease by TLR4 pathway in vivo and in vitro. BMJ Open Diabetes Res Care 2023; 11:11/2/e003027. [PMID: 37085277 PMCID: PMC10123865 DOI: 10.1136/bmjdrc-2022-003027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/11/2023] [Indexed: 04/23/2023] Open
Abstract
INTRODUCTION Diabetic lung disease is already known as one of the diabetes complications, but report on its therapeutic strategy is rare. The present study aimed to add novel therapeutic strategy for diabetic lung disease, to reveal the protective effect of ghrelin on diabetic lung disease both in vivo and in vitro, and to discuss its probable molecular mechanism. RESEARCH DESIGN AND METHODS Diabetic mice and 16HBE cells were our research objects. We surveyed the effect of ghrelin on streptozotocin-induced lung tissue morphology changes by H&E staining. Furthermore, the changes of proinflammatory cytokines (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)) were detected by ELISA. To expound the molecular mechanism, we detected critical proteins of TLR4 pathway and observed their changes by immunohistochemistry (IHC), real-time PCR and western blot analysis in vivo and in vitro, respectively. RESULTS The results of H&E staining showed that pathological alterations of the lung induced by hyperglycemia were ameliorated by ghrelin. The results of ELISA demonstrated that the elevated levels of IL-1β and TNF-α induced by hyperglycemia turned to decrease in the lung after ghrelin treatment. In the results of IHC, real-time PCR and western blot analysis, we found that the TLR4 pathway was elevated by hyperglycemia or high glucose and is remarkably inhibited by the treatment of ghrelin both in vivo and in vitro. CONCLUSIONS Ghrelin could inhibit inflammation of diabetic lung disease by regulating the TLR4 pathway. This study might affect research on diabetic lung disease, and the therapeutic potential of ghrelin for diabetic lung disease is worth considering.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Department of Pulmonary and Critical Care Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Dong-Guang Wei
- Department of Pulmonary and Critical Care Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Rong-Shan Li
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Kongtawelert P, Kaewmool C, Phitak T, Phimphilai M, Pothacharoen P, Shwe TH. Sesamin protects against neurotoxicity via inhibition of microglial activation under high glucose circumstances through modulating p38 and JNK signaling pathways. Sci Rep 2022; 12:11296. [PMID: 35788665 PMCID: PMC9253356 DOI: 10.1038/s41598-022-15411-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/23/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetes mellitus (DM), one of the principal causes of morbidity and mortality worldwide, is implicated in the progression of age-related neurodegenerative diseases (NDDs), in which microglial activation is a crucial mediator. Sesamin, a kind of phytochemical, shows inhibitory effects on microglial activation. The present study studied whether sesamin protects against neurotoxicity triggered by high glucose-induced microglial activation. We firstly demonstrated that high doses of glucose, which mimics hyperglycemia in DM, did induce the activation of murine BV2 microglial cells, increasing inflammatory responses such as the production of ROS or inflammatory mediators like IL-1β, TNF-⍺, and nitric oxide, through activation of p38 and JNK signaling pathways. Next, conditioned medium (CM) collected from high glucose-activated BV2 cell culture was used to show aggravated neurotoxicity in differentiated PC12 cells, indicating that high glucose-activated microglia could induce neurotoxicity. Interestingly, pretreatment of BV2 cells with sesamin diminished high glucose-induced microglia activation and inflammatory responses. Moreover, neurotoxicity in PC12 cells was found to be decreased in the group treated with CM from the sesamin-pretreated BV2 cell culture, suggesting sesamin inhibited microglial activation, thereby protecting neurons from activated microglia-mediated neurotoxicity. Thus, sesamin might be a potential compound to use in the prevention of diabetic-induced NDDs.
Collapse
Affiliation(s)
- Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chayanut Kaewmool
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thanyaluck Phitak
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mattabhorn Phimphilai
- Division of Endocrinology, Department of Internal Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thuzar Hla Shwe
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
6
|
Nikolaeva SD, Fock EM, Parnova RG. Lipopolysaccharide Stimulates Triglyceride Accumulation and Lipid Droplet Biogenesis in PC12 Cells: the Role of Carnitine Palmitoyltransferase 1 Down-Regulation and Suppression of Fatty Acid Oxidation. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Chen H, Du J, Zhang S, Tong H, Zhang M. Ghrelin suppresses migration of macrophages via inhibition of ROCK2 under chronic intermittent hypoxia. J Int Med Res 2021; 48:300060520926065. [PMID: 32485129 PMCID: PMC7273871 DOI: 10.1177/0300060520926065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objectives Migration of macrophages and atherosclerosis result in various
diseases, including coronary heart disease. This study aimed to
clarify the roles that ghrelin and Rho-associated
coiled-coil-containing protein kinase 2 (ROCK2) play in
migration of macrophages under chronic intermittent hypoxia
(CIH). Methods A rat model of CIH was constructed and changes in ghrelin and ROCK2
protein expression were measured by western blot assay. The
migratory ability of macrophages was determined by the transwell
assay. Hematoxylin and eosin staining was applied to detect the
changes in intima-media thickness. Results We found that CIH enhanced migration of macrophages, and this
effect was attenuated by exogenous ghrelin. Additionally, the
facilitative effect of CIH on migration of macrophages was
strengthened or decreased by upregulation or downregulation of
ROCK2, respectively. This phenomenon indicated that ROCK2 was
involved in CIH-induced migration in macrophages. Furthermore,
western blot and transwell assays showed that ghrelin inhibited
CIH-induced migration via ROCK2 suppression in macrophages. Conclusions In summary, the present study shows that ghrelin inhibits
CIH-induced migration via ROCK2 suppression in macrophages. Our
research may help lead to identifying a new molecular mechanism
for targeted therapy of atherosclerosis and its associated
coronary artery diseases under intermittent hypoxia.
Collapse
Affiliation(s)
- Hong Chen
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Jianfeng Du
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Siying Zhang
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Hao Tong
- China Medical University, Shenyang, China
| | - Man Zhang
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Zhong X, Zhang L, Li Y, Li P, Li J, Cheng G. Kaempferol alleviates ox-LDL-induced apoptosis by up-regulation of miR-26a-5p via inhibiting TLR4/NF-κB pathway in human endothelial cells. Biomed Pharmacother 2018; 108:1783-1789. [PMID: 30372882 DOI: 10.1016/j.biopha.2018.09.175] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Oxidized low-density lipoprotein (ox-LDL) has been well-documented to induce endothelial cell (EC) apoptosis and contribute to the progression of atherosclerosis. Kaempferol was reported to alleviate ox-LDL-induced apoptosis of human umbilical vein endothelial cells. However, the detailed mechanism by which kaempferol alleviated ox-LDL-induced EC apoptosis remains largely elusive. METHODS The expression of miR-26a-5p in human aortic endothelial cells (HAECs) treated with either ox-LDL alone or in combination with kaempferol was detected by qRT-PCR. Cell viability and apoptosis were assessed by MTT assay and flow cytometry, respectively. The interaction between miR-26a-5p and toll-like receptor 4 (TLR4) mRNA was examined by luciferase reporter assay. The protein levels of TLR4, phosphorylated-p65, p65, phosphorylated-IκBα and IκBα were determined by western blot. RESULTS Kaempferol upregulated miR-26a-5p expression in ox-LDL-stimulated HAECs. Moreover, kaempferol alleviated ox-LDL-induced apoptosis in HAECs by upregulating miR-26a-5p. Additionally, TLR4 mRNA was identified as a target of miR-26a-5p in ox-LDL-treated HAECs. TLR4 overexpression partially counteracted the anti-apoptotic role of miR-26a-5p in ox-LDL-treated HAECs. Furthermore, kaempferol inactivated the TLR4/nuclear factor kappa B (NF-κB) signaling pathway in ox-LDL-treated HAECs by upregulating miR-26a-5p. CONCLUSION Kaempferol alleviated ox-LDL-induced apoptosis in HAECs by upregulating miR-26a-5p via inactivation of the TLR4/NF-κB signaling pathway, shedding light on the molecular mechanism by which kaempferol alleviated ox-LDL-induced EC apoptosis.
Collapse
Affiliation(s)
- Xiaoming Zhong
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Lei Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yanming Li
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Peng Li
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Juan Li
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Guanchang Cheng
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|
9
|
Song D, Jiang X, Liu Y, Sun Y, Cao S, Zhang Z. Asiaticoside Attenuates Cell Growth Inhibition and Apoptosis Induced by Aβ 1-42 via Inhibiting the TLR4/NF-κB Signaling Pathway in Human Brain Microvascular Endothelial Cells. Front Pharmacol 2018; 9:28. [PMID: 29441018 PMCID: PMC5797575 DOI: 10.3389/fphar.2018.00028] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a very common progressive neurodegenerative disorder with the highest incidence in the world. Dysfunction of the blood-brain barrier (BBB) may be responsible for the pathogenesis and pathology of AD for abnormally transporting amyloid-β (Aβ, the main component of the senile plaques) from the sera into the central nervous system. Aβ peptides induce apoptosis in human brain microvascular endothelial cells (hBMECs), the main component of BBB. Apoptosis in neuronal cells plays a critical role in the pathogenesis of AD. Asiaticoside, a natural glycoside extracted from Centella asiatica (L.) Urban, has an anti-apoptotic effect on hBMECs but the molecule mechanism remains unclear. Therefore, we investigate the protective effect of asiaticoside on Aβ1-42-induced cytotoxicity and apoptosis as well as associated mechanism in hBMECs with commonly used in vitro methods for clinical development of asiaticoside as a novel anti-AD agent. In the present study, we investigated the effects of asiaticoside on cytotoxicity by Cell Counting Kit-8 assay, mitochondrial membrane potential by JC-1 fluorescence analysis, anti-apoptosis by Hoechst 33258 staining and Annexin V-FITC (fluorescein isothiocyanate) and propidium iodide (PI) analyses, the expressions of TNF-α and IL-6 by enzyme-linked immunosorbent assay (ELISA) and TLR4, MyD88, TRAF6, p-NF-κB p65, and total NF-κB p65 by Western blotting, and nuclear translocation of NF-κB p65 by immunofluorescence analysis in hBMECs. The results showed that pretreatment of asiaticoside (25, 50, and 100 μM) for 12 h significantly attenuated cell growth inhibition and apoptosis, and restored declined mitochondrial membrane potential induced by Aβ1-42 (50 μM) in hBMECs. Asiaticoside also significantly downregulated the elevated expressions of TNF-α, IL-6, TLR4, MyD88, TRAF6, and p-NF-κB p65, as well as inhibited NF-κB p65 translocation from cytoplasm to nucleus induced by Aβ1-42 in hBMECs in a concentration-dependent manner. The possible underlying molecular mechanism of asiaticoside may be through inhibiting the TLR4/NF-κB signaling pathway. Therefore, asiaticoside may be developed as a novel agent for the prevention and/or treatment of AD clinically.
Collapse
Affiliation(s)
- Daqiang Song
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Xian Jiang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yiliu Liu
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Yuhong Sun
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Zhao Y, Pu D, Sun Y, Chen J, Luo C, Wang M, Zhou J, Lv A, Zhu S, Liao Z, Zhao K, Xiao Q. High glucose-induced defective thrombospondin-1 release from astrocytes via TLR9 activation contributes to the synaptic protein loss. Exp Cell Res 2017; 363:171-178. [PMID: 29294308 DOI: 10.1016/j.yexcr.2017.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
Abstract
Diabetes, characterized by chronic hyperglycemia, is known to induce synaptic degeneration in the brain, thereby resulting in cognitive dysfunction. Thrombospondin-1(TSP-1), the secreted protein produced by astrocytes, plays a crucial role in promoting synapse formation. Toll-like receptor 9 (TLR9) has been widely known to initiate the innate immune response. We recently reported TLR9 activation in neurons results in tau hyperphosphorylation induced by HG in vitro. Its activation has been also considered to mediate oxidative stress and astrocytic dysfunction under pathological circumstance. However, whether astrocytic TSP-1 alteration plays a role in synaptic protein loss under high glucose condition and whether TLR9 activation is involved in this process have not been reported. In this study, we found that primary mouse astrocytes incubated in high glucose (30mM) induced a significant decreased TSP-1 secretion and increased intracellular contents of TSP-1 without affecting transcription level. Addition of conditioned medium from high glucose (30mM) treated astrocytes to the primary neurons exhibited reduced synaptic proteins expression, which was attenuated by treatment with exogenous rTSP-1. In addition, we demonstrated that TLR9 activation along with reactive oxygen species (ROS) generation in astrocytes was induced by high glucose (30mM). Furthermore, we explored the relationship between TLR9 activation and TSP-1 production. Both TLR9 deficiency and the antioxidant N-acetyl-L-cysteine treatment improved altered intra- and extracellular TSP-1 levels under high glucose condition. Together, our findings suggest that high glucose (30mM) impairs TSP-1 secretion from astrocytes, which depends on astrocytic dysfunction associated with TLR9 activation mediated ROS signaling, ultimately contributing to the synaptic proteins loss.
Collapse
Affiliation(s)
- Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Die Pu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Cheng Luo
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Meili Wang
- The First People's Hospital of Zunyi, Zunyi, China
| | - Jing Zhou
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Ankang Lv
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Shiyu Zhu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Zhiyin Liao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Kexiang Zhao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China.
| |
Collapse
|
11
|
Ishii N, Tsubouchi H, Miura A, Yanagi S, Ueno H, Shiomi K, Nakazato M. Ghrelin alleviates paclitaxel-induced peripheral neuropathy by reducing oxidative stress and enhancing mitochondrial anti-oxidant functions in mice. Eur J Pharmacol 2017; 819:35-42. [PMID: 29154935 DOI: 10.1016/j.ejphar.2017.11.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/31/2017] [Accepted: 11/14/2017] [Indexed: 01/24/2023]
Abstract
Paclitaxel is an effective chemotherapeutic agent, but has some treatment-limiting adverse effects that markedly decrease patients' quality of life. Peripheral neuropathy is one of these, and no treatment for it has been established yet. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is secreted from the stomach and has widespread effects on multiple systems. We investigated the pharmacological potential of ghrelin in preventing paclitaxel-induced peripheral neuropathy using wild-type mice, ghrelin-null mice, and growth hormone secretagogue receptor-null mice. In wild-type mice, ghrelin administration alleviated mechanical and thermal hypersensitivity, and partially prevented neuronal loss of small unmyelinated intraepidermal nerve fibers but not large myelinated nerve fibers. Moreover, ghrelin administration decreased plasma oxidative and nitrosative stress and increased the expression of uncoupling protein 2 (UCP2) and superoxide dismutase 2 (SOD2) in the dorsal root ganglia, which are mitochondrial antioxidant proteins, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a regulator of mitochondrial number. Both ghrelin-null mice and growth hormone secretagogue receptor-null mice developed more severe nerve injuries than wild-type mice. Our results suggest that ghrelin administration exerts a protective effect against paclitaxel-induced neuropathy by reducing oxidative stress and enhancing mitochondrial anti-oxidant functions, and that endogenous ghrelin has a neuroprotective effect that is mediated by ghrelin/growth hormone secretagogue receptor signaling. Ghrelin could be a promising therapeutic agent for the management of this intractable disease.
Collapse
Affiliation(s)
- Nobuyuki Ishii
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hironobu Tsubouchi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Ayako Miura
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shigehisa Yanagi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Ueno
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazutaka Shiomi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
12
|
Central Modulation of Neuroinflammation by Neuropeptides and Energy-Sensing Hormones during Obesity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7949582. [PMID: 28913358 PMCID: PMC5587954 DOI: 10.1155/2017/7949582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Central nervous system (CNS) senses energy homeostasis by integrating both peripheral and autonomic signals and responding to them by neurotransmitters and neuropeptides release. Although it is previously considered an immunologically privileged organ, we now know that this is not so. Cells belonging to the immune system, such as B and T lymphocytes, can be recruited into the CNS to face damage or infection, in addition to possessing resident immunological cells, called microglia. In this way, positive energy balance during obesity promotes an inflammatory state in the CNS. Saturated fatty acids from the diet have been pointed out as powerful candidates to trigger immune response in peripheral system and in the CNS. However, how central immunity communicates to peripheral immune response remains to be clarified. Recently there has been a great interest in the neuropeptides, POMC derived peptides, ghrelin, and leptin, due to their capacity to suppress or induce inflammatory responses in the brain, respectively. These may be potential candidates to treat different pathologies associated with autoimmunity and inflammation. In this review, we will discuss the role of lipotoxicity associated with positive energy balance during obesity in proinflammatory response in microglia, B and T lymphocytes, and its modulation by neuropeptides.
Collapse
|
13
|
Luteolin, a natural flavonoid, inhibits methylglyoxal induced apoptosis via the mTOR/4E-BP1 signaling pathway. Sci Rep 2017; 7:7877. [PMID: 28801605 PMCID: PMC5554232 DOI: 10.1038/s41598-017-08204-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/10/2017] [Indexed: 01/28/2023] Open
Abstract
Methylglyoxal (MG) accumulation has been observed in human cerebrospinal fluid and body tissues under hyperglycaemic conditions. Recent research has demonstrated that MG-induces neuronal cell apoptosis, which promotes the development of diabetic encephalopathy. Our previous animal study has shown that luteolin, a natural flavonoid, attenuates diabetes-associated cognitive dysfunction. To further explore the neuroprotective properties of luteolin, we investigated the inhibitive effect of luteolin on MG-induced apoptosis in PC12 neuronal cells. We found that MG inhibited cell viability in a dose-dependent manner and induced apoptosis in PC12 cells. Pretreatment with Luteolin significantly elevated cell viability, reduced MG-induced apoptosis, inhibited the activation of the mTOR/4E-BP1 signaling pathway, and decreased pro-apoptotic proteins, Bax, Cytochrome C as well as caspase-3. Furthermore, we found that pretreatment with the mTOR inhibitor, rapamycin, significantly reduced the expression of the pro-apoptotic protein Bax. Therefore, these observations unambiguously suggest that the inhibitive effect of Luteolin against MG-induced apoptosis in PC12 cells is associated with inhibition of the mTOR/4E-BP1 signaling pathway.
Collapse
|
14
|
High-glucose induces tau hyperphosphorylation through activation of TLR9-P38MAPK pathway. Exp Cell Res 2017; 359:312-318. [PMID: 28803064 DOI: 10.1016/j.yexcr.2017.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
Abstract
Diabetic encephalopathy (DE) is one of the most common complications of diabetes. The major pathological variations include neurofibrillary tangles (NFTs), which are caused by tau hyperphosphorylation, and senile plaques (SPs) consisting of amyloid β- protein(Aβ) deposits. In recent years, DE research studies have focused on exploring the activation of the inflammatory signaling pathway in immune cells. Toll-like receptor 9 (TLR9) is well known to regulate the inflammatory reactions in immune processes. During the tau hyperphosphorylation process, TLR9 in microglia plays bidirectional roles. However, no studies have clearly demonstrated the relationship between TLR9 and tau hyperphosphorylation in neurons. Based on our experiments, we found significant increase in TLR9 expression in neurons and an increase in tau hyperphosphorylation in high-glucose media. However, these alterations can be reversed by TLR9 inhibitor. Furthermore, we specifically inhibited the activation of P38mitogenactivated protein kinase(P38MAPK) and found an effective decrease in tau hyperphosphorylation. This effect is likely related to Unc93b1. Meanwhile, High glucose levels can induce neuronal apoptosis via the TLR9 signaling pathway. Our studies are the first to reveal that high glucose can regulate tau hyperphosphorylation and neuronal apoptosis via TLR9-P38MAPK signaling pathway. These findings provide a new method for studying the mechanism underlying DE.
Collapse
|
15
|
Wang Q, Lin P, Li P, Feng L, Ren Q, Xie X, Xu J. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway. Life Sci 2017; 186:50-58. [PMID: 28782532 DOI: 10.1016/j.lfs.2017.08.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
AIMS The aim of this study was to investigate the cardioprotective effects of ghrelin against myocardial ischemia/reperfusion (I/R) injury and the underlying mechanism. MAIN METHODS Sprague-Dawley rats were randomized into Sham, I/R and I/R+ghrelin groups. After 30 minutes ischemia, ghrelin (8nmol/kg) was injected intraperitoneally at the time of reperfusion in the I/R+ghrelin group. Then hemodynamic parameters were observed at 24h after reperfusion. KEY FINDINGS Ghrelin exhibited dramatic improvement in cardiac functions, as manifested by increased LVSP and ±dP/dtmax and decreased LVDP. At 24h after reperfusion, ghrelin significantly attenuated the myocardial infarction area and apoptosis, accompanied with a decrease in the levels of the myocyte injury marker enzymes. Oxidative stress injury and inflammatory response were also relieved by ghrelin. Western blot showed that the expression of TLR4, NLRP3, and caspase-1 were obviously increased in I/R group, while ghrelin significantly inhibited the I/R-induced TLR4, NLRP3, and caspase-1 expression. Ghrelin could inhibit the increased protein levels of NLRP3, caspase-1, and IL-1β induced by lipopolysacharide in primary cultured cardiomyocytes of neonatal rats. SIGNIFICANCE Ghrelin protected the heart against I/R injury by inhibiting oxidative stress and inflammation via TLR4/NLRP3 signaling pathway. Our results might provide new strategy and target for treatment of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Qin Wang
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China
| | - Ping Lin
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China.
| | - Peng Li
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China
| | - Li Feng
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China
| | - Qian Ren
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China
| | - Xiaofeng Xie
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China
| | - Jing Xu
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China
| |
Collapse
|
16
|
Zhao Y, Shen Z, Zhang D, Luo H, Chen J, Sun Y, Xiao Q. Ghrelin ameliorates nerve growth factor Dysmetabolism and inflammation in STZ-induced diabetic rats. Metab Brain Dis 2017; 32:903-912. [PMID: 28357639 DOI: 10.1007/s11011-017-0001-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 03/23/2017] [Indexed: 01/07/2023]
Abstract
Diabetic encephalopathy is characterized by cognitive impairment and neuroinflammation, deficient neurotrophic support, and neuronal and synaptic loss. Ghrelin, a 28 amino acid peptide, is associated with neuromodulation and cognitive improvement, which has been considered as a potential protective agent for several neurodegenerative diseases. Here we sought to investigate the role of ghrelin in preventing diabetic-related neuropathology. We found that ghrelin attenuated astrocytic activation and reduced levels of interleukin-6 and tumor necrosis factor-α in streptozotocin-induced diabetic rats. In addition, ghrelin inhibited p38 mitogen-associated protein kinase activation. The upregulation of nerve growth factor (NGF) precursor and matrix metalloproteinase (MMP)-9 and downregulation of mature NGF and MMP-7 in the diabetic brain were reversed by ghrelin. Treatment with ghrelin elevated synaptophysin expression and synaptic density in diabetic rats. Taken together, our results demonstrate that ghrelin ameliorates diabetes-related neurodegeneration by preventing NGF dysmetabolism and synaptic degeneration through regulating MMP levels as well as inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Yuxing Zhao
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China
| | - Zhaoxing Shen
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China
| | - Dongling Zhang
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China
| | - Huiqiong Luo
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China
| | - Jinliang Chen
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China
| | - Yue Sun
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China
| | - Qian Xiao
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China.
| |
Collapse
|
17
|
Xu Y, Zhou H, Zhu Q. The Impact of Microbiota-Gut-Brain Axis on Diabetic Cognition Impairment. Front Aging Neurosci 2017; 9:106. [PMID: 28496408 PMCID: PMC5406474 DOI: 10.3389/fnagi.2017.00106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/31/2017] [Indexed: 12/11/2022] Open
Abstract
Progressive cognitive dysfunction is a central characteristic of diabetic encephalopathy (DE). With an aging population, the incidence of DE is rising and it has become a major threat that seriously affects public health. Studies within this decade have indicated the important role of risk factors such as oxidative stress and inflammation on the development of cognitive impairment. With the recognition of the two-way communication between gut and brain, recent investigation suggests that “microbiota-gut-brain axis” also plays a pivotal role in modulating both cognition function and endocrine stability. This review aims to systemically elucidate the underlying impact of diabetes on cognitive impairment.
Collapse
Affiliation(s)
- Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau.,Laboratory for Bioassay and Molecular Pharmacology of Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthTaipa, Macau
| | - Quan Zhu
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau.,Laboratory for Bioassay and Molecular Pharmacology of Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthTaipa, Macau.,Guangdong Consun Pharmaceutical Group, Institute of Consun Co. for Chinese Medicine in Kidney DiseasesGuangzhou, China
| |
Collapse
|
18
|
Liu B, Sun R, Luo H, Liu X, Jiang M, Yuan C, Yang L, Hu J. Both intrinsic and extrinsic apoptotic pathways are involved in Toll-like receptor 4 (TLR4)-induced cell death in monocytic THP-1 cells. Immunobiology 2016; 222:198-205. [PMID: 27720227 DOI: 10.1016/j.imbio.2016.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 09/02/2016] [Accepted: 10/03/2016] [Indexed: 01/17/2023]
Abstract
Our previous study showed that TLR3 induces apoptosis via both death receptors and mitochondial in human endothelial cells. We report here that the activation of TLR4 induced dose- and time-dependent cell death in moncytic THP-1 cells. LPS treatment of THP-1 cells induced the activation of both caspase 8 and 9, suggesting the involvement of intrinsic and extrinsic apoptosis pathways. TNFα was induced by TLR4 activation at both mRNA and protein levels, but its neutralization did not down-regulated TLR4-induced cell death. TLR4 activation also induced the up-regulation of TRAIL and its receptors DR4 and DR5, and the neutralization of TRAIL ameliorated TLR4 induced apoptosis, suggesting the involvement of TRAIL and its receptors DR4 and DR5 in LPS-induced cell death. Meanwhile, LPS treatment down-regulated the expression of FLICE inhibitory protein (FLIP), a suppressor of death receptor-induced cell death. In addition, TLR4 activation down-regulated the anti-apoptotic protein bcl-2, and up-regulated the pro-apoptotic proteins Noxa and Puma, suggesting that mitochondrial apoptotic pathway was also involved in LPS-induced cell death. Furthermore, we found that TAP63α might confer to the activation of intrinsic and extrinsic apoptotic pathways. The treatment of THP-1 cells with LPS induced the translocation of TAP63α from cytoplasm to nucleus. Taken together, our study suggested that both death receptors and mitochondial were involved in TLR4-induced cell death, and TAP63α may be a target for the prevention of LPS-induced cell death.
Collapse
Affiliation(s)
- Bei Liu
- Medical Research Center, Changsha Central Hospital, Changsha, China; Department of Pathology, Affiliated Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ruili Sun
- Department of Laboratory Medicine, XinXiang Medical University, XinXiang, China
| | - Hongbo Luo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Chuang Yuan
- Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Li Yang
- Tuberculosis Research Center, Changsha Central Hospital, Changsha, China.
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, Changsha, China.
| |
Collapse
|
19
|
Sun N, Wang H, Wang L. Protective effects of ghrelin against oxidative stress, inducible nitric oxide synthase and inflammation in a mouse model of myocardial ischemia/reperfusion injury via the HMGB1 and TLR4/NF-κB pathway. Mol Med Rep 2016; 14:2764-70. [DOI: 10.3892/mmr.2016.5535] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 06/20/2016] [Indexed: 11/06/2022] Open
|
20
|
Saad MI, Abdelkhalek TM, Saleh MM, Kamel MA, Youssef M, Tawfik SH, Dominguez H. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells. Endocrine 2015; 50:537-67. [PMID: 26271514 DOI: 10.1007/s12020-015-0709-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/25/2015] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a heterogeneous, multifactorial, chronic disease characterized by hyperglycemia owing to insulin insufficiency and insulin resistance (IR). Recent epidemiological studies showed that the diabetes epidemic affects 382 million people worldwide in 2013, and this figure is expected to be 600 million people by 2035. Diabetes is associated with microvascular and macrovascular complications resulting in accelerated endothelial dysfunction (ED), atherosclerosis, and cardiovascular disease (CVD). Unfortunately, the complex pathophysiology of diabetic cardiovascular damage is not fully understood. Therefore, there is a clear need to better understand the molecular pathophysiology of ED in diabetes, and consequently, better treatment options and novel efficacious therapies could be identified. In the light of recent extensive research, we re-investigate the association between diabetes-associated metabolic disturbances (IR, subclinical inflammation, dyslipidemia, hyperglycemia, dysregulated production of adipokines, defective incretin and gut hormones production/action, and oxidative stress) and ED, focusing on oxidative stress and endothelial progenitor cells (EPCs). In addition, we re-emphasize that oxidative stress is the final common pathway that transduces signals from other conditions-either directly or indirectly-leading to ED and CVD.
Collapse
Affiliation(s)
- Mohamed I Saad
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Hudson Institute of Medical Research, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Taha M Abdelkhalek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Moustafa M Saleh
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shady H Tawfik
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Helena Dominguez
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
21
|
Randomized Phase II Study of the Anti-inflammatory Effect of Ghrelin During the Postoperative Period of Esophagectomy. Ann Surg 2015; 262:230-6. [PMID: 25361222 DOI: 10.1097/sla.0000000000000986] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE A prospective randomized phase II trial was conducted to evaluate the efficacy of ghrelin administration in reducing systemic inflammatory response syndrome (SIRS) duration after esophagectomy. BACKGROUND Esophagectomy for esophageal cancer is highly invasive and leads to prolonged SIRS duration and postoperative complications. Ghrelin has multiple effects, including anti-inflammatory effects. METHODS Forty patients undergoing esophagectomy were randomly assigned to either the ghrelin group (n = 20), which received continuous infusion of ghrelin (0.5 μg/kg/h) for 5 days, or the placebo group (n = 20), which received pure saline for 5 days. The primary endpoint was SIRS duration. The secondary endpoints were the incidence of postoperative complications, time of a negative nitrogen balance, changes in body weight and composition, and levels of inflammatory markers, including C-reactive protein (CRP) and interleukin-6 (IL-6). RESULTS The ghrelin group had a shorter SIRS duration and lower CRP and IL-6 levels than did the placebo group. The incidence of pulmonary complications was lower in the ghrelin group than in the placebo group, whereas other complications did not differ between the groups. Although time of the negative nitrogen balance was shorter in the ghrelin group than in the placebo group, changes in total body weight and lean body weight did not differ significantly. CONCLUSIONS Postoperative ghrelin administration was effective for inhibiting inflammatory mediators and improving the postoperative clinical course of patients with esophageal cancer.
Collapse
|
22
|
Yang E, Zheng H, Peng H, Ding Y. Lentivirus-induced knockdown of LRP1 induces osteoarthritic-like effects and increases susceptibility to apoptosis in chondrocytes via the nuclear factor-κB pathway. Exp Ther Med 2015; 10:97-105. [PMID: 26170918 DOI: 10.3892/etm.2015.2471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/17/2015] [Indexed: 12/18/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is known to regulate cell survival and inflammation. The present study investigated the involvement of LRP1 in the regulation of tumor necrosis factor (TNF)-α-induced expression of matrix metalloproteinase (MMP)-13. Furthermore, the study aimed to elucidate the mechanisms underlying the effects of LRP1 on TNF-α-induced inflammation and apoptosis of chondrocytes. Lentivirus-mediated RNA interference techniques were used to knockdown the LRP1 gene. Subsequently, the effects of LRP1 on TNF-α-induced MMP-13 expression were determined using quantitative polymerase chain reaction, western blot analysis and ELISA. Furthermore, the TNF-α-induced intracellular pathway was investigated using a nuclear factor (NF)-κB inhibitor (Bay 11-7082). In addition, the effect of LRP1 regulation on growth and apoptosis in chondrocytes was investigated using western blot analysis and a TUNEL assay. LRP1 knockdown was shown to increase TNF-α-induced MMP-13 expression via the activation of the NF-κB (p65) pathway, which reduced the expression of collagen type II and cell viability. In addition, LRP1 inhibited cell apoptosis by increasing the expression of phospho-Akt and B-cell lymphoma 2 (Bcl-2), while suppressing the expression of caspase-3 and Bcl-2-associated X protein. The results of the present study indicated that LRP1 was able to inhibit TNF-α-induced apoptosis and inflammation in chondrocytes. Therefore, LRP1 may be an effective osteoarthritis inhibitor, potentially providing a novel approach for antiarthritic therapeutics.
Collapse
Affiliation(s)
- Erping Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Huifeng Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hao Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yinyuan Ding
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Liu MH, Yuan C, He J, Tan TP, Wu SJ, Fu HY, Liu J, Yu S, Chen YD, Le QF, Tian W, Hu HJ, Zhang Y, Lin XL. Resveratrol protects PC12 cells from high glucose-induced neurotoxicity via PI3K/Akt/FoxO3a pathway. Cell Mol Neurobiol 2015; 35:513-22. [PMID: 25471227 PMCID: PMC11486255 DOI: 10.1007/s10571-014-0147-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 11/26/2014] [Indexed: 12/17/2022]
Abstract
Diabetes is known to be associated with neurodegenerative diseases. Resveratrol, a plant-derived polyphenolic compound found in red wine, possesses antioxidant properties. In this study, we aimed to investigate the effects of resveratrol on the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt)/FoxO3a pathway in mediating high glucose (HG)-induced injuries in neuronal PC12 cells. PC12 cells were exposed to HG to establish a model of HG neurotoxicity. Results showed that pre-treating PC12 cells with resveratrol before exposure to HG led to increased cell viability, decreased apoptotic cells, and reactive oxygen species generation. Western blot analysis showed that HG decreased the phosphorylation of Akt and FoxO3a and led to the nuclear localization of FoxO3a. These effects were significantly alleviated by resveratrol co-treatment. Furthermore, the protective effects of resveratrol were abolished by PI3K/Akt inhibitor LY294002. All these results demonstrate that resveratrol protected the PC12 cells from HG-induced oxidative stress and apoptosis via the activation of PI3K/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Mi-Hua Liu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, No. 336 Dongfeng South Road, Hengyang, 421001 Hunan Province People’s Republic of China
| | - Cong Yuan
- Department of Cardiology, The First Hospital of Changsha, Changsha City, 410005 Hunan Province People’s Republic of China
| | - Jun He
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, No. 336 Dongfeng South Road, Hengyang, 421001 Hunan Province People’s Republic of China
| | - Tian-Ping Tan
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, No. 336 Dongfeng South Road, Hengyang, 421001 Hunan Province People’s Republic of China
| | - Shao-Jian Wu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, No. 336 Dongfeng South Road, Hengyang, 421001 Hunan Province People’s Republic of China
| | - Hong-Yun Fu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, No. 336 Dongfeng South Road, Hengyang, 421001 Hunan Province People’s Republic of China
| | - Jun Liu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, No. 336 Dongfeng South Road, Hengyang, 421001 Hunan Province People’s Republic of China
| | - Shan Yu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, No. 336 Dongfeng South Road, Hengyang, 421001 Hunan Province People’s Republic of China
| | - Yu-Dan Chen
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, No. 336 Dongfeng South Road, Hengyang, 421001 Hunan Province People’s Republic of China
| | - Qun-Fang Le
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, No. 336 Dongfeng South Road, Hengyang, 421001 Hunan Province People’s Republic of China
| | - Wei Tian
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, No. 336 Dongfeng South Road, Hengyang, 421001 Hunan Province People’s Republic of China
| | - Heng-Jing Hu
- Department of Cardiology/Cardiac Catheterisation Lab, Second Xiangya Hospital, Central South University, Changsha City, 410011 Hunan Province People’s Republic of China
| | - Yuan Zhang
- Department of Pathology, Mawangdui Hospital, Changsha City, 410016 Hunan Province People’s Republic of China
| | - Xiao-Long Lin
- Department of Pathology, The Third People’s Hospital of Huizhou, Huizhou City, 516002 Guangdong Province People’s Republic of China
| |
Collapse
|
24
|
Nikolaeva S, Bayunova L, Sokolova T, Vlasova Y, Bachteeva V, Avrova N, Parnova R. GM1 and GD1a gangliosides modulate toxic and inflammatory effects of E. coli lipopolysaccharide by preventing TLR4 translocation into lipid rafts. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:239-47. [PMID: 25499607 DOI: 10.1016/j.bbalip.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022]
Abstract
Exogenous gangliosides are known to inhibit the effects of Escherichia coli lipopolysaccharide (LPS) in different cells exhibiting anti-inflammatory and immunosuppressive activities. The mechanisms underlying ganglioside action are not fully understood. Because LPS recognition and receptor complex formation occur in lipid rafts, and gangliosides play a key role in their maintenance, we hypothesize that protective effects of exogenous gangliosides would depend on inhibition of LPS signaling via prevention of TLR4 translocation into lipid rafts. The effect of GM1 and GD1a gangliosides on LPS-induced toxic and inflammatory reactions in PC12 cells, and in epithelial cells isolated from the frog urinary bladder, was studied. In PC12 cells, GD1a and GM1 significantly reduced the effect of LPS on the decrease of cell survival and on stimulation of reactive oxygen species production. In epithelial cells, gangliosides decreased LPS-stimulated iNOS expression, NO, and PGE2 production. Subcellular fractionation, in combination with immunoblotting, showed that pretreatment of cells with GM1, GD1a, or methyl-β-cyclodextrin, completely eliminated the effect of LPS on translocation of TLR4 into lipid rafts. The results are consistent with the hypothesis that ganglioside-induced prevention of TLR4 translocation into lipid rafts could be a mechanism of protection against LPS in various cells.
Collapse
Affiliation(s)
- Svetlana Nikolaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Lubov Bayunova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Tatyana Sokolova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Yulia Vlasova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Vera Bachteeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Natalia Avrova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Rimma Parnova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia.
| |
Collapse
|
25
|
Effects of ghrelin administration on the early postoperative inflammatory response after esophagectomy. Surg Today 2014; 45:1025-31. [DOI: 10.1007/s00595-014-1076-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/06/2014] [Indexed: 12/20/2022]
|