1
|
Chang MC, Chang SH, Tsai YL, Pan YH, Yeung SY, Chang HH, Jeng JH. Inducing phospholipase A2 and cyclooxygenase-2 expression and prostaglandins' production of human dental pulp cells by activation of NOD receptor and its downstream signaling. Int J Biol Macromol 2025; 292:139193. [PMID: 39730047 DOI: 10.1016/j.ijbiomac.2024.139193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Dental caries with invasion and infection by microorganisms may induce pulpitis and intolerable pain. L-Ala-γ-D-Glu-mDAP (TriDAP) is a DAP-comprising muramyl tripeptide and a peptidoglycan degradation product found in gram-negative pulpal pathogens. TriDAP activates nucleotide-binding oligomerization domain1/2 (NOD1/NOD2) and induces tissue inflammatory responses. This study aimed to test whether TriDAP stimulates cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and prostanoid production in human dental pulp cells (HDPCs) and their inhibition by signal transduction inhibitors, melatonin, and eugenol. We found that TriDAP stimulated cPLA2 and COX-2 expression as well as prostaglandin E2 (PGE2) and PGF2α secretion in HDPCs. TriDAP activated TAK1, MEK/ERK, and p38 signaling. COX-2 expression, PGE2, and PGF2α production induced by TriDAP were prevented by 5Z-7oxozeaenol, SB203580, and U0126. Moreover ASB14780 (a cPLA2 inhibitor) and the clinical drugs melatonin and eugenol suppressed TriDAP- and Poly(I:C)-stimulated PGE2 and PGF2α production. These results indicate that NOD activation in HDPCs may stimulate COX-2 expression and prostaglandin production, which are crucial in pulpal inflammatory and repair responses. The effects of TriDAP and Poly(I:C) were associated with TAK1, p38, MEK/ERK, and cPLA2 in pulpal inflammation. PLA2 inhibitors, melatonin, and eugenol can be used to control pulpal inflammation associated with NOD1/2 and TLR3 activation.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan City, Taiwan; Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Shu-Hui Chang
- School of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Tsai
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Hua Chang
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jiiang-Huei Jeng
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Makkar H, Sriram G. Advances in modeling periodontal host-microbe interactions: insights from organotypic and organ-on-chip systems. LAB ON A CHIP 2025; 25:1342-1371. [PMID: 39963082 PMCID: PMC11833442 DOI: 10.1039/d4lc00871e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
Periodontal disease, a chronic inflammatory condition affecting the supporting structures of teeth, is driven by an imbalanced interaction between the periodontal microbiota and the host inflammatory response. Beyond its local impact, periodontal disease is associated with systemic conditions such as diabetes mellitus, cardiovascular disease, and inflammatory bowel disease, emphasizing the importance of understanding its mechanisms. Traditional pre-clinical models, such as monolayer cultures and animal studies, have provided foundational insights but are limited by their physiological relevance and ethical concerns. Recent advancements in tissue engineering and microfluidic technologies have led to the development of three-dimensional (3D) organotypic culture models and organ-on-chip systems that more closely mimic native tissue microenvironments. This review provides an overview of the evolution of methods to study periodontal host-microbe interactions, from simple 2D monolayer cultures to complex 3D organotypic and microfluidic organ-on-chip (OoC) models. We discuss various fabrication strategies, host-microbe co-culture techniques, and methods for evaluating outcomes in these advanced models. Additionally, we highlight insights gained from gut-on-chip platforms and their potential applications in periodontal research and understanding oral-systemic links of periodontal disease. Through a comprehensive overview of current advancements and future directions, this review provides insights on the transformative potential of OoC technology in periodontal research, offering new avenues for studying disease mechanisms and developing therapeutic strategies.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, 119085, Singapore.
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, 119085, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| |
Collapse
|
3
|
Elmanfi S, Onyedibe KI, Aryal UK, Könönen E, Sintim HO, Gürsoy UK. Activation of cellular responses by cyclic dinucleotides and porphyromonas gingivalis lipopolysaccharide: a proteomic study on gingival fibroblasts. J Oral Microbiol 2024; 17:2431453. [PMID: 39669221 PMCID: PMC11632945 DOI: 10.1080/20002297.2024.2431453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 12/14/2024] Open
Abstract
Background Bacterial cyclic dinucleotides (CDNs), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) upregulate interferon signaling proteins of human gingival fibroblasts (HGFs). However, the simultaneous effect of bacterial CDNs and lipopolysaccharides (LPS) on the HGF proteome is unknown. Aim The aim was to apply an unbiased proteomics approach to evaluate how simultaneous exposure to CDNs and Porphyromonas gingivalis (Pg) LPS affect the global proteome of HGFs. Methods The proteomic responses of HGFs were examined under three different treatment conditions (c-di-AMP+Pg LPS, c-di-GMP+Pg LPS, and Pg LPS alone) by label-free quantitative mass spectrometry analysis. Results Simultaneous exposure to CDNs and Pg LPS significantly upregulated innate immunity-related and interferon signaling-related proteins, such as ubiquitin-like protein ISG15 (ISG15), deoxynucleoside triphosphate triphosphohydrolase (SAMHD1), interferon regulatory factor 9 (IRF-9), interferon-induced GTP-binding protein Mx (MX)1, and MX2. Interferon signaling pathway was the most significantly regulated canonical pathway in both CDN treatment groups. Conclusion Simultaneous exposure to CDNs and Pg LPS stimulates the periodontal immune response by activating the anti-microbial cellular responses of HGFs with some notable differences from individual exposures.
Collapse
Affiliation(s)
- Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Kenneth I. Onyedibe
- Department of Chemistry, Purdue University, West Lafayette, USA
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, USA
- Department of Biomedical Sciences, Mercer University School of Medicine, MaconGA, USA
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Herman O. Sintim
- Department of Chemistry, Purdue University, West Lafayette, USA
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Zhang G, Zhang M, Feng Q, Wang R, Mei H, Xing K, Li J. Supramolecular Composite Hydrogel Loaded with CaF 2 Nanoparticles Promotes the Recovery of Periodontitis Bone Resorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45929-45947. [PMID: 39183483 DOI: 10.1021/acsami.4c07210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Treatments to reduce periodontal inflammation and rescue periodontitis bone resorption have been of interest to researchers. Bone tissue engineering materials have been gradually used in the treatment of bone defects, but periodontal bone tissue regeneration still faces challenges. Considering the biocompatibility factor, constructing bionic scaffolds with natural extracellular matrix properties is an ideal therapeutic pathway. Based on the pathological mechanism of periodontitis, in this study, short peptide and nanometer inorganic particles were comingled to construct NapKFF-nano CaF2 supramolecular composite hydrogels with different ratios. Material characterization experiments confirmed that the composite hydrogel had suitable mechanical properties and a three-dimensional structure that can function in the resorption region of the alveolar bone and provide spaces for cell proliferation and adhesion. The release of low concentrations of fluoride and calcium ions has been shown to have positive biological effects in both in vivo and in vitro experiments. Vitro experiments confirmed that the composite hydrogel had good biocompatibility and promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Microbiological experiments confirmed that the composite hydrogel inhibited the activity of periodontal pathogenic bacteria. In animal studies, composite hydrogel applied to periodontitis rats in vivo can effectively repair alveolar bone resorption. This composite hydrogel has a simple preparation method and is inexpensive to produce, yet it has antibacterial and osteogenesis-promoting incremental effects, which makes it well suited for the treatment of periodontitis bone resorption, providing a new strategy for periodontal bone tissue engineering.
Collapse
Affiliation(s)
- Guanning Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Third Section, Renmin South Rd, Chengdu 610041, Sichuan, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Third Section, Renmin South Rd, Chengdu 610041, Sichuan, China
| | - Qingchen Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Third Section, Renmin South Rd, Chengdu 610041, Sichuan, China
| | - Ruohan Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongxiang Mei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Third Section, Renmin South Rd, Chengdu 610041, Sichuan, China
| | - Ke Xing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Third Section, Renmin South Rd, Chengdu 610041, Sichuan, China
| | - Juan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Third Section, Renmin South Rd, Chengdu 610041, Sichuan, China
| |
Collapse
|
5
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Torres A, Michea MA, Végvári Á, Arce M, Pérez V, Alcota M, Morales A, Vernal R, Budini M, Zubarev RA, González FE. A multi-platform analysis of human gingival crevicular fluid reveals ferroptosis as a relevant regulated cell death mechanism during the clinical progression of periodontitis. Int J Oral Sci 2024; 16:43. [PMID: 38802345 PMCID: PMC11130186 DOI: 10.1038/s41368-024-00306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Ferroptosis is implicated in the pathogenesis of numerous chronic-inflammatory diseases, yet its association with progressive periodontitis remains unexplored. To investigate the involvement and significance of ferroptosis in periodontitis progression, we assessed sixteen periodontitis-diagnosed patients. Disease progression was clinically monitored over twelve weeks via weekly clinical evaluations and gingival crevicular fluid (GCF) collection was performed for further analyses. Clinical metrics, proteomic data, in silico methods, and bioinformatics tools were combined to identify protein profiles linked to periodontitis progression and to explore their potential connection with ferroptosis. Subsequent western blot analyses validated key findings. Finally, a single-cell RNA sequencing (scRNA-seq) dataset (GSE164241) for gingival tissues was analyzed to elucidate cellular dynamics during periodontitis progression. Periodontitis progression was identified as occurring at a faster rate than traditionally thought. GCF samples from progressing and non-progressing periodontal sites showed quantitative and qualitatively distinct proteomic profiles. In addition, specific biological processes and molecular functions during progressive periodontitis were revealed and a set of hub proteins, including SNCA, CA1, HBB, SLC4A1, and ANK1 was strongly associated with the clinical progression status of periodontitis. Moreover, we found specific proteins - drivers or suppressors - associated with ferroptosis (SNCA, FTH1, HSPB1, CD44, and GCLC), revealing the co-occurrence of this specific type of regulated cell death during the clinical progression of periodontitis. Additionally, the integration of quantitative proteomic data with scRNA-seq analysis suggested the susceptibility of fibroblasts to ferroptosis. Our analyses reveal proteins and processes linked to ferroptosis for the first time in periodontal patients, which offer new insights into the molecular mechanisms of progressive periodontal disease. These findings may lead to novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - M Angélica Michea
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marion Arce
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Valentina Pérez
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Alcota
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Alicia Morales
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Mauricio Budini
- Laboratory of Cellular and Molecular Pathology, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Roman A Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fermín E González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile.
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile.
| |
Collapse
|
7
|
Mao D, Inoue H, Goda S. Role of the nucleotide-binding oligomerization domain-containing protein 1 pathway in the development of periodontitis. J Oral Biosci 2024; 66:105-111. [PMID: 38182046 DOI: 10.1016/j.job.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVES During innate immune defense, host pattern recognition receptors, including toll-like receptors and nucleotide-binding oligomerization domain-like receptors (NLRs), can activate downstream pathways by recognizing pathogen-associated molecular patterns produced by microorganisms, triggering immune responses. NOD1, an important cell membrane protein in the NLR-like receptor protein family, exerts anti-infective effects through γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) recognition. Oral epithelial cells resist bacterial invasion through iE-DAP-induced interleukin (IL)-8 production, recruiting neutrophils to sites of inflammation in response to bacterial threats to periodontal tissues. To date, the regulatory mechanisms of iE-DAP in gingival epithelial cells (GECs) are poorly understood. This study was conducted to investigate the role of the NOD1 pathway in the development of periodontitis by examining the effect of iE-DAP on IL-8 production in Ca9-22 cells. METHODS IL-8 production by iE-DAP-stimulated-Ca9-22 cells was assessed using an enzyme-linked immunosorbent assay. Phosphorylation levels of intracellular signaling molecules were evaluated using western blot analyses. RESULTS iE-DAP induced NOD1 receptor expression in Ca9-22 cells. Additionally, iE-DAP induced expression of pro-IL-1β protein without extracellular secretion. Our results suggest that iE-DAP regulates IL-8 production by activating p38 mitogen-activated protein kinase (MAPK) and ERK1/2 signaling pathways. iE-DAP also promoted nuclear factor kappa-B p65 phosphorylation, facilitating its nuclear translocation. Notably, p38 MAPK and ERK1/2 inhibitors suppressed iE-DAP-stimulated IL-8 production, suggesting that JNK is not involved in this mechanism. CONCLUSIONS Our results indicate that p38 MAPK and ERK1/2, but not JNK, are involved in innate immune responses in GECs.
Collapse
Affiliation(s)
- Dan Mao
- Graduate School of Dentistry, Department of Physiology, Osaka Dental University, Osaka, Japan.
| | - Hiroshi Inoue
- Department of Physiology, Osaka Dental University, Osaka, Japan.
| | - Seiji Goda
- Department of Physiology, Osaka Dental University, Osaka, Japan.
| |
Collapse
|
8
|
Liu Y, Zhang H, Li Y, Zha H, Gao Y, Chen H, Wang Y, Zhou T, Deng C. Dictyophora indusiata polysaccharide mediates priming of the NLRP3 inflammasome activation via TLR4/ NF-κB signaling pathway to exert immunostimulatory effects. J Appl Biomed 2024; 22:23-32. [PMID: 38505967 DOI: 10.32725/jab.2024.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Dictyophora indusiata, commonly known as bamboo fungus, is a type of edible mushroom that is highly popular worldwide for its rich flavor and nutritional value. It is also recognized for its pharmaceutical efficacy, with medicinal benefits attributed to its consumption. One of the most important components of Dictyophora indusiata is polysaccharide, which has been acknowledged as a promising regulator of biological response due to its immunostimulatory and anti-inflammatory properties. However, the specific roles of polysaccharide in modulating the NOD-like receptor protein 3 (NLRP3) inflammasome activation within macrophages remain relatively under-researched. To investigate this further, the mechanism by which Dictyophora indusiata polysaccharide (DIP) exerts its immunostimulatory activity in RAW 264.7 macrophages was analyzed. Results indicated that DIP has the potential to facilitate the priming of NLRP3 inflammasome activation by enhancing TLR4 expression, phosphorylation of IκB-α, and nuclear translocation of NF-κB p65 subunit. It was noted that DIP was unable to mediate the second step of NLRP3 inflammasome activation. The findings of this study provide compelling evidence that DIP has immunomodulatory effects by modulating the NLRP3 inflammasome in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Youyi Liu
- Jiangnan University, Wuxi School of Medicine, Wuxi, Jiangsu 214122, P.R. China
| | - Huanxiao Zhang
- Jiangnan University, Wuxi School of Medicine, Wuxi, Jiangsu 214122, P.R. China
| | - Yuxuan Li
- Jiangnan University, Wuxi School of Medicine, Wuxi, Jiangsu 214122, P.R. China
| | - Hanqian Zha
- Jiangnan University, Wuxi School of Medicine, Wuxi, Jiangsu 214122, P.R. China
| | - Yujie Gao
- Jiangnan University, Wuxi School of Medicine, Wuxi, Jiangsu 214122, P.R. China
| | - Hui Chen
- Yixing Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu 214200, P.R. China
| | - Yalin Wang
- Jiangnan University, Wuxi School of Medicine, Wuxi, Jiangsu 214122, P.R. China
| | - Tongxin Zhou
- Yixing Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu 214200, P.R. China
| | - Chao Deng
- Jiangnan University, Wuxi School of Medicine, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
9
|
Yuan T, Chen S, Yin Y, Shaw J, Zeng J, Li L, Song L, Zhang Y, Yin Z, Zhao J. Novel Leflunomide Analog, UTLOH-4e, Ameliorates Gouty Arthritis Induced by Monosodium Urate Via NF-κB/NLRP3 Signaling Pathway. Curr Pharm Biotechnol 2024; 25:350-364. [PMID: 37078349 DOI: 10.2174/1389201024666230420101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Gouty arthritis (GA) is a common form of inflammatory arthritis caused by intra-articular deposition of monosodium urate (MSU) crystals; however, there is a tremendous lack of safe and effective therapy in the clinic. OBJECTIVE The goal of this work was to investigate a novel leflunomide analogue, N-(2,4- dihydroxyphenyl)-5-methyl-1,2-oxazole-3-carboxamide (UTLOH-4e), for its potential to prevent/ treat gouty arthritis. METHODS In this study, the anti-inflammatory activity of UTLOH-4e was evaluated by MSUinduced GA model in vivo and in vitro, and the molecular docking test was applied to estimate the affinity of UTLOH-4e/UTL-5g/b for MAPKs, NF-κB, and NLRP3. RESULTS In vitro, UTLOH-4e (1~100 μM) treatment inhibited the inflammatory reaction with no obvious cytotoxicity in PMA-induced THP-1 macrophages exposed to MSU crystals for 24 h, involving the prominent decreased production and gene expression of IL-1β, TNF-α, and IL-6. Western blot analyses demonstrated that UTLOH-4e (1~100 μM) significantly suppressed the activation of NLRP3 inflammasomes, NF-κB, and MAPK pathways. Furthermore, the data from the experiment on gouty rats induced by intra-articular injection of MSU crystal confirmed that UTLOH-4e markedly ameliorated rat paw swelling, articular synovium inflammation and reduced the concentration of IL-1β and TNF-α in serum through down-regulating NLRP3 protein expression. CONCLUSION These results manifested that UTLOH-4e ameliorates GA induced by MSU crystals, which contributes to the modulation of NF-κB/ NLRP3 signaling pathway, suggesting that UTLOH- 4e is a promising and potent drug candidate for the prevention and treatment of gouty arthritis.
Collapse
Affiliation(s)
- Tianmin Yuan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, 610041, P.R. China
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, 610041, P.R. China
| | - Shilong Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, 610041, P.R. China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, 610041, P.R. China
| | - Yifeng Yin
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Jiajiu Shaw
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, 610041, P.R. China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, 610041, P.R. China
- 21st Century Therapeutics, Inc., Detroit, Michigan, 48202, USA
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, 610041, P.R. China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, 610041, P.R. China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, 610041, P.R. China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, 610041, P.R. China
| | - Lei Song
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, 610225, P.R. China
| | - Yiguan Zhang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, 610041, P.R. China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, 610041, P.R. China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, 610041, P.R. China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, 610041, P.R. China
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, 610041, P.R. China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
10
|
Chen WA, Dou Y, Fletcher HM, Boskovic DS. Local and Systemic Effects of Porphyromonas gingivalis Infection. Microorganisms 2023; 11:470. [PMID: 36838435 PMCID: PMC9963840 DOI: 10.3390/microorganisms11020470] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Porphyromonas gingivalis, a gram-negative anaerobe, is a leading etiological agent in periodontitis. This infectious pathogen can induce a dysbiotic, proinflammatory state within the oral cavity by disrupting commensal interactions between the host and oral microbiota. It is advantageous for P. gingivalis to avoid complete host immunosuppression, as inflammation-induced tissue damage provides essential nutrients necessary for robust bacterial proliferation. In this context, P. gingivalis can gain access to the systemic circulation, where it can promote a prothrombotic state. P. gingivalis expresses a number of virulence factors, which aid this pathogen toward infection of a variety of host cells, evasion of detection by the host immune system, subversion of the host immune responses, and activation of several humoral and cellular hemostatic factors.
Collapse
Affiliation(s)
- William A. Chen
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Danilo S. Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
11
|
Role of immune-related lncRNAs--PRKCQ-AS1 and EGOT in the regulation of IL-1β, IL-6 and IL-8 expression in human gingival fibroblasts with TNF-α stimulation. J Dent Sci 2023; 18:184-190. [PMID: 36643260 PMCID: PMC9831783 DOI: 10.1016/j.jds.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/13/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose It was reported that lncRNAs have an effect on immune-related diseases, however, their roles in periodontitis remain to be investigated. The aim of this study was to look for immune-related lncRNAs in periodontitis, and to preliminarily explore their function in vitro. Materials and methods CIBERSORT was used to analyze abundance of immune cell in the periodontal tissue. Correlation between the expression profile of lncRNAs and abundance of immune cell was calculated and immune-related lncRNAs were identified. The expressions of immune-related lncRNAs identified were validated by RT-qPCR with 15 periodontitis and 15 healthy gingival tissues. The expressions of PRKCQ-AS1 and EGOT in HGFs were detected under the stimulation of different concentrations of TNF-α (0, 10, 15, 20, 30 ng/mL) and different duration (0, 12, 24 and 48 h). Then, siRNA was used to silence PRKCQ-AS1 and EGOT in HGFs. The expression level of IL-1β, IL-6, IL-8 of the HGFs after stimulated by 15 ng/mL TNF-α, and the activation of NF-κB pathway was observed. Results PRKCQ-AS1 and EGOT were identified as top 2 immune-related lncRNAs in periodontal tissues. The expressions of PRKCQ-AS1 and EGOT were significantly up-regulated in inflamed periodontal tissue and in HGFs under TNF-α stimulation. After knock-down of PRKCQ-AS1 and EGOT, expression level of IL-1β, IL-6, and IL-8 in HGFs with TNF-α stimulation were decreased, and activation of NF-κB pathway was inhibited. Conclusion PRKCQ-AS1 and EGOT were firstly identified as immune-related lncRNAs in periodontal tissue, and they regulate the expression of IL-1β, IL-6, and IL-8 of HGFs through the NF-κB pathway.
Collapse
|
12
|
PLA Nanofibers for Microenvironmental-Responsive Quercetin Release in Local Periodontal Treatment. Molecules 2022; 27:molecules27072205. [PMID: 35408602 PMCID: PMC9000246 DOI: 10.3390/molecules27072205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 01/10/2023] Open
Abstract
The management of periodontitis remains a vital clinical challenge due to the interplay between the microorganisms of the dental biofilm and the host inflammatory response leading to a degenerative process in the surrounding tissues. Quercetin (QUE), a natural flavonol found in many foods, including apples, onions and tea, has exhibited prolonged and strong antibiofilm and anti-inflammatory effects both in vitro and in vivo. However, its clinical application is limited by its poor stability and water solubility, as well as its low bioavailability. Thus, in the present study, electrospun polylactic acid (PLA) nanofibers loaded with different amounts (5−10% w/w) of QUE were produced to rapidly respond to the acidic microenvironment typical of periodontal pockets during periodontal disease. This strategy demonstrated that PLA-QUE membranes can act as a drug reservoir releasing high QUE concentrations in the presence of oral bacterial infection (pH < 5.5), and thus limiting Pseudomonas aeruginosa PAO1 and Streptococcus mutans biofilm maturation. In addition, released QUE exerts antioxidant and anti-inflammatory effects on P. gingivalis Lipopolysaccharide (LPS)-stimulated human gingival fibroblast (HGFs). The reported results confirmed that PLA-QUE membranes could inhibit subgingival biofilm maturation while reducing interleukin release, thereby limiting host inflammatory response. Overall, this study provided an effective pH-sensitive drug delivery system as a promising strategy for treating periodontitis.
Collapse
|
13
|
Huang FF, Yang Y, Wang LM, Wang H, Li P, Xiao K, Xu X, Liu JS, Liu YL, Zhu HL. Holly polyphenols attenuate liver injury, suppression inflammation and oxidative stress in lipopolysaccharide-challenged weaned pigs. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2021.2022604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- F. F. Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - Y. Yang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - L. M. Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - H. Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - P. Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - K. Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - X. Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - J. S. Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, People’s Republic of China
| | - Y. L. Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, People’s Republic of China
| | - H. L. Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| |
Collapse
|
14
|
Zhao Z, Behm C, Rausch MA, Tian Z, Rausch-Fan X, Andrukhov O. Cyclic tensile strain affects the response of human periodontal ligament stromal cells to tumor necrosis factor-α. Clin Oral Investig 2022; 26:609-622. [PMID: 34185172 PMCID: PMC8791913 DOI: 10.1007/s00784-021-04039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Orthodontic treatment in adult patients predisposed to mild or severe periodontal disease is challenging for orthodontists. Orthodontic malpractice or hyper-occlusal forces may aggravate periodontitis-induced destruction of periodontal tissues, but the specific mechanism remains unknown. In the present study, the combined effect of mechanical stress and tumor necrosis factor (TNF)-α on the inflammatory response in human periodontal ligament stromal cells (hPDLSCs) was investigated. MATERIALS AND METHODS hPDLSCs from 5 healthy donors were treated with TNF-α and/or subjected to cyclic tensile strain (CTS) of 6% or 12% elongation with 0.1 Hz for 6- and 24 h. The gene expression of interleukin (IL)-6, IL-8 and cell adhesion molecules VCAM and ICAM was analyzed by qPCR. The protein levels of IL-6 and IL-8 in conditioned media was measured by ELISA. The surface expression of VCAM-1 and ICAM-1 was quantified by immunostaining followed by flow cytometry analysis. RESULTS TNF-α-induced IL-6 gene and protein expression was inhibited by CTS, whereas TNF-α-induced IL-8 expression was decreased at mRNA expression level but enhanced at the protein level in a magnitude-dependent manner. CTS downregulated the gene expression of VCAM-1 and ICAM-1 under TNF-α stimulation, but the downregulation of the surface expression analyzed by flow cytometry was observed chiefly for VCAM-1. CONCLUSIONS Our findings show that mechanical force differentially regulates TNF-α-induced expression of inflammatory mediators and adhesion molecules at the early stage of force application. The effect of cyclic tensile strain is complex and could be either anti-inflammatory or pro-inflammatory depending on the type of pro-inflammatory mediators and force magnitude. CLINICAL RELEVANCE Orthodontic forces regulate the inflammatory mediators of periodontitis. The underlying mechanism may have significant implications for future strategies of combined periodontal and orthodontic treatment.
Collapse
Affiliation(s)
- Zhongqi Zhao
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Marco Aoqi Rausch
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Zhiwei Tian
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria.
| |
Collapse
|
15
|
Makkar H, Atkuru S, Tang YL, Sethi T, Lim CT, Tan KS, Sriram G. Differential immune responses of 3D gingival and periodontal connective tissue equivalents to microbial colonization. J Tissue Eng 2022; 13:20417314221111650. [PMID: 35923175 PMCID: PMC9340411 DOI: 10.1177/20417314221111650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Gingival and periodontal ligament fibroblasts are functionally distinct cell
types within the dento-gingival unit that participate in host immune response.
Their microenvironment influences the behavior and immune response to microbial
challenge. We developed three-dimensional gingival and periodontal connective
tissue equivalents (CTEs) using human fibrin-based matrix. The CTEs were
characterized, and the heterogeneity in their innate immune response was
investigated. The CTEs demonstrated no to minimal response to planktonic
Streptococcus mitis and Streptococcus
oralis, while their biofilms elicited a moderate increase in IL-6
and IL-8 production. In contrast, Fusobacterium nucleatum
provoked a substantial increase in IL-6 and IL-8 production. Interestingly, the
gingival CTEs secreted significantly higher IL-6, while periodontal counterparts
produced higher IL-8. In conclusion, the gingival and periodontal CTEs exhibited
differential responses to various bacterial challenges. This gives insights into
the contribution of tissue topography and fibroblast heterogeneity in rendering
protective and specific immune responses toward early biofilm colonizers.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Srividya Atkuru
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Yi Ling Tang
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Tanya Sethi
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
| |
Collapse
|
16
|
Vo TTT, Huang HW, Wee Y, Feng SW, Cheng HC, Tuan VP, Lee IT. Surfactin reduces particulate matter-induced VCAM-1-dependent monocyte adhesion in human gingival fibroblasts by increasing Nrf2-dependent HO-1 expression. J Periodontal Res 2021; 57:115-130. [PMID: 34716926 DOI: 10.1111/jre.12944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES The mechanisms of particulate matter (PM) toxicity involve the generation of ROS and upregulation of proinflammatory molecules. Nrf2 is a multifunctional cytoprotective transcription factor that regulates the expression of various antioxidant, anti-inflammatory, and detoxifying molecules, such as HO-1. As surfactin has potential to induce Nrf2 activation and HO-1 expression, this study aimed to investigate the anti-inflammatory effects of surfactin on PM-exposed human gingival fibroblasts (HGFs) and signaling pathways engaged by surfactin. MATERIALS AND METHODS Human gingival fibroblasts were challenged by PM with or without surfactin pretreatment. The expression of Nrf2, HO-1, VCAM-1, and other molecules was determined by western blot, real-time PCR, or ELISA. Human monocytic THP-1 cells labeled with fluorescent reagent were added to HGFs, and the cell adhesion was assessed. ROS generation and NADPH oxidase activity were also measured. The involvement of Nrf2/HO-1 and ROS signaling pathways was investigated by treating HGFs with specific pathway interventions, genetically or pharmacologically. One dose of surfactin was given to mice before PM treatment to explore its in vivo effect on VCAM-1 expression in gingival tissues. RESULTS Particulate matter led to VCAM-1-dependent monocyte adhesion in HGFs, which was regulated by PKCα/NADPH oxidase/ROS/STAT1/IL-6 pathway. Surfactin could attenuate monocyte adhesion by disrupting this VCAM-1-dependent pathway. Additionally, surfactin promoted Nrf2-dependent HO-1 expression in HGFs, mitigating VCAM-1 expression. PM-treated mice exhibited the lower expression of IL-6 and VCAM-1 in gingival tissues if they previously received surfactin. CONCLUSION Surfactin exerts anti-inflammatory effects against PM-induced inflammatory responses in HGFs by inhibiting VCAM-1-dependent pathway and inducing Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Han Wei Huang
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Vo Phuoc Tuan
- Endoscopy Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Wang J, Shi K, Li S, Chen L, Liu W, Wu X, Shen Y, Sun Y, Cheng J, Wu X, Xu Q. Meisoindigo attenuates dextran sulfate sodium-induced experimental colitis via its inhibition of TAK1 in macrophages. Int Immunopharmacol 2021; 101:108239. [PMID: 34653728 DOI: 10.1016/j.intimp.2021.108239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
At present, inflammatory bowel disease (IBD) seriously threatens human health, and its treatment is a huge challenge for people. In our studies, we found that meisoindigo, a derivative of indirubin, significantly ameliorated dextran sulfate sodium (DSS)-induced experimental colitis in mice. Meisoindigo treatment markedly elevated the level of glutathione, while suppressed the activities of alkaline phosphatase and myeloperoxidase in colonic tissues. Moreover, the mRNA expression of vascular cell adhesion molecule 1, intercellular adhesion molecule 1, cyclooxygenase-2 which are important colitis-related molecules and the levels of the inflammatory cytokines interleukin (IL)-18, IL-1β, IL-6, tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) were suppressed dose-dependently following treatment with meisoindigo. Immunofluorescence results indicated that meisoindigo inhibited macrophage infiltration and nuclear factor (NF)-κB activation in colons from DSS-treated mice. Therefore, mouse RAW264.7 and human THP-1 cells were treated with lipopolysaccharide (LPS) alone or combined adenosine triphosphate to activate NF-κB pathway in vitro. It was shown that meisoindigo reduced the elevated levels of NO, IL-18, IL-1β and TNF-α after LPS treatment in both cells. In addition, meisoindigo showed inhibitory effects on NF-κB by using a luciferase reporter gene that depends on NF-κB. Through molecular docking, microscale thermophoresis and cellular thermal shift assay. It was further found that meisoindigo targeted transforming growth factor β activated kinase-1 (TAK1), which is an important regulator in the upstream of NF-κB pathway. In conclusion, our findings show that meisoindigo can alleviate IBD effectively at low doses, and negatively regulate proinflammatory responses by inhibiting the activation of TAK1, which provides new ideas for clinical anti-inflammatory therapy.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ke Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Shuaifei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Lu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China; Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Wentao Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | | | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
18
|
Jiang L, Yang A, Li X, Liu K, Tan J. Down-regulation of VCAM-1 in bone mesenchymal stem cells reduces inflammatory responses and apoptosis to improve cardiac function in rat with myocardial infarction. Int Immunopharmacol 2021; 101:108180. [PMID: 34607225 DOI: 10.1016/j.intimp.2021.108180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bone mesenchymal stem cells (BMSCs) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). VCAM-1 can promote the migration of lymphocytes to the inflammatory zone. In the present study, we tried to explore whether VCAM-1 silenced-BMSCs have better therapeutic effects on MI. METHODS BMSCs were isolated and cultured followed by treatment of a lentivirus silencing VCAM-1 and NF-κB activator (PMA). Besides, MI rat models were also established and injected with treated BMSCs to detect the effect of VCAM-1 silenced-BMSCs in MI, as evidenced by detection of cardiac function, survival of rats within 72 h, infarct size and myocardial cell apoptosis. Moreover, the expression of NF-κB-regulated gene products was also determined. RESULTS The implantation of sh-VCAM-1 BMSCs into MI rats resulted in more reductions in myocardial infarct size as well as myocardial cell apoptosis, improved cardiac function, the number of survived rats within 72 h, and survival time within 72 h compared with the individual treatments of either BMSCs or control. In addition, transplanted BMSCs down-regulated the expression of NF-κB-p65, MMP-9, TNF-α, and Bax, and up-regulated VEGF and Bcl-2 in myocardial tissue, which could be further enhanced by sh-VCAM-1 and rescued by PMA. CONCLUSION Our study demonstrated that silencing VCAM-1 in BMSCs could inhibit inflammation and apoptosis, thus improving cardiac function in MI.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Aidi Yang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Operation Room, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Li
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Ke Liu
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jin Tan
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
19
|
Zenobia C, Herpoldt KL, Freire M. Is the oral microbiome a source to enhance mucosal immunity against infectious diseases? NPJ Vaccines 2021; 6:80. [PMID: 34078913 PMCID: PMC8172910 DOI: 10.1038/s41541-021-00341-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
Mucosal tissues act as a barrier throughout the oral, nasopharyngeal, lung, and intestinal systems, offering first-line protection against potential pathogens. Conventionally, vaccines are applied parenterally to induce serotype-dependent humoral response but fail to drive adequate mucosal immune protection for viral infections such as influenza, HIV, and coronaviruses. Oral mucosa, however, provides a vast immune repertoire against specific microbial pathogens and yet is shaped by an ever-present microbiome community that has co-evolved with the host over thousands of years. Adjuvants targeting mucosal T-cells abundant in oral tissues can promote soluble-IgA (sIgA)-specific protection to confer increased vaccine efficacy. Th17 cells, for example, are at the center of cell-mediated immunity and evidence demonstrates that protection against heterologous pathogen serotypes is achieved with components from the oral microbiome. At the point of entry where pathogens are first encountered, typically the oral or nasal cavity, the mucosal surfaces are layered with bacterial cohabitants that continually shape the host immune profile. Constituents of the oral microbiome including their lipids, outer membrane vesicles, and specific proteins, have been found to modulate the Th17 response in the oral mucosa, playing important roles in vaccine and adjuvant designs. Currently, there are no approved adjuvants for the induction of Th17 protection, and it is critical that this research is included in the preparedness for the current and future pandemics. Here, we discuss the potential of oral commensals, and molecules derived thereof, to induce Th17 activity and provide safer and more predictable options in adjuvant engineering to prevent emerging infectious diseases.
Collapse
Affiliation(s)
| | | | - Marcelo Freire
- Departments of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA.
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Lagosz-Cwik KB, Wielento A, Lipska W, Kantorowicz M, Darczuk D, Kaczmarzyk T, Gibbs S, Potempa J, Grabiec AM. hTERT-immortalized gingival fibroblasts respond to cytokines but fail to mimic primary cell responses to Porphyromonas gingivalis. Sci Rep 2021; 11:10770. [PMID: 34031466 PMCID: PMC8144196 DOI: 10.1038/s41598-021-90037-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/05/2021] [Indexed: 01/30/2023] Open
Abstract
In periodontitis, gingival fibroblasts (GFs) interact with and respond to oral pathogens, significantly contributing to perpetuation of chronic inflammation and tissue destruction. The aim of this study was to determine the usefulness of the recently released hTERT-immortalized GF (TIGF) cell line for studies of host–pathogen interactions. We show that TIGFs are unable to upregulate expression and production of interleukin (IL)-6, IL-8 and prostaglandin E2 upon infection with Porphyromonas gingivalis despite being susceptible to adhesion and invasion by this oral pathogen. In contrast, induction of inflammatory mediators in TNFα- or IL-1β-stimulated TIGFs is comparable to that observed in primary GFs. The inability of TIGFs to respond directly to P. gingivalis is caused by a specific defect in Toll-like receptor-2 (TLR2) expression, which is likely driven by TLR2 promoter hypermethylation. Consistently, TIGFs fail to upregulate inflammatory genes in response to the TLR2 agonists Pam2CSK4 and Pam3CSK4. These results identify important limitations of using TIGFs to study GF interaction with oral pathogens, though these cells may be useful for studies of TLR2-independent processes. Our observations also emphasize the importance of direct comparisons between immortalized and primary cells prior to using cell lines as models in studies of any biological processes.
Collapse
Affiliation(s)
- Katarzyna B Lagosz-Cwik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Aleksandra Wielento
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Weronika Lipska
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Malgorzata Kantorowicz
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Dagmara Darczuk
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Kaczmarzyk
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.,Department of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland. .,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
21
|
Hosokawa Y, Hosokawa I, Ozaki K, Matsuo T. Nobiletin Inhibits Inflammatory Reaction in Interleukin-1β-Stimulated Human Periodontal Ligament Cells. Pharmaceutics 2021; 13:667. [PMID: 34066937 PMCID: PMC8148442 DOI: 10.3390/pharmaceutics13050667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
The immune response in periodontal lesions is involved in the progression of periodontal disease. Therefore, it is important to find a bioactive substance that has anti-inflammatory effects in periodontal lesions. This study aimed to examine if nobiletin, which is found in the peel of citrus fruits, could inhibit inflammatory responses in interleukin (IL)-1β-stimulated human periodontal ligament cells (HPDLCs). The release of cytokines (IL-6, IL-8, CXCL10, CCL20, and CCL2) and matrix metalloproteinases (MMP-1 and MMP-3) was assessed by ELISA. The expression of cell adhesion molecules (ICAM-1and VCAM-1) and the activation of signal transduction pathways (nuclear factor (NF)-κB, mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt)) in HPDLCs were detected by Western blot analysis. Our experiments revealed that nobiletin decreased the expression of inflammatory cytokines, cell adhesion molecules, and MMPs in IL-1β-stimulated HPDLCs. Moreover, we revealed that nobiletin treatment could suppress the activation of the NF-κB, MAPKs, and Akt pathways. These findings indicate that nobiletin could inhibit inflammatory reactions in IL-1β-stimulated HPDLCs by inhibiting multiple signal transduction pathways, including NF-κB, MAPKs, and Akt.
Collapse
Affiliation(s)
- Yoshitaka Hosokawa
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (I.H.); (T.M.)
| | - Ikuko Hosokawa
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (I.H.); (T.M.)
| | - Kazumi Ozaki
- Department of Oral Health Care Promotion, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan;
| | - Takashi Matsuo
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (I.H.); (T.M.)
| |
Collapse
|
22
|
Wang H, Huang M, Wang W, Zhang Y, Ma X, Luo L, Xu X, Xu L, Shi H, Xu Y, Wang A, Xu T. Microglial TLR4-induced TAK1 phosphorylation and NLRP3 activation mediates neuroinflammation and contributes to chronic morphine-induced antinociceptive tolerance. Pharmacol Res 2021; 165:105482. [PMID: 33549727 DOI: 10.1016/j.phrs.2021.105482] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE The aim of this work was to investigate the role and signal transduction of toll-like receptor 4 (TLR4), TGF-β-activated kinase 1 (TAK1) and nod-like receptor protein 3 (NLRP3) in microglial in the development of morphine-induced antinociceptive tolerance. METHODS TLR4 and NLRP3 knockout mice and 5Z-7-oxozeaeno (a selective inhibitor against TAK1 activity) were used to observe their effect on the development of morphine tolerance. Intrathecal injections of morphine (0.75 mg/kg once daily for 7 days) were used to establish anti-nociceptive tolerance, which was measured by the tail-flick test. Spinal TLR4, TAK1, and NLRP3 expression levels and phosphorylation of TAK1 were evaluated by Western blotting and immunofluorescence. RESULTS Repeated treatment with morphine increased total expression of spinal TLR4, TAK1, and NLRP3 and phosphorylation of TAK1 in wild-type mice. TLR4 knockout attenuated morphine-induced tolerance and inhibited the chronic morphine-induced increase in NLRP3 and phosphorylation of TAK1. Compared with controls, mice that received 5Z-7-oxozeaenol showed decreased development of morphine tolerance and inhibition on repeated morphine-induced increase of NLRP3 but not TLR4. NLRP3 knockout mice showed resistance to morphine-induced analgesic tolerance with no effect on chronic morphine-induced expression of TLR4 and TAK1. TLR4, TAK1, and NLRP3 were collectively co-localized together and with the microglia marker Iba1. CONCLUSIONS Microglial TLR4 regulates TAK1 expression and phosphorylation and results in NLRP3 activation contributes to the development of morphine tolerance through regulating neuroinflammation. Targeting TLR4-TAK1-NLRP3 signaling to regulate neuro-inflammation will be alternative therapeutics and strategies for chronic morphine-induced antinociceptive tolerance.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, China; Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Min Huang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Wenying Wang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Yu Zhang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaqing Ma
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Limin Luo
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaotao Xu
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Liang Xu
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Yongming Xu
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| | - Aizhong Wang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| | - Tao Xu
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, China; Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| |
Collapse
|
23
|
Li X, Wang X, Luan QX. Hyperresponsiveness of human gingival fibroblasts from patients with aggressive periodontitis against bacterial lipopolysaccharide. Exp Ther Med 2021; 21:417. [PMID: 33747158 DOI: 10.3892/etm.2021.9861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate whether gingival fibroblasts (GFs) of patients with aggressive periodontitis (AgP) are more sensitive to lipopolysaccharide (LPS) stimulation than GFs of control subjects. AgP causes rapid periodontal destruction, including the production of cytokines [i.e. interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α] and matrix metalloproteinases (MMP)-1, -3 and -9 in AgP GFs. LPS upregulates IL-1β, IL-6, TNF-α, MMP-1, MMP-3, MMP-9 and mitochondrial reactive oxygen species (mtROS). Fibroblasts are known to be associated with immune responses to bacterial virulence factors, but the precise mechanisms underlying this severe periodontal disease are unclear. In the present study, primary human GFs of four patients with AgP and four healthy subjects were challenged in vitro with LPS from Porphyromonas gingivalis (P. gingivalis). The generation of mtROS in GFs was assessed using MitoSOX Red. The expression of genes encoding inflammatory cytokines and MMPs in GFs was analyzed using reverse transcription-quantitative polymerase chain reaction, and the expression of proteins was analyzed using ELISA and Western blotting. Human GFs of patients with AgP exhibited higher levels of mtROS, and higher mRNA and protein expression levels of proinflammatory cytokines, including IL-1β, IL-6, MMP-1, MMP-3 and MMP-9 compared with healthy human GFs following stimulation with LPS from P. gingivalis. In the present study, it was demonstrated that GFs of patients with AgP display hyperreactivity when challenged with LPS.
Collapse
Affiliation(s)
- Xue Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, P.R. China
| | - Xiaoxuan Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, P.R. China
| | - Qing-Xian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, P.R. China
| |
Collapse
|
24
|
Kong LJ, Wang YN, Wang Z, Lv QZ. NOD2 induces VCAM-1 and ET-1 gene expression via NF-κB in human umbilical vein endothelial cells with muramyl dipeptide stimulation. Herz 2020; 46:265-271. [PMID: 33245410 DOI: 10.1007/s00059-020-04996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/13/2020] [Accepted: 10/11/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Endothelial dysfunction is involved in various aspects of vascular biology and different stages of cardiovascular diseases (CVDs). Nucleotide-binding oligomerization domain-containing protein (NOD) 2, a pivotal innate immune receptor for muramyl dipeptide (MDP), has been reported to be a central regulator in CVDs. Previously, we reported that NOD2 played a leading role in MDP-triggered oxidative stress in endothelial cells (ECs). However, whether NOD2 participates in the regulatory mechanism of vascular cell adhesion molecule‑1 (VCAM-1) and endothelin‑1 (ET-1) expression was not elucidated. METHODS Human umbilical vein endothelial cells (HUVECs) were stimulated with MDP for 12 h. mRNA expression of VCAM‑1 and ET‑1 was detected using real time polymerase chain reaction (PCR). Scrambled control small interfering RNA (siRNA) and NOD2 siRNA were transfected into HUVECs using Lipofectamine 2000 reagent (Invitrogen, Waltham, MA, USA). Furthermore, pyrrolidine dithiocarbamate was adopted to investigate the effect of nuclear factor κB (NF-κB) on NOD2-mediated VCAM‑1 and ET‑1 gene expression in MDP-treated HUVECs. RESULTS Data showed that MDP significantly increased VCAM‑1 and ET‑1 mRNA expression, which was dependent on NOD2. In addition, NF-κB inhibition suppressed NOD2-mediated gene expression of VCAM‑1 and ET‑1. CONCLUSION Collectively, we confirmed NOD2 aggravated VCAM‑1 and ET‑1 gene expression through NF-κB in HUVECs treated with MDP.
Collapse
Affiliation(s)
- Ling-Jun Kong
- Department of Pharmacy, Shandong Provincial Hospital, Shandong First Medical University, 250021, Jinan, Shandong, China.
| | - Ya-Nan Wang
- Department of Anesthesiology, Peking University People's Hospital, 100044, Beijing, China
| | - Zi Wang
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Qian-Zhou Lv
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
25
|
Du Q, He D, Zeng HL, Liu J, Yang H, Xu LB, Liang H, Wan D, Tang CY, Cai P, Huang JH, Zhang SH. Siwu Paste protects bone marrow hematopoietic function in rats with blood deficiency syndrome by regulating TLR4/NF-κB/NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113160. [PMID: 32736053 DOI: 10.1016/j.jep.2020.113160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Siwu Paste (SWP) was recorded in the first national Pharmacopoeia of China, "Tai Ping Hui Min He Ji Ju Fang", it showed excellent effects in regulating all syndromes relevant to blood. AIM OF THE STUDY This study aimed to investigate the protective effects of Siwu Paste (SWP) on bone marrow hematopoietic by using rats' model with blood deficiency syndrome induced by chemotherapy. MATERIALS AND METHODS Animal model with blood deficiency syndrome was successfully established by evaluating their peripheral blood cell level and erythrocyte membrane energy metabolism enzyme activity. Serum hematopoietic cytokine levels were detected by using Enzyme-linked immunosorbent assay (ELISA). Hematoxylin-Eosin (HE) staining method was used to observe the pathological morphology of femur bone marrow, and the viability of BMSC was detected by Cell Counting Kit (CCK-8). Furthermore, the expression of toll-like receptor 4 (TLR4), nuclear transcription factor kB (NF-κB), and NOD-like receptor protein 3 (NLRP3) protein in femur bone marrow were detected by using Western-blotting and High-content cell imaging analysis system (HCA). RESULTS Obtained results showed that SWP could significantly improve the status of anemia, regulate the expressions of serum hematopoietic cytokines, and protect bone marrow hematopoietic cells. Furthermore, the expressions of TLR4, NF-κB, and NLRP3 protein were inhibited in bone marrow hematopoietic cells. CONCLUSIONS Siwu Paste (SWP) could recover the bone marrow hematopoietic functions in rats with blood deficiency syndrome. The therapeutic mechanism may be related to the regulation of serum hematopoietic cytokines, and inhibition of TLR4/NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Qing Du
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Dan He
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Hong-Liang Zeng
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Jian Liu
- The First Hospital of Hunan University of Chinese Medicine, Central Laboratory, Changsha, Hunan, 410007, China.
| | - Hui Yang
- The First Hospital of Hunan University of Chinese Medicine, Central Laboratory, Changsha, Hunan, 410007, China.
| | - Lin-Ben Xu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Hao Liang
- Institute of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Dan Wan
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Chun-Yu Tang
- Hunan Times Sunshine Pharmaceutical Co., Ltd., Changsha, Hunan, 410208, China.
| | - Ping Cai
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Jian-Hua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| |
Collapse
|
26
|
Beklen A, Uckan D. Electronic cigarette liquid substances propylene glycol and vegetable glycerin induce an inflammatory response in gingival epithelial cells. Hum Exp Toxicol 2020; 40:25-34. [PMID: 32729321 DOI: 10.1177/0960327120943934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Information on the effects of propylene glycol (PG) and vegetable glycerin (VG) and on cytotoxicity and subsequent activation of the biological mediators is limited in periodontal diseases. This study analyzes the effect of unflavored PG/VG alone or in combination with nicotine on gingival epithelial cells. The cells were exposed to different PG/VG (± nicotine) concentrations for 24 h and cytotoxicity was evaluated by calorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromid assay. The expressions of interleukin (IL)-6, IL-8, and matrix metalloproteinases (MMPs)-9 were measured using an enzyme-linked immunosorbent assay and a western blotting. Stimulation with PG/VG mixtures reduced cell viability compared to nonexposed controls (p < 0.05). Adding PG/VG increased the levels of IL-6, IL-8, and MMP-9, and the amount of PG had more biological impact compared to the VG amount. The nicotine augmented this effect compared to its nicotine-free counterparts. In western blotting result, MMP-9 was clearly activated in almost all samples. These findings suggest that the main constituents PG/VG are cytotoxic and able to induce biological response in gingival cells in vitro. Despite being advertised as less harmful than conventional cigarettes, electronic cigarette liquid pose certain risks on periodontal cells. Awareness about the effects of electronic cigarettes on periodontal diseases must be increased.
Collapse
Affiliation(s)
- A Beklen
- Department of Periodontology, Faculty of Dentistry, 53004Eskisehir Osmangazi University, Eskisehir, Turkey
| | - D Uckan
- Medico-Social Dental Clinic, 52949Bogazici University, Istanbul, Turkey
| |
Collapse
|
27
|
Abidi AH, Alghamdi SS, Dabbous MK, Tipton DA, Mustafa SM, Moore BM. Cannabinoid type-2 receptor agonist, inverse agonist, and anandamide regulation of inflammatory responses in IL-1β stimulated primary human periodontal ligament fibroblasts. J Periodontal Res 2020; 55:762-783. [PMID: 32562275 DOI: 10.1111/jre.12765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study is to understand the role of cannabinoid type 2 receptor (CB2R) during periodontal inflammation and to identify anti-inflammatory agents for the development of drugs to treat periodontitis (PD). BACKGROUND Cannabinoid type 2 receptor is found in periodontal tissue at sites of inflammation/infection. Our previous study demonstrated anti-inflammatory responses in human periodontal ligament fibroblasts (hPDLFs) via CB2R ligands. METHODS Anandamide (AEA), HU-308 (agonist), and SMM-189 (inverse agonist) were tested for effects on IL-1β-stimulated cytokines, chemokines, and angiogenic and vascular markers expressed by hPDLFs using Mesoscale Discovery V-Plex Kits. Signal transduction pathways (p-c-Jun, p-ERK, p-p-38, p-JNK, p-CREB, and p-NF-kB) were investigated using Cisbio HTRF kits. ACTOne and Tango™ -BLA functional assays were used to measure cyclic AMP (cAMP) and β-arrestin activity. RESULTS IL-1β stimulated hPDLF production of 18/39 analytes, which were downregulated by the CB2R agonist and the inverse agonist. AEA exhibited pro-inflammatory and anti-inflammatory effects. IL-1β increased phosphoproteins within the first hour except p-JNK. CB2R ligands attenuated p-p38 and p-NFĸB, but a late rise in p-38 was seen with HU-308. As p-ERK levels declined, a significant increase in p-ERK was observed later in the time course by synthetic CB2R ligands. P-JNK was significantly affected by SMM-189 only, while p-CREB was elevated significantly by CB2R ligands at 180 minutes. HU-308 affected both cAMP and β-arrestin pathway. SMM-189 only stimulated cAMP. CONCLUSION The findings that CB2R agonist and inverse agonist may potentially regulate inflammation suggest that development of CB2R therapeutics could improve on current treatments for PD and other oral inflammatory pathologies.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sahar S Alghamdi
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mustafa Kh Dabbous
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA.,College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - David A Tipton
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Suni M Mustafa
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bob M Moore
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
28
|
Wen L, Mu W, Lu H, Wang X, Fang J, Jia Y, Li Q, Wang D, Wen S, Guo J, Dai W, Ren X, Cui J, Zeng G, Gao J, Wang Z, Cheng B. Porphyromonas gingivalis Promotes Oral Squamous Cell Carcinoma Progression in an Immune Microenvironment. J Dent Res 2020; 99:666-675. [PMID: 32298192 DOI: 10.1177/0022034520909312] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence has revealed a significant association between microorganisms and oral squamous cell carcinoma (OSCC). Porphyromonas gingivalis, the keystone pathogen in chronic periodontitis, is considered an important potential etiologic agent of OSCC, but the underlying immune mechanisms through which P. gingivalis mediates tumor progression of the oral cancer remain poorly understood. Our cohort study showed that the localization of P. gingivalis in tumor tissues was related to poor survival of patients with OSCC. Moreover, P. gingivalis infection increased oral lesion multiplicity and size and promoted tumor progression in a 4-nitroquinoline-1 oxide (4NQO)–induced carcinogenesis mouse model by invading the oral lesions. In addition, CD11b+ myeloid cells and myeloid-derived suppressor cells (MDSCs) showed increased infiltration of oral lesions. Furthermore, in vitro observations showed that MDSCs accumulated when human-derived dysplastic oral keratinocytes (DOKs) were exposed to P. gingivalis, and CXCL2, CCL2, interleukin (IL)–6, and IL-8 may be potential candidate genes that facilitate the recruitment of MDSCs. Taken together, our findings suggest that P. gingivalis promotes tumor progression by generating a cancer-promoting microenvironment, indicating a close relationship among P. gingivalis, tumor progression of the oral cancer, and immune responses.
Collapse
Affiliation(s)
- L. Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - W. Mu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - H. Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - X. Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - J. Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Y. Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Q. Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - D. Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - S. Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - J. Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - W. Dai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - X. Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - J. Cui
- State Key Laboratory of Oncology in South China, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - G. Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - J. Gao
- Discipline of Oral Bioscience, Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Z. Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - B. Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Irani S, Barati I, Badiei M. Periodontitis and oral cancer - current concepts of the etiopathogenesis. Oncol Rev 2020; 14:465. [PMID: 32231765 PMCID: PMC7097927 DOI: 10.4081/oncol.2020.465] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Gingival tissues are attacked by oral pathogens which can induce inflammatory reactions. The immune-inflammatory responses play essential roles in the patient susceptibility to periodontal diseases. There is a wealth of evidence indicating a link between chronic inflammation and risk of malignant transformation of the affected oral epithelium. Periodontitis is associated with an increased risk of developing chronic systemic conditions including autoimmune diseases and different types of cancers. Besides, some risk factors such as smoking, alcohol consumption and human papilloma virus have been found to be associated with both periodontitis and oral cancer. This review article aimed to study the current concepts in pathogenesis of chronic periodontitis and oral cancer by reviewing the related articles.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences
| | - Iman Barati
- Department of Periodontology, Dental Faculty, Hamadan University of Medical Sciences
| | - Mohammadreza Badiei
- Dental Student, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
30
|
Wu X, Zhang G, Feng X, Li P, Tan Y. Transcriptome analysis of human periodontal ligament fibroblasts exposed to Porphyromonas gingivalis LPS. Arch Oral Biol 2020; 110:104632. [DOI: 10.1016/j.archoralbio.2019.104632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/09/2019] [Accepted: 12/03/2019] [Indexed: 12/28/2022]
|
31
|
Liu S, Zhou M, Li J, Hu B, Jiang D, Huang H, Song J. LIPUS inhibited the expression of inflammatory factors and promoted the osteogenic differentiation capacity of hPDLCs by inhibiting the NF-κB signaling pathway. J Periodontal Res 2019; 55:125-140. [PMID: 31541455 DOI: 10.1111/jre.12696] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 07/16/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES As a chronic infectious disease, periodontitis could lead to tooth and bone loss. Low-intensity pulsed ultrasound (LIPUS) is a safe, noninvasive treatment method to effectively inhibit inflammation and promote bone differentiation. However, the application of LIPUS in curing periodontitis is still rare. Our study aimed to explore the ability of LIPUS to inhibit inflammatory factors and promote the osteogenic differentiation capacity of human periodontal ligament cells (hPDLCs), and its underlying mechanism. MATERIAL AND METHODS Human periodontal ligament cells were obtained and cultured from the premolar tissue samples for experiments. First, hPDLCs were treated for 24 hours using lipopolysaccharide (LPS) and then exposed to LIPUS (10 mW/cm2 , 30 mW/cm2 , 60 mW/cm2 , and 90 mW/cm2 ) to determine the appropriate intensity to inhibit expression of the inflammatory factors interleukin-6 (IL-6) and interleukin-8 (IL-8) expression. The expression of IL-6 and IL-8 was detected by real-time PCR and enzyme-linked immunosorbent assay. The safety of the most appropriate intensity of LIPUS was tested by a cell counting kit 8 test and an apoptosis assay. Then, LPS-induced hPDLCs were treated in osteogenic medium for 7-21 days with or without LIPUS (90 mW/cm2 , 30 min/d) stimulation. The osteogenic genes RUNX2, OPN, OSX, and OCN were measured by real-time PCR. Additionally, osteogenic differentiation capacity was determined using alkaline phosphatase (ALP) staining, ALP activity analysis, and Alizarin red staining. The activity of the nuclear factor-kappa B (NF-κB) signaling pathway was determined by western blotting, real-time PCR, immunofluorescence, and pathway blockade assays. RESULTS Lipopolysaccharide significantly upregulated the production and gene expression of IL-6 and IL-8, while LIPUS stimulation significantly inhibited IL-6 and IL-8 expression in an intensity-dependent manner. LIPUS (90 mW/cm2 ) was chosen as the most appropriate intensity, and there was no detrimental influence on cell proliferation and status with or without osteogenic medium. In addition, consecutive stimulation with LIPUS (90 mW/cm2 ) for 30 min/d for 7 days could also inhibit IL-6 and IL-8 gene expression, upregulate the expression of the osteogenesis-related genes RUNX2, OPN, OSX, and OCN, and promote osteogenic differentiation capacity in osteogenic medium in inflamed hPDLCs. The NF-κB signaling pathway was inhibited with LIPUS (90 mW/cm2 ) via inhibition of the phosphorylation of IκBα and the translocation of p65 into the nucleus in inflamed hPDLCs. Additional investigations of the NF-κB inhibitor, BAY 11-7082, revealed that LIPUS (90 mW/cm2 ) acted similarly to BAY 11-7802 to inhibit the NF-κB signaling pathway and increase osteogenesis-related genes and promote the osteogenic differentiation capacity of inflamed hPDLCs. CONCLUSION Low-intensity pulsed ultrasound (90 mW/cm2 ) stimulation could be a safe method to inhibit IL-6 and IL-8 in hPDLCs by inhibiting the NF-κB signaling pathway. The effect of LIPUS (90 mW/cm2 ) and BAY 11-7082 on LPS-induced inflammation demonstrated that both of these agents were capable of promoting osteogenesis-related gene expression and osteogenic differentiation in hPDLCs, suggesting that the effect of LIPUS on the promotion of osteogenic activity could be mediated in part through its ability to inhibit the NF-κB signal pathway. Hence, LIPUS could be a potential therapeutic method to cure periodontitis.
Collapse
Affiliation(s)
- Shan Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Mengjiao Zhou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jie Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Bo Hu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Dan Jiang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hong Huang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
González-Ramos S, Paz-García M, Rius C, Del Monte-Monge A, Rodríguez C, Fernández-García V, Andrés V, Martínez-González J, Lasunción MA, Martín-Sanz P, Soehnlein O, Boscá L. Endothelial NOD1 directs myeloid cell recruitment in atherosclerosis through VCAM-1. FASEB J 2019; 33:3912-3921. [PMID: 30496704 DOI: 10.1096/fj.201801231rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Atherosclerosis is a chronic disease characterized by vascular lipid retention and inflammation, and pattern recognition receptors (PRRs) are important contributors in early stages of the disease. Given the implication of the intracellular PRR nucleotide-binding oligomerization domain 1 (NOD1) in cardiovascular diseases, we investigated its contribution to early atherosclerosis. We evidenced NOD1 induction in atherosclerotic human and mouse tissues, predominantly in vascular endothelial cells. Accordingly, NOD1 genetic inactivation in Apoe-/- mice reduced not only atherosclerosis burden, but also monocyte and neutrophil accumulation in atheromata. Of note, in the presence of either peptidoglycan or oxidized LDLs, endothelial NOD1 triggered VCAM-1 up-regulation through the RIP2-NF-κB axis in an autocrine manner, enhancing firm adhesion of both sets of myeloid cells to the inflamed micro- and macrovasculature in vivo. Our data define a major proatherogenic role for endothelial NOD1 in early leukocyte recruitment to the athero-prone vasculature, thus introducing NOD1 as an innovative therapeutic target and potential prognostic molecule.-González-Ramos, S., Paz-García, M., Rius, C., del Monte-Monge, A., Rodríguez, C., Fernández-García, V., Andrés, V., Martínez-González, J., Lasunción, M. A., Martín-Sanz, P., Soehnlein, O., Boscá, L. Endothelial NOD1 directs myeloid cell recruitment in atherosclerosis through VCAM-1.
Collapse
Affiliation(s)
- Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Marta Paz-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Cristina Rius
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alberto Del Monte-Monge
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Rodríguez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau- Instituto Catalán de Ciencias Cardiovasculares (ICCC), Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Vicente Andrés
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - José Martínez-González
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (CSIC-IIBB), Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Miguel A Lasunción
- Hospital Universitario Ramón y Cajal (IRyCIS), Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany
- Karolinska Institutet, Stockholm, Sweden
- German Center for Cardiovascular research (DZHK), Partner Site Munich Heart Alliance (MHA), Berlin, Germany
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
33
|
Geng F, Wang Q, Li C, Liu J, Zhang D, Zhang S, Pan Y. Identification of Potential Candidate Genes of Oral Cancer in Response to Chronic Infection With Porphyromonas gingivalis Using Bioinformatical Analyses. Front Oncol 2019; 9:91. [PMID: 30847302 PMCID: PMC6394248 DOI: 10.3389/fonc.2019.00091] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 12/27/2022] Open
Abstract
Recent investigations revealed the relationship between chronic periodontitis, Porphyromonas gingivalis and cancer. However, host genes that change in response to chronic infection with P. gingivalis and may contribute to oral cancer have remained largely unknown. In the present study, we aimed to comprehensively analyze microarray data obtained from the chronic infection model of immortalized oral epithelial cells that were persistently exposed to P. gingivalis for 15 weeks. Using protein-protein interaction (PPI) networks and Ingenuity Pathway Analysis (IPA), we identified hub genes, major biological processes, upstream regulators and genes potentially involved in tumor initiation and progression. We also validated gene expression and demonstrated genetic alteration of hub genes from clinical samples of head and neck cancer. Overall, we utilized bioinformatical methods to identify IL6, STAT1, LYN, BDNF, C3, CD274, PDCD1LG2, and CXCL10 as potential candidate genes that might facilitate the prevention and treatment of oral squamous cell carcinoma (OSCC), the most common type of head and neck squamous cell carcinoma (HNSCC).
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Disease, School of Stomatology, Sichuan University, Chengdu, China
| | - Chen Li
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Dongmei Zhang
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Shuwei Zhang
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
34
|
Bai S, Zhou H, Wu L. Bone marrow stromal cells improved functional recovery in spinal cord injury rats partly via the Toll-like receptor-4/nuclear factor-κB signaling pathway. Exp Ther Med 2018; 17:444-448. [PMID: 30651819 DOI: 10.3892/etm.2018.6907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/10/2018] [Indexed: 11/06/2022] Open
Abstract
Spinal cord injury (SCI) results in inflammation, and TLR4, which is an inflammatory factor, has an important role in the pathological injury that occurs following SCI. Recently, bone marrow stromal cells (BMSCs) have been demonstrated to be a novel treatment in SCI. However, the underlying mechanism of neuroprotection in SCI by BMSCs remains unclear. The present study was designed to investigate the therapeutic mechanism of BMSCs in SCI by analysis of Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) expression. The present results demonstrated that BMSC transplantation promoted functional recovery and tissue repair in SCI rats. Interestingly, it also reduced the expression of TLR4 and NF-κB after SCI. Furthermore, it was demonstrated that BMSCs downregulated the expression of apoptosis factor caspase-12 in the SCI rat model. The present results demonstrated that BMSCs may have incorporated into the spinal cord to improve locomotor function after SCI, partly via the TLR4/NF-κB signaling pathway. To the best of our knowledge, this is the first study to determine that BMSCs prevented secondary injury and enhanced functional recovery in SCI via inhibition of TLR4/NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Shi Bai
- Department of Anatomy, School of Medicine, Taizhou University, Taizhou, Zhejiang 317000, P.R. China
| | - Hao Zhou
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Lijuan Wu
- Department of Anatomy, School of Medicine, Taizhou University, Taizhou, Zhejiang 317000, P.R. China.,School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
35
|
Lipopolysaccharide Downregulates Kruppel-Like Factor 2 (KLF2) via Inducing DNMT1-Mediated Hypermethylation in Endothelial Cells. Inflammation 2018; 40:1589-1598. [PMID: 28578476 DOI: 10.1007/s10753-017-0599-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
KLF2 plays a protective role in antiinflammation and endothelial function, and can be regulated by promoter methylation alteration. Lipopolysaccharide (LPS) is a mediator of inflammatory responses, which causes epigenetic change of certain genes in host cells. We thus aimed to determine whether LPS could control the KLF2 expression by inducing methylation in promoter region. DNA methylation of 16 CpG sites within KLF2 promoter region was detected by bisulfite sequencing PCR. Results showed that methylation at 12 CpG sites were significantly increased in HUVECs after exposure to LPS among the total 16 sites, and the average level was increased by 57%. The KLF2 expressions assessed by reverse transcription quantitative real-time PCR and Western blot were significantly downregulated compared that without LPS simulation. Moreover, both messenger RNA and protein levels of KLF2 in HUVEC co-treated with LPS and DNA methyltransferase (DNMT) 1 small interfering RNA were dramatically higher than that treated with LPS only. Similar result was obtained when the cells were incubated in combination with LPS and 5-aza-2'-deoxycytidine (AZA), suggesting that the reduction of KLF2 expression induced by LPS can be reversed by DNMT1 inhibition. Finally, the presence of AZA changed the expression of genes that depends on KLF2 in LPS-stimulated HUVECs, which downregulated the E-selectin and VCAM and increased the eNOS and thrombomodulin expression. Our data demonstrated that LPS exposure resulted in hypermethylation in KLF2 promoter in HUVECs, which subsequently led to downregulation of the KLF2 expression. The study suggested that epigenetic alteration is involved in LPS-induced inflammatory response and provided a new insight into atherogenesis.
Collapse
|
36
|
Naruishi K, Nagata T. Biological effects of interleukin‐6 on Gingival Fibroblasts: Cytokine regulation in periodontitis. J Cell Physiol 2018; 233:6393-6400. [DOI: 10.1002/jcp.26521] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Koji Naruishi
- Department of Periodontology and Endodontology, Institute of Biomedical SciencesTokushima University Graduate SchoolKuramotoTokushimaJapan
| | - Toshihiko Nagata
- Department of Periodontology and Endodontology, Institute of Biomedical SciencesTokushima University Graduate SchoolKuramotoTokushimaJapan
| |
Collapse
|
37
|
Kriebel K, Hieke C, Müller-Hilke B, Nakata M, Kreikemeyer B. Oral Biofilms from Symbiotic to Pathogenic Interactions and Associated Disease -Connection of Periodontitis and Rheumatic Arthritis by Peptidylarginine Deiminase. Front Microbiol 2018; 9:53. [PMID: 29441048 PMCID: PMC5797574 DOI: 10.3389/fmicb.2018.00053] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
A wide range of bacterial species are harbored in the oral cavity, with the resulting complex network of interactions between the microbiome and host contributing to physiological as well as pathological conditions at both local and systemic levels. Bacterial communities inhabit the oral cavity as primary niches in a symbiotic manner and form dental biofilm in a stepwise process. However, excessive formation of biofilm in combination with a corresponding deregulated immune response leads to intra-oral diseases, such as dental caries, gingivitis, and periodontitis. Moreover, oral commensal bacteria, which are classified as so-called “pathobionts” according to a now widely accepted terminology, were recently shown to be present in extra-oral lesions with distinct bacterial species found to be involved in the onset of various pathophysiological conditions, including cancer, atherosclerosis, chronic infective endocarditis, and rheumatoid arthritis. The present review focuses on oral pathobionts as commensal and healthy members of oral biofilms that can turn into initiators of disease. We will shed light on the processes involved in dental biofilm formation and also provide an overview of the interactions of P. gingivalis, as one of the most prominent oral pathobionts, with host cells, including epithelial cells, phagocytes, and dental stem cells present in dental tissues. Notably, a previously unknown interaction of P. gingivalis bacteria with human stem cells that has impact on human immune response is discussed. In addition to this very specific interaction, the present review summarizes current knowledge regarding the immunomodulatory effect of P. gingivalis and other oral pathobionts, members of the oral microbiome, that pave the way for systemic and chronic diseases, thereby showing a link between periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Katja Kriebel
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Cathleen Hieke
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | | | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
38
|
A new mechanism of inhibition of IL-1β secretion by celastrol through the NLRP3 inflammasome pathway. Eur J Pharmacol 2017; 814:240-247. [PMID: 28864208 DOI: 10.1016/j.ejphar.2017.08.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/23/2022]
|
39
|
Li X, Wang X, Zheng M, Luan QX. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts. Exp Cell Res 2016; 347:212-221. [DOI: 10.1016/j.yexcr.2016.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/16/2016] [Accepted: 08/07/2016] [Indexed: 10/21/2022]
|
40
|
Ahn SH, Cho SH, Song JE, Kim S, Oh SS, Jung S, Cho KA, Lee TH. Caveolin-1 serves as a negative effector in senescent human gingival fibroblasts during Fusobacterium nucleatum infection. Mol Oral Microbiol 2016; 32:236-249. [PMID: 27315395 DOI: 10.1111/omi.12167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/11/2022]
Abstract
It is well established that aging is associated with increased susceptibility to infectious diseases. Fusobacterium nucleatum is a well-known bacterial species that plays a central bridging role between early and late colonizers in the human oral cavity. Further, the ability of F. nucleatum to invade gingival fibroblasts (GFs) is critical to the development of periodontal diseases. However, the mechanisms underlying the age-related infection of GFs by F. nucleatum remain unknown. We used young (fourth passage) and senescent (22nd passage) GFs to investigate the mechanisms of F. nucleatum infection in aged GFs and first observed increased invasion of F. nucleatum in senescent GFs. We also found that the co-localization of caveolin-1 (Cav-1), a protein marker of aging, with F. nucleatum and the knockdown of Cav-1 in GFs reduced F. nucleatum invasion. Additionally, F. nucleatum infection triggered the production of reactive oxygen species (ROS) through activation of NADPH oxidase in GFs, but senescent GFs exhibited significantly lower levels of NADPH oxidase activity and ROS production compared with young GFs in both the uninfected and infected conditions. Also, senescent GFs exhibited a decline in proinflammatory cytokine production and extracellular signal regulated kinase (ERK) phosphorylation following F. nucleatum infection. Interestingly, the knockdown of Cav-1 in senescent GFs increased NADPH oxidase activity and caused the upregulation of interleukin-6 and interleukin-8 and the phosphorylation of ERK. Collectively, the increased expression of Cav-1 might play a critical role in F. nucleatum invasion and could hinder the host response in senescent GFs.
Collapse
Affiliation(s)
- S H Ahn
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - S-H Cho
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Korea
| | - J-E Song
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Korea
| | - S Kim
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea.,Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Korea
| | - S S Oh
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - S Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - K A Cho
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - T-H Lee
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea.,Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Korea
| |
Collapse
|
41
|
Wang Y, Gong J, Zeng H, Liu R, Jin B, Chen L, Wang Q. Lipopolysaccharide Activates the Unfolded Protein Response in Human Periodontal Ligament Fibroblasts. J Periodontol 2016; 87:e75-81. [DOI: 10.1902/jop.2015.150413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Groeneveld ME, van Burink MV, Begieneman MPV, Niessen HWM, Wisselink W, Eringa EC, Yeung KK. Activation of extracellular signal-related kinase in abdominal aortic aneurysm. Eur J Clin Invest 2016; 46:440-7. [PMID: 26988568 DOI: 10.1111/eci.12618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/09/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Extracellular matrix degeneration, caused by matrix metalloproteinase-2, facilitates smooth muscle cell migration leading to medial layer decline and, ultimately, abdominal aortic aneurysm. It remains unclear what exactly causes aneurysms to rupture, which leads to death in most patients. The extracellular signal-related kinase may be linked to the latter process. We aimed to clarify the role of extracellular signal-related kinase in aortic aneurysm development and rupture in patients. DESIGN Aortic fragments were harvested during open repair of nonruptured (n = 20) and ruptured (n = 8) aneurysms. As control, nondilated aortas (n = 6) were obtained during autopsy. We determined levels of phosphorylated and total extracellular signal-related kinase by Western blot, matrix metalloproteinase-2 by immunohistochemistry and medial layer thickness by conventional microscopy. RESULTS Nonruptured aneurysms had 1·8 times higher activation of extracellular signal-related kinase (ratio: phosphorylated/total) than controls (P = 0·011). However, the ruptured aneurysms had only 0·9 times the activation of controls (ns). Both nonruptured and ruptured aneurysms showed significantly higher matrix metalloproteinase-2 than controls (3·8 and 4·0-times, respectively; P < 0·005). Of the medial layer thickness in controls, the median was 1·5 mm, in nonruptured 1·0 mm and in ruptured aneurysms 0·7 mm. Activation of extracellular signal-related kinase correlated positively to medial layer thickness (Rs = 0·48; P = 0·014), but not to matrix metalloproteinase-2 (Rs = -0·36; P = 0·10). CONCLUSIONS In this study, nonruptured aneurysms are associated with increased extracellular signal-related kinase activation while ruptured aneurysms are not. Extracellular signal-related kinase was not related to total matrix metalloproteinase-2 expression. We therefore speculate that increased extracellular signal-related kinase, in response to medial layer decline, could be protective against aneurysm rupture.
Collapse
Affiliation(s)
- Menno E Groeneveld
- Department of Vascular Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands.,Department of Physiology, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands
| | - Max V van Burink
- Department of Vascular Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands
| | - Mark P V Begieneman
- Department of Pathology and Cardiac Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands.,Netherlands Forensic Institute, The Hague, the Netherlands
| | - Hans W M Niessen
- Department of Pathology and Cardiac Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands
| | - Willem Wisselink
- Department of Vascular Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands
| | - Ed C Eringa
- Department of Physiology, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands
| | - Kak K Yeung
- Department of Vascular Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands.,Department of Physiology, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands
| |
Collapse
|
43
|
Tsai TH, Huang WC, Ying HT, Kuo YH, Shen CC, Lin YK, Tsai PJ. Wild Bitter Melon Leaf Extract Inhibits Porphyromonas gingivalis-Induced Inflammation: Identification of Active Compounds through Bioassay-Guided Isolation. Molecules 2016; 21:454. [PMID: 27058519 PMCID: PMC6273076 DOI: 10.3390/molecules21040454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/15/2023] Open
Abstract
Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify the anti-inflammatory active compounds using heat-killed P. gingivalis-stimulated human monocytic THP-1 cells in vitro. Five major fractions were collected from the ethanol/ethyl acetate extract of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) leaves and evaluated for their anti-inflammatory activity against P. gingivalis. Among the test fractions, Fraction 5 effectively decreased heat-killed P. gingivalis-induced interleukin (IL)-8 and was subjected to separation and purification by using chromatographic techniques. Two cucurbitane triterpenoids were isolated from the active fraction and identified as 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol (1) and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (2) by comparing spectral data. Treatments of both compounds in vitro potently suppressed P. gingivalis-induced IL-8, IL-6, and IL-1β levels and the activation of mitogen-activated protein kinase (MAPK) in THP-1 cells. Both compounds effectively inhibited the mRNA levels of IL-6, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in P. gingivalis-stimulated gingival tissue of mice. These findings imply that 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al could be used for the development of novel therapeutic approaches against P. gingivalis infections.
Collapse
Affiliation(s)
- Tzung-Hsun Tsai
- Department of Dentistry, Keelung Chang-Gung Memorial Hospital, Keelung 204, Taiwan.
| | - Wen-Cheng Huang
- Department of Pediatrics, Taipei Tzu-Chi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| | - How-Ting Ying
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Chien-Chang Shen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Peitou, Taipei 112, Taiwan.
| | - Yin-Ku Lin
- Department of Chinese Internal Medicine, Keelung Chang-Gung Memorial Hospital, Keelung 204, Taiwan.
| | - Po-Jung Tsai
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| |
Collapse
|
44
|
Cai Y, Kong H, Pan YB, Jiang L, Pan XX, Hu L, Qian YN, Jiang CY, Liu WT. Procyanidins alleviates morphine tolerance by inhibiting activation of NLRP3 inflammasome in microglia. J Neuroinflammation 2016; 13:53. [PMID: 26931361 PMCID: PMC4774188 DOI: 10.1186/s12974-016-0520-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/22/2016] [Indexed: 12/15/2022] Open
Abstract
Background The development of antinociceptive tolerance following repetitive administration of opioid analgesics significantly hinders their clinical use. Evidence has accumulated indicating that microglia within the spinal cord plays a critical role in morphine tolerance. The inhibitor of microglia is effective to attenuate the tolerance; however, the mechanism is not fully understood. Our present study investigated the effects and possible mechanism of a natural product procyanidins in improving morphine tolerance via its specific inhibition on NOD-like receptor protein3 (NLRP3) inflammasome in microglia. Methods CD-1 mice were used for tail-flick test to evaluate the degree of pain. The microglial cell line BV-2 was used to investigate the effects and the mechanism of procyanidins. Reactive oxygen species (ROS) produced from BV-2 cells was evaluated by flow cytometry. Cell signaling was measured by western blot assay and immunofluorescence assay. Results Co-administration of procyanidins with morphine potentiated its antinociception effect and attenuated the development of acute and chronic morphine tolerance. Procyanidins also inhibited morphine-induced increase of interleukin-1β and activation of NOD-like receptor protein3 (NLRP3) inflammasome. Furthermore, procyanidins decreased the phosphorylation of p38 mitogen-activated protein kinase, inhibited the translocation of nuclear factor-κB (NF-κB), and suppressed the level of reactive oxygen species in microglia. Conclusions Procyanidins suppresses morphine-induced activation of NLRP3 inflammasome and inflammatory responses in microglia, and thus resulting in significant attenuation of morphine antinociceptive tolerance. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0520-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Cai
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Hong Kong
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Yin-Bing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lai Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Xiu-Xiu Pan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chun-Yi Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China.
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China.
| |
Collapse
|
45
|
The matricellular protein CCN1 promotes mucosal healing in murine colitis through IL-6. Mucosal Immunol 2015; 8:1285-96. [PMID: 25807183 PMCID: PMC4583322 DOI: 10.1038/mi.2015.19] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/10/2015] [Indexed: 02/04/2023]
Abstract
The matricellular protein CCN1 (CYR61) is known to function in wound healing and is upregulated in colons of patients with Crohn's disease and ulcerative colitis, yet its specific role in colitis is unknown. Here we have used Ccn1(dm/dm) knockin mice expressing a CCN1 mutant unable to bind integrins α6β1 and αMβ2 as a model to probe CCN1 function in dextran sodium sulfate (DSS)-induced colitis. Ccn1(dm/dm) mice exhibited high mortality, impaired mucosal healing, and diminished interleukin-6 (IL-6) expression during the repair phase of DSS-induced colitis compared with wild-type mice, despite having comparable severity of initial inflammation and tissue injury. CCN1-induced IL-6 expression in macrophages through integrin αMβ2 and in fibroblasts through α6β1, and IL-6 promoted intestinal epithelial cell (IEC) proliferation. Administration of purified CCN1 protein fully rescued Ccn1(dm/dm) mice from DSS-induced mortality, restored IEC proliferation and enhanced mucosal healing, whereas delivery of IL-6 partially rectified these defects. CCN1 therapy accelerated mucosal healing and recovery from DSS-induced colitis even in wild-type mice. These findings reveal a critical role for CCN1 in restoring mucosal homeostasis after intestinal injury in part through integrin-mediated induction of IL-6 expression, and suggest a therapeutic potential for activating the CCN1/IL-6 axis for treating inflammatory bowel disease.
Collapse
|
46
|
Liu J, Tang X, Li C, Pan C, Li Q, Geng F, Pan Y. Porphyromonas gingivalis promotes the cell cycle and inflammatory cytokine production in periodontal ligament fibroblasts. Arch Oral Biol 2015; 60:1153-61. [PMID: 26043445 DOI: 10.1016/j.archoralbio.2015.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The infection of Porphyromonas gingivalis (P. gingivalis) modulates host immune-inflammatory responses and destructs homeostasis of normal cell cycle, thereby leading to periodontal tissue destruction. Human periodontal ligament fibroblasts (PDLFs) are key players in the host immune responses and periodontal tissue regeneration. The aim of the present study was to discover the effects of P. gingivalis infection on the cell cycle and inflammatory cytokine production in PDLFs. DESIGN P. gingivalis infection model into PDLFs was established. The effect of P. gingivalis on the cell proliferation and cell cycle were detected by MTT and flow cytometry. The p21, cyclin D1 and cyclin E mRNA expression, p21 protein expression, as well as IL-6 and IL-8 protein levels were analyzed by RT-qPCR, Western blot and ELISA, respectively. RESULTS P. gingivalis promoted proliferation and G1 phase of PDLFs. G1 phase promotion was associated with the decreased level of p21 and the up-regulation of cyclin D1 at 6h, and with the increased level of cyclin E at 12h. Simultaneously, the immune-inflammatory response of PDLFs was initiated by P. gingivalis during the initial stage of infection, including the increased expressions of IL-6 and IL-8. CONCLUSION We confirmed that the infection of P. gingivalis could modulate the expression of PDLF genes, which control cell cycle and inflammatory cytokine production. Thus, P. gingivalis may contribute to the proliferation and inflammation of periodontal tissue.
Collapse
Affiliation(s)
- Junchao Liu
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| | - Xiaolin Tang
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| | - Chen Li
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| | - Chunling Pan
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| | - Qian Li
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| | - Fengxue Geng
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| | - Yaping Pan
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| |
Collapse
|
47
|
Cavalla F, Osorio C, Paredes R, Valenzuela MA, García-Sesnich J, Sorsa T, Tervahartiala T, Hernández M. Matrix metalloproteinases regulate extracellular levels of SDF-1/CXCL12, IL-6 and VEGF in hydrogen peroxide-stimulated human periodontal ligament fibroblasts. Cytokine 2015; 73:114-21. [PMID: 25748833 DOI: 10.1016/j.cyto.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/22/2015] [Accepted: 02/02/2015] [Indexed: 12/19/2022]
Abstract
Periodontitis is a highly prevalent infectious disease characterized by the progressive inflammatory destruction of tooth-supporting structures, leading to tooth loss. The underling molecular mechanisms of the disease are incompletely understood, precluding the development of more efficient screening, diagnostic and therapeutic approaches. We investigated the interrelation of three known effector mechanisms of the cellular response to periodontal infection, namely reactive oxygen species (ROS), matrix metalloproteinases (MMPs) and cytokines in primary cell cultures of human periodontal ligament fibroblast (hPDLF). We demonstrated that ROS increase the activity/levels of gelatinolytic MMPs, and stimulate cytokine secretion in hPDLF. Additionally, we proved that MMPs possesses immune modulatory capacity, regulating the secreted levels of cytokines in ROS-stimulated hPDLF cultures. This evidence provides further insight in the molecular pathogenesis of periodontitis, contributing to the future development of more effective therapies.
Collapse
Affiliation(s)
- Franco Cavalla
- Conservative Dentistry Department, Faculty of Dentistry Universidad de Chile, Santiago, Chile; Laboratory of Periodontal Biology, Faculty of Dentistry Universidad de Chile, Santiago, Chile
| | - Constanza Osorio
- Conservative Dentistry Department, Faculty of Dentistry Universidad de Chile, Santiago, Chile
| | - Rodolfo Paredes
- Escuela Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile
| | - María Antonieta Valenzuela
- Biochemistry and Molecular Biology Department, Faculty of Chemical and Pharmaceutical Sciences Universidad de Chile, Santiago, Chile
| | - Jocelyn García-Sesnich
- Laboratory of Periodontal Biology, Faculty of Dentistry Universidad de Chile, Santiago, Chile
| | - Timo Sorsa
- Institute of Dentistry University of Helsinki, Helsinki, Finland; Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland; Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry Universidad de Chile, Santiago, Chile; Oral Pathology Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
48
|
Amar S, Engelke M. Periodontal innate immune mechanisms relevant to atherosclerosis. Mol Oral Microbiol 2014; 30:171-85. [PMID: 25388989 DOI: 10.1111/omi.12087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2014] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a common cardiovascular disease in the USA where it is a leading cause of illness and death. Atherosclerosis is the most common cause for heart attack and stroke. Most commonly, people develop atherosclerosis as a result of diabetes, genetic risk factors, high blood pressure, a high-fat diet, obesity, high blood cholesterol levels, and smoking. However, a sizable number of patients suffering from atherosclerosis do not harbor the classical risk factors. Ongoing infections have been suggested to play a role in this process. Periodontal disease is perhaps the most common chronic infection in adults with a wide range of clinical variability and severity. Research in the past decade has shed substantial light on both the initiating infectious agents and host immunological responses in periodontal disease. Up to 46% of the general population harbors the microorganism(s) associated with periodontal disease, although many are able to limit the progression of periodontal disease or even clear the organism(s) if infected. In the last decade, several epidemiological studies have found an association between periodontal infection and atherosclerosis. This review focuses on exploring the molecular consequences of infection by pathogens that exacerbate atherosclerosis, with the focus on infections by the periodontal bacterium Porphyromonas gingivalis as a running example.
Collapse
Affiliation(s)
- S Amar
- Center for Anti-inflammatory Therapeutics, School of Dental Medicine, Boston University, Boston, MA, USA
| | | |
Collapse
|
49
|
Adhesion of monocytes to periodontal fibroblasts requires activation of NOD1/2- and TLR4-mediated LFA-1 and VLA-4. Arch Oral Biol 2014; 60:834-44. [PMID: 25791323 DOI: 10.1016/j.archoralbio.2014.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the roles of nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2) and Toll-like receptor 4 (TLR4) in mediating the adhesion of monocytes to periodontal fibroblasts through leucocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4). DESIGN The expression of NOD1, NOD2, and TLR4 was detected in the gingival tissue of patients with chronic periodontitis by immunohistochemistry. Then the adhesion of cells of human monocytic cell line U937 to human gingival fibroblasts (hGFs) and human periodontal ligament cells (hPDLCs) was investigated after U937 cells were treated with the agonists of NOD1, NOD2, and TLR4 for 24 h, or transfected with small interfering RNAs (siRNAs) targeting NOD1, NOD2, and TLR4 for 48 h. Meanwhile, the expression of LFA-1 and VLA-4 was examined in U937 cells through real-time polymerase chain reaction (PCR), Western blot, and flow cytometry. To confirm the roles of LFA-1 and VLA-4 involved in the process of adhesion, the adhesion blockade assay was performed using the corresponding blocking antibodies against these adhesion molecules. RESULTS The immunostaining results showed that NOD1, NOD2, and TLR4 were highly expressed in the gingival tissue of patients with periodontitis, especially in the monocyte-infiltrated area. The activation of these receptors by agonists upregulated the expression of LFA-1 and VLA-4 in U937 cells, and it increased the affinity of U937 cells to hGFs or hPDLCs. On the other hand, knockdown of these receptors by specific siRNAs resulted in the opposite results. In addition, blocking either LFA-1 or VLA-4 in U937 cells significantly attenuated the agonist-triggered adhesion of U937 to periodontal fibroblasts (P<0.001). CONCLUSIONS These results suggested that NOD1/2 and TLR4 mediated monocyte-periodontal fibroblast adhesion via the modulation of LFA-1 and VLA-4.
Collapse
|
50
|
Wu XF, Ouyang ZJ, Feng LL, Chen G, Guo WJ, Shen Y, Wu XD, Sun Y, Xu Q. Suppression of NF-κB signaling and NLRP3 inflammasome activation in macrophages is responsible for the amelioration of experimental murine colitis by the natural compound fraxinellone. Toxicol Appl Pharmacol 2014; 281:146-56. [PMID: 25448682 DOI: 10.1016/j.taap.2014.10.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/28/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) affects millions of people worldwide. Although the etiology of this disease is uncertain, accumulating evidence indicates a key role for the activated mucosal immune system. In the present study, we examined the effects of the natural compound fraxinellone on dextran sulfate sodium (DSS)-induced colitis in mice, an animal model that mimics IBD. Treatment with fraxinellone significantly reduced weight loss and diarrhea in mice and alleviated the macroscopic and microscopic signs of the disease. In addition, the activities of myeloperoxidase and alkaline phosphatase were markedly suppressed, while the levels of glutathione were increased in colitis tissues following fraxinellone treatment. This compound also decreased the colonic levels of interleukin (IL)-1β, IL-6, IL-18 and tumor necrosis factor (TNF)-α in a concentration-dependent manner. These effects of fraxinellone in mice with experimental colitis were attributed to its inhibition of CD11b(+) macrophage infiltration. The mRNA levels of macrophage-related molecules in the colon, including intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2), were also markedly inhibited following fraxinellone treatment. The results from in vitro assays showed that fraxinellone significantly reduced lipopolysaccharide (LPS)-induced production of nitric oxide (NO), IL-1β and IL-18 as well as the activity of iNOS in both THP-1 cells and mouse primary peritoneal macrophages. The mechanisms responsible for these effects were attributed to the inhibitory role of fraxinellone in NF-κB signaling and NLRP3 inflammasome activation. Overall, our results support fraxinellone as a novel drug candidate in the treatment of colonic inflammation.
Collapse
Affiliation(s)
- Xue-Feng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zi-Jun Ouyang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Li-Li Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Gong Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen-Jie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xu-Dong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|