1
|
Ge Q, Lin Z, Wang X, Jiang Z, Hu Y. A seven-LncRNA signature for prognosis prediction of patients with lung squamous cell carcinoma through tumor immune escape. Front Oncol 2025; 15:1511564. [PMID: 40196739 PMCID: PMC11973350 DOI: 10.3389/fonc.2025.1511564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) is a malignant disease associated with poor therapeutic responses and prognosis. Preliminary studies have shown that the dysregulation of long non-coding RNAs (LncRNAs) is linked to cancer development and prognosis. However, research on the role of LncRNAs in LUSC remains limited. Methods In this study, we aimed to develop a LncRNA signature for improved prognostic prediction in LUSC and to elucidate the underlying mechanisms. We utilized expression data of LncRNAs and clinical information from 471 LUSC patients in The Cancer Genome Atlas (TCGA), randomly dividing them into a training set (n=236) and a testing set (n=235). Results A prognostic signature model comprising seven LncRNAs was constructed using multivariate Cox regression analysis based on the training set. Using a risk score cutoff value of -0.12 (log2-transformed), patients were categorized into high-risk (n=101) and low-risk (n=370) groups. The high-risk group demonstrated significantly worse overall survival (OS) compared to the low-risk group (p<0.0001). The risk score showed strong prognostic predictive ability for LUSC patients, as evidenced by the area under the ROC curve (AUC: 0.66, 0.67, and 0.67) and nomogram analysis (C-index, calibration, and decision curve analysis) for 1-, 3-, and 5-year survival predictions. Independent prognostic factors for LUSC were identified, including risk group (HR=0.3, 95% CI: 0.22-0.4), stage (HR=1.78, 95% CI: 1.28-2.48), and age (HR=1.02, 95% CI: 1.00-1.04). KEGG enrichment analysis revealed that mRNAs influenced by the seven targeted LncRNAs, associated with immune evasion, were primarily linked to pathways such as chemical carcinogenesis, Th17 cell differentiation, NF-κB signaling, and proteoglycans in cancer. Expression levels of 14 target genes related to tumor immune tolerance were significantly suppressed, with eight confirmed via real-time PCR and western blot analysis. Additionally, CIBERSORT analysis of immune cell-related gene expression between normal and LUSC tissues indicated activation of the immune system in LUSC patients. Conclusion In conclusion, our findings highlight the clinical significance of the seven LncRNA signature in predicting survival outcomes for LUSC patients.
Collapse
Affiliation(s)
- Qiangqiang Ge
- Clinical Laboratory, Shangyu People’s Hospital of Shaoxing, Shaoxing, Zhejiang, China
| | - Zhong Lin
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Xuequan Wang
- Department of Radiotherapy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Zhengli Jiang
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Yan Hu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Li Y, Ding S, Wang Y. Targeting the cholinergic anti-inflammatory pathway: an innovative strategy for treating diseases. Mol Biol Rep 2025; 52:199. [PMID: 39903351 DOI: 10.1007/s11033-025-10288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is comprised of the vagus nerve, acetylcholine, nicotinic acetylcholine receptors, the spleen, and the splenic nerve. It represents a sophisticated neuroimmune axis that critically regulates the crosstalk between the nervous system and the immune response via the vagus nerve. Here, we provided a nuanced exploration of the CAP's role in curbing inflammatory processes and its broad therapeutic potential across a spectrum of diseases. We meticulously dissect the intricate mechanisms by which the CAP modulates key signaling cascades, including the NF-κB, JAK2/STAT3, MAPK/ERK, PI3K/AKT, COX2/PGE2, and NRF2/HO-1 pathways, which are quintessential in the pathogenesis of various conditions. Additionally, we also summarized the CAP's profound implications in the management of inflammatory diseases, neurodegenerative disorders, metabolic syndromes, and oncological malignancies, elucidating its capacity to mitigate disease severity and progression through sophisticated immune modulation. The modulation of the CAP is suggested as a novel strategy that could potentially transform treatment approaches for a variety of conditions. However, the precise cellular and molecular underpinnings of the CAP's effects, as well as its translatability to clinical settings, remain subjects of ongoing investigation. The review calls for further research to demystify the mechanisms of the CAP and to harness its therapeutic potential fully, with the aim of developing innovative and efficacious treatment modalities that exploit the pathway's unique attributes.
Collapse
Affiliation(s)
- Yifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shufan Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
3
|
Cao Y, Sun J, Wang X, Zhang X, Tian H, Huang L, Huang Z, Zhang Y, Zhang J, Li L, Zhou S. The double-edged nature of nicotine: toxicities and therapeutic potentials. Front Pharmacol 2024; 15:1427314. [PMID: 39206262 PMCID: PMC11350241 DOI: 10.3389/fphar.2024.1427314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Nicotine is the primary addictive component of cigarette smoke and is associated with various smoking-related diseases. However, recent research has revealed its broader cognitive-enhancing and anti-inflammatory properties, suggesting its potential therapeutic applications in several conditions. This review aims to examine the double-edged nature of nicotine, encompassing its positive and negative effects. We provide a concise overview of the physiochemical properties and pharmacology of nicotine, including insights into nicotine receptors. Therefore, the article is divided into two main sections: toxicity and therapeutic potential. We comprehensively explored nicotine-related diseases, focusing on specific signaling pathways and the underlying mechanisms that contribute to its effects. Furthermore, we addressed the current research challenges and future development perspectives. This review aims to inspire future researchers to explore the full medical potential of nicotine, which holds significant promise for the clinical management of specific diseases.
Collapse
Affiliation(s)
- Yun Cao
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jiali Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Xiaofeng Wang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Xiaoyu Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Huijuan Tian
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lingling Huang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Yaping Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jin Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Shun Zhou
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| |
Collapse
|
4
|
Duan B, Yu Z, Liu R, Li J, Song Z, Zhou Q, Chen L. Tetrandrine-induced downregulation of lncRNA NEAT1 inhibits rheumatoid arthritis progression through the STAT3/miR-17-5p pathway. Immunopharmacol Immunotoxicol 2022; 44:886-893. [PMID: 35815670 DOI: 10.1080/08923973.2022.2092748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The inhibitory effect of Tetrandrine (Tet) on rheumatoid arthritis (RA) is well established. However, its exact molecular mechanism remains unknown. METHODS RT-qPCR coupled with western blotting was employed to analyze the expression of NEAT1, miR-17-5p, and STAT3 in RA tissues and/or RA-fibroblast-like synoviocytes (RA-FLS) treated with 3 μmol/L of Tet for 48 h. Cell Counting Kit-8 assay and flow cytometry were performed to assess RA-FLS proliferation and apoptosis. Luciferase reporter assays were used to validate the interactions between miR-17-5p and STAT3 or NEAT1. RESULTS The expression of NEAT1 decreased in a time-dependent manner upon Tet treatment. Tet significantly inhibited RA-FLS proliferation and triggered apoptosis by downregulating NEAT1 expression. Additionally, NEAT1 directly targeted miR-17-5p to upregulate STAT3 expression. Tet-induced low NEAT1 expression impaired RA-FLS growth by targeting miR-17-5p and inhibiting STAT3. CONCLUSION Tet exerts its inhibitory role in RA progression by regulating the NEAT1/miR-17-5p/STAT3 pathway.
Collapse
Affiliation(s)
- Bo Duan
- Department of Rheumatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhao Yu
- Department of Rheumatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Ruilin Liu
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jigao Li
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhe Song
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Quan Zhou
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Lichuan Chen
- Department of Rheumatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
5
|
Zhang W, Lin H, Zou M, Yuan Q, Huang Z, Pan X, Zhang W. Nicotine in Inflammatory Diseases: Anti-Inflammatory and Pro-Inflammatory Effects. Front Immunol 2022; 13:826889. [PMID: 35251010 PMCID: PMC8895249 DOI: 10.3389/fimmu.2022.826889] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
As an anti-inflammatory alkaloid, nicotine plays dual roles in treating diseases. Here we reviewed the anti-inflammatory and pro-inflammatory effects of nicotine on inflammatory diseases, including inflammatory bowel disease, arthritis, multiple sclerosis, sepsis, endotoxemia, myocarditis, oral/skin/muscle inflammation, etc., mainly concerning the administration methods, different models, therapeutic concentration and duration, and relevant organs and tissues. According to the data analysis from recent studies in the past 20 years, nicotine exerts much more anti-inflammatory effects than pro-inflammatory ones, especially in ulcerative colitis, arthritis, sepsis, and endotoxemia. On the other hand, in oral inflammation, nicotine promotes and aggravates some diseases such as periodontitis and gingivitis, especially when there are harmful microorganisms in the oral cavity. We also carefully analyzed the nicotine dosage to determine its safe and effective range. Furthermore, we summarized the molecular mechanism of nicotine in these inflammatory diseases through regulating immune cells, immune factors, and the vagus and acetylcholinergic anti-inflammatory pathways. By balancing the “beneficial” and “harmful” effects of nicotine, it is meaningful to explore the effective medical value of nicotine and open up new horizons for remedying acute and chronic inflammation in humans.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingmin Zou
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qinghua Yuan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoying Pan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| |
Collapse
|
6
|
Luo C, Ke X, Xiong S, Sun Y, Xu Q, Zhang W, Lei Y, Ding Y, Zhen Y, Feng J, Cheng F, Chen J. Naringin attenuates high glucose-induced injuries and inflammation by modulating the leptin-JAK2/STAT3 pathway in H9c2 cardiac cells. Arch Med Sci 2021; 17:1145-1157. [PMID: 34522243 PMCID: PMC8425238 DOI: 10.5114/aoms.2019.84854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Our previous study showed that naringin (NRG) protects cardiomyocytes against high glucose (HG)-induced injuries by inhibiting p38 mitogen-activated protein kinase (MAPK). Leptin induces hypertrophy in rat cardiomyocytes via p38/MAPK activation. The present study aimed to test the hypothesis that leptin-Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3), which are responsible for leptin's functions, are involved in HG-induced injuries and cardioprotective effects of NRG in cardiomyocytes. MATERIAL AND METHODS H9c2 cells were exposed to HG for 24 h to establish a cardiomyocyte injury model. Cells were pretreated with NRG and other drugs before exposure to HG. Protein expression was measured by western blot analysis. Cell viability was detected by Cell Counting Kit-8 assay. Apoptotic cells were assessed by Hoechst 33258 staining assay. Intracellular reactive oxygen species levels were determined by dichlorofluorescein diacetate staining. Mitochondrial membrane potential was evaluated using JC-1. An enzyme-linked immunosorbent assay was performed to determine the inflammatory cytokines. RESULTS NRG significantly attenuated HG-induced increases in leptin and Ob-R expression. Pretreatment with either a leptin antagonist (LA) or NRG markedly ameliorated HG-induced elevation of phosphorylated (p)-JAK2 and p-STAT3, respectively. Pretreatment with NRG, LA, Ob-R antagonist, or AG490 clearly alleviated HG-induced injuries and inflammation. CONCLUSIONS This study provides new evidence of the NRG protective effects of H9c2 cells against HG-induced injuries possibly via modulation of the leptin-JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Changjun Luo
- Department of Cardiology, the Affiliated Liutie Central Hospital and Clinical Medical College of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xiao Ke
- Department of Cardiology, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, Guangdong, China
- Department of Cardiology, Shenzhen Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, Guangdong, China
| | - Si Xiong
- Department of Cardiology, the Affiliated Liutie Central Hospital and Clinical Medical College of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yun Sun
- Department of Healthcare Office, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou, China
| | - Qing Xu
- Department of Cardiology, Huangpu Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Zhang
- Department of Cardiology, Huangpu Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiyan Lei
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Medical Imaging, the First School of Clinical Medicine, Southern Medical University, Guangdong, Guangzhou, China
| | - Yiqian Ding
- Department of Oncology, The Third People's Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Yulan Zhen
- Department of Oncology, The Third People's Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Jianqiang Feng
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fei Cheng
- Department of Cardiovascular Medicine and Dongguan Cardiovascular Institute, the Third People's Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Jingfu Chen
- Department of Cardiovascular Medicine and Dongguan Cardiovascular Institute, the Third People's Hospital of Dongguan City, Dongguan, Guangdong, China
| |
Collapse
|
7
|
Kizildag S, Hosgorler F, Güvendi G, Koc TB, Kandis S, Argon A, Ates M, Uysal N. Nicotine lowers TNF-α, IL-1b secretion and leukocyte accumulation via nAChR in rat stomach. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1790604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Servet Kizildag
- Vocational School of Health Services, Dokuz Eylül University, Izmir, Turkey
| | - Ferda Hosgorler
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| | - Güven Güvendi
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| | - Talha Basar Koc
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| | - Sevim Kandis
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| | - Asuman Argon
- Department of Pathology, University of Health Sciences Izmir Bozyaka Education and Research Hospital, Izmir, Turkey
| | - Mehmet Ates
- Vocational School of Health Services, Dokuz Eylül University, Izmir, Turkey
| | - Nazan Uysal
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
8
|
Subedi L, Lee SE, Madiha S, Gaire BP, Jin M, Yumnam S, Kim SY. Phytochemicals against TNFα-Mediated Neuroinflammatory Diseases. Int J Mol Sci 2020; 21:ijms21030764. [PMID: 31991572 PMCID: PMC7037901 DOI: 10.3390/ijms21030764] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a well-known pro-inflammatory cytokine responsible for the modulation of the immune system. TNF-α plays a critical role in almost every type of inflammatory disorder, including central nervous system (CNS) diseases. Although TNF-α is a well-studied component of inflammatory responses, its functioning in diverse cell types is still unclear. TNF-α functions through its two main receptors: tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), also known as p55 and p75, respectively. Normally, the functions of soluble TNF-α-induced TNFR1 activation are reported to be pro-inflammatory and apoptotic. While TNF-α mediated TNFR2 activation has a dual role. Several synthetic drugs used as inhibitors of TNF-α for diverse inflammatory diseases possess serious adverse effects, which make patients and researchers turn their focus toward natural medicines, phytochemicals in particular. Phytochemicals targeting TNF-α can significantly improve disease conditions involving TNF-α with fewer side effects. Here, we reviewed known TNF-α inhibitors, as well as lately studied phytochemicals, with a role in inhibiting TNF-α itself, and TNF-α-mediated signaling in inflammatory diseases focusing mainly on CNS disorders.
Collapse
Affiliation(s)
- Lalita Subedi
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Si Eun Lee
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Syeda Madiha
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan;
| | - Bhakta Prasad Gaire
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Mirim Jin
- College of Medicine and Department of Health Science and Technology, GAIHST, Gachon University #155, Gaebeol-ro, Yeonsu-gu, Incheon 21999, Korea;
| | - Silvia Yumnam
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
- Correspondence: (S.Y.); (S.Y.K.); Tel.: +82-32-820-4931 (S.Y. & S.Y.K.); Fax: +82-32-820-4932 (S.Y. & S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
- Correspondence: (S.Y.); (S.Y.K.); Tel.: +82-32-820-4931 (S.Y. & S.Y.K.); Fax: +82-32-820-4932 (S.Y. & S.Y.K.)
| |
Collapse
|
9
|
Han R, Zhang G, Qiao X, Guo Y, Sun L, Li J, Gao C, Sun X. α7 Nicotinic Acetylcholine Receptor Mediates the Neuroprotection of Remote Ischemic Postconditioning in a Rat Model of Asphyxial Cardiac Arrest. J Surg Res 2019; 246:6-18. [PMID: 31541709 DOI: 10.1016/j.jss.2019.07.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Remote ischemic postconditioning (RIPost) has been shown to reduce the ischemia-reperfusion injury of the heart and brain. However, the protection mechanisms have not yet been fully elucidated. We have observed that RIPost could alleviate the brain injury after cardiac arrest (CA). The aim of this study was to explore whether α7 nicotinic acetylcholine receptor (α7nAChR) mediates the neuroprotection of RIPost in a rat model of asphyxial CA. MATERIALS AND METHODS Asphyxial CA model was induced by occlusion of the tracheal tube for 8 min and resuscitated later. RIPost produced by three cycles of 15-min occlusion and 15-min release of the right hind limb by a tourniquet was performed respectively at the moment and the third hour after restoration of spontaneous circulation. The α7nAChR agonist PHA-543613 and the antagonist methyllycaconitine (MLA) were used to investigate the role of α7nAChR in mediating neuroprotective effects. RESULTS Results showed that α7nAChR was decreased in hippocampus and cortex after resuscitation, whereas RIPost could attenuate the reduction. The use of PHA-543613 provided neuroprotective effects against cerebral injury after CA. Furthermore, RIPost decreased the levels of neuron-specific enolase, inflammatory mediators, the number of apoptotic cells, and phosphorylation of nuclear factor-κB while increased the phosphorylation of signal transducer and activator of transcription-3. However, the above effects of RIPost were attenuated by α7nAChR antagonist methyllycaconitine. CONCLUSIONS Neuroprotection of RIPost was related with the activation of α7nAChR, which could suppress nuclear factor-κB and activate signal transducer and activator of transcription-3 in a rat asphyxial CA model.
Collapse
Affiliation(s)
- Ruili Han
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Tangdu Hospital of Fourth Military Medical University, Xi'an, China
| | - Guihe Zhang
- Department of Anesthesiology, Daxing Hospital, Xi'an, China
| | - Xiaoli Qiao
- Department of Anesthesiology, The Fourth People's Hospital of Shaanxi Province, Xi'an, China
| | - Yu Guo
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Tangdu Hospital of Fourth Military Medical University, Xi'an, China
| | - Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Tangdu Hospital of Fourth Military Medical University, Xi'an, China
| | - Jiangjing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Tangdu Hospital of Fourth Military Medical University, Xi'an, China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Tangdu Hospital of Fourth Military Medical University, Xi'an, China.
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Tangdu Hospital of Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
10
|
Li X, Sun Y, Jin Q, Song D, Diao Y. Kappa opioid receptor agonists improve postoperative cognitive dysfunction in rats via the JAK2/STAT3 signaling pathway. Int J Mol Med 2019; 44:1866-1876. [PMID: 31545485 PMCID: PMC6777679 DOI: 10.3892/ijmm.2019.4339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 01/09/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common and well‑known complication following surgery, particularly cardiopulmonary bypass (CPB) surgery. There are currently no suitable treatments for POCD, which is associated with increased illness and mortality rates. The present study aimed to identify a novel treatment for POCD. The protective effect of kappa opioid receptor (KOR) agonists on POCD in rats following CPB was determined and the regulatory mechanism of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway was examined. The rats were randomly divided into five groups: Sham operation (Sham group), CPB operation (CPB group), KOR agonist + CPB (K group), KOR agonist + norbinaltorphimine (nor‑BNI) + CPB (NK group), and KOR agonist + JAK2‑STAT3 specific pathway inhibitor + CPB (AG group). A water maze test and neurological function scores were used to evaluate POCD. Hematoxylin and eosin staining was used to observe hippocampal neurons. ELISA was used to detect the levels of inflammatory factors, oxidative stress factors and brain injury markers. Immunofluorescence was used to visualize the neurons. TUNEL staining and western blotting were used to detect neuronal apoptosis, and western blotting was also used to detect JAK2/STAT3 pathway‑related proteins. The KOR agonists significantly improved POCD. S‑100β and NSE detection revealed that KOR agonists alleviated brain damage in CPB rats, and this result was reversed by KOR antagonists. The KOR agonists led to a significantly reduced inflammatory response and oxidative stress, as determined by ELISA detection, and attenuated hippocampal neuronal apoptosis, as revealed by TUNEL staining and western blotting, compared with the results in the CPB group. Finally, the KOR agonists inhibited the expression levels of phosphorylated (p‑)JAK2 and p‑STAT3, rather than total JAK2 and STAT3, compared with levels in the CPB group. Taken together, KOR agonists improved POCD in rats with CPB by inhibiting the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xi Li
- Postgraduate Training Base of Jinzhou Medical University in The General Hospital of Northern Theater Command, Jinzhou, Liaoning 121013, P.R. China
| | - Yingjie Sun
- Department of Anesthesia, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Qiang Jin
- Department of Anesthesia, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Dandan Song
- Department of Anesthesia, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yugang Diao
- Department of Anesthesia, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
11
|
Zhang Y, Zhang W, Wang H, Yang B. miR-21 Contributes to Human Amniotic Membrane-Derived Mesenchymal Stem Cell Growth and Human Amniotic Membrane-Derived Mesenchymal Stem Cell-Induced Immunoregulation. Genet Test Mol Biomarkers 2018; 22:665-673. [PMID: 30481073 DOI: 10.1089/gtmb.2018.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Wenjin Zhang
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, PR China
| | - Huancheng Wang
- Department of Blood Transfusion, The First People's Hospital of Nanyang, Nanyang, PR China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
12
|
Pezzolo E, Naldi L. The relationship between smoking, psoriasis and psoriatic arthritis. Expert Rev Clin Immunol 2018; 15:41-48. [DOI: 10.1080/1744666x.2019.1543591] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Elena Pezzolo
- Study Centre of the Italian Group for Epidemiologic Research in Dermatology (GISED), Bergamo, Italy
| | - Luigi Naldi
- Study Centre of the Italian Group for Epidemiologic Research in Dermatology (GISED), Bergamo, Italy
- Department of Dermatology, Ospedale san Bortolo, Vicenza, Italy
| |
Collapse
|
13
|
Perfluorooctanesulfonate induces neuroinflammation through the secretion of TNF-α mediated by the JAK2/STAT3 pathway. Neurotoxicology 2018. [DOI: 10.1016/j.neuro.2018.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Li T, Wu S, Li S, Bai X, Luo H, Zuo X. SOCS3 participates in cholinergic pathway regulation of synovitis in rheumatoid arthritis. Connect Tissue Res 2018; 59:287-294. [PMID: 28914550 DOI: 10.1080/03008207.2017.1380633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Stimulation of the cholinergic inflammatory pathway can attenuate collagen-induced arthritis (CIA) and inhibit synovitis by Janus kinase (JAK) 2 and signal transducer and activator of transcription (STAT) 3 signaling. Suppressor of cytokine signaling (SOCS) protein can also regulate the inflammatory processes and activate JAK/STAT signal transduction, but its involvement in rheumatoid arthritis (RA) has not been demonstrated. This study investigated the effect of SOCS on cholinergic pathway regulation of synovitis in the fibroblast-like synoviocytes (FLSs) of RA and CIA mice. The effects of nicotine on SOCS1 and SOCS3 protein expression in FLSs were assayed by western blotting before and after transfection with a small interfering RNA oligonucleotide (SOCS3-siRNA or control-siRNA). Interleukin-6 was measured by enzyme-linked immunosorbent assay of SOCS3-siRNA and control-siRNA transfected FLS culture supernatants. Histopathological evaluation and immunohistochemical staining of SOCS3 were performed in joint tissue sections of control, CIA model, vagotomy, and nicotine-treated DBA/1 mice. Nicotine increased SOCS3 expression in the FLSs of RA. The inhibitory effect of nicotine on inflammatory factors was abolished by siRNA knockdown of SOCS3 protein expression. Nicotine increased the expression of SOCS3 protein in the synovium and reduced synovitis and bone erosion in CIA mice.
Collapse
Affiliation(s)
- Tong Li
- a Department of Rheumatology , Xiangya Hospital, Central South University , Changsha , Hunan People's Republic of China
| | - Shiyao Wu
- a Department of Rheumatology , Xiangya Hospital, Central South University , Changsha , Hunan People's Republic of China
| | - Sha Li
- a Department of Rheumatology , Xiangya Hospital, Central South University , Changsha , Hunan People's Republic of China
| | - Xuelian Bai
- a Department of Rheumatology , Xiangya Hospital, Central South University , Changsha , Hunan People's Republic of China
| | - Hui Luo
- a Department of Rheumatology , Xiangya Hospital, Central South University , Changsha , Hunan People's Republic of China
| | - Xiaoxia Zuo
- a Department of Rheumatology , Xiangya Hospital, Central South University , Changsha , Hunan People's Republic of China
| |
Collapse
|
15
|
Rasmussen SE, Pfeiffer-Jensen M, Drewes AM, Farmer AD, Deleuran BW, Stengaard-Pedersen K, Brock B, Brock C. Vagal influences in rheumatoid arthritis. Scand J Rheumatol 2017; 47:1-11. [PMID: 28766392 DOI: 10.1080/03009742.2017.1314001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease with a prevalence of 0.5-1% in Western populations. Conventionally, it is treated with therapeutic interventions that include corticosteroids, disease-modifying anti-rheumatic drugs, and biological agents. RA exerts a significant socio-economic burden and despite the use of existing treatments some patients end up with disabling symptoms. The autonomic nervous system (ANS) is a brain-body interface that serves to regulate homeostasis by integrating the external environment with the internal milieu. The main neural substrate of the parasympathetic branch of the ANS is the vagus nerve (VN). The discovery of the role of the ANS and the VN in mediating and dampening the inflammatory response has led to the proposal that modulation of neural circuits may serve as a valuable therapeutic tool. Recent studies have explored the role of the VN in this inflammatory reflex and have provided evidence that stimulation may represent a novel new therapeutic intervention. Accumulating evidence suggests that modulation of the parasympathetic tone results in a broad physiological multi-level response, including decreased pro-inflammatory cytokine response in terms of tumour necrosis factor-α, interleukin-1 (IL-1), and IL-6, and may result in an enhanced macrophage switch from M1 to M2 cells and potentially an increased level of the anti-inflammatory cytokine IL-10. Therefore, therapeutic electrical modulation of the VN may serve as an alternative, non-pharmacological, neuroimmunomodulatory intervention in RA in the future. This review gives a focused introduction to the mechanistic link between the ANS and the immune system.
Collapse
Affiliation(s)
- S E Rasmussen
- a Department of Rheumatology , Aarhus University Hospital , Aarhus , Denmark
| | - M Pfeiffer-Jensen
- a Department of Rheumatology , Aarhus University Hospital , Aarhus , Denmark
| | - A M Drewes
- a Department of Rheumatology , Aarhus University Hospital , Aarhus , Denmark
| | - A D Farmer
- b Department of Gastroenterology , University Hospitals of North Midlands , Stoke on Trent , UK.,c Centre for Neuroscience and Trauma, Blizard Institute, Wingate Institute of Neurogastroenterology , Barts and the London School of Medicine and Dentistry, Queen Mary University of London , London , UK.,d Mech-Sense, Department of Gastroenterology and Hepatology , Aalborg University Hospital, and Clinical Institute, Aalborg University , Aalborg , Denmark
| | - B W Deleuran
- a Department of Rheumatology , Aarhus University Hospital , Aarhus , Denmark
| | | | - B Brock
- e Department of Clinical Biochemistry , Aarhus University Hospital , Aarhus , Denmark
| | - C Brock
- a Department of Rheumatology , Aarhus University Hospital , Aarhus , Denmark.,d Mech-Sense, Department of Gastroenterology and Hepatology , Aalborg University Hospital, and Clinical Institute, Aalborg University , Aalborg , Denmark.,f Department of Drug Design and Pharmacology , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
16
|
Effect of luteolin on inflammatory responses in RAW264.7 macrophages activated with LPS and IFN-γ. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Yin L, Dai Q, Jiang P, Zhu L, Dai H, Yao Z, Liu H, Ma X, Qu L, Jiang J. Manganese exposure facilitates microglial JAK2-STAT3 signaling and consequent secretion of TNF-a and IL-1β to promote neuronal death. Neurotoxicology 2017; 64:195-203. [PMID: 28385490 DOI: 10.1016/j.neuro.2017.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022]
Abstract
Chronic manganese (Mn) exposure can lead to neuroinflammation and neurological deficit, which resemble idiopathic Parkinson's disease (IPD). However, the precise mechanisms underlying Mn exposure-induced neurotoxicity remain incompletely understood. Microglia can become hyperactivated and plays a vital role in neuroinflammation and consequent neurodegeneration in response to pro-inflammatory stimuli. In the present study, we found that HAPI microglial cells exhibited increased secretion of pro-inflammatory TNF-α and IL-1β following Mn exposure in dose- and time-dependent manners. In addition, we showed that Mn exposure could trigger the activation of JAK2/STAT3 signaling pathway in microglia. Notably, Mn-induced secretion of TNF-α and IL-1β was significantly attenuated by the treatment of JAK2 inhibitor. Finally, through incubating PC12 neuronal cells with Mn-treated microglial conditioned medium, we demonstrated that Mn-induced secretion of microglial TNF-α and IL-1β facilitated neuronal apoptosis. Thus, we speculate that Mn exposure might trigger JAK2-STAT3 signal pathway in microglia, leading to resultant neuroinflammation and neuronal loss.
Collapse
Affiliation(s)
- Lifeng Yin
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Qijun Dai
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Nantong, Jiangsu 226600, People's Republic of China
| | - Peipei Jiang
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Nantong, Jiangsu 226600, People's Republic of China
| | - Lin Zhu
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Nantong, Jiangsu 226600, People's Republic of China
| | - Haifeng Dai
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Nantong, Jiangsu 226600, People's Republic of China
| | - Zhigang Yao
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Nantong, Jiangsu 226600, People's Republic of China
| | - Hua Liu
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Nantong, Jiangsu 226600, People's Republic of China
| | - Xiaoping Ma
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Nantong, Jiangsu 226600, People's Republic of China
| | - Lianxia Qu
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Nantong, Jiangsu 226600, People's Republic of China.
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
18
|
Inhibitory effect of baicalin on allergic response in ovalbumin-induced allergic rhinitis guinea pigs and lipopolysaccharide-stimulated human mast cells. Inflamm Res 2016; 65:603-12. [PMID: 27043920 DOI: 10.1007/s00011-016-0943-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Baicalin, a flavonoid compound purified from the dry roots of Scutellaria baicalensis Georgi, has generally been used for the treatment of various allergic diseases. However, there is little information about the anti-inflammatory effects of baicalin for allergic rhinitis. This study aims to investigate the anti-allergic effect of baicalin on allergic response in ovalbumin (OVA)-induced allergic rhinitis guinea pigs and lipopolysaccharide (LPS)-stimulated human mast cells. METHODS Using in vivo models, we evaluated the effect of baicalin on allergic rhinitis symptoms via recording the number of nasal rubs and sneezes. The levels of histamine, OVA-specific immunoglobulin E(IgE), eosinophil cationic protein (ECP) and inflammatory cytokines were measured using enzyme-linked immunosorbent assay (ELISA). The histological changes of nasal mucosa were observed by light microscope after HE staining. In vitro, the release of histamine and β-hexosaminidase of compound 48/80-induced human mast cells were measured by ELISA and PNP-NAG colorimetry, respectively. The productions of inflammatory cytokines of LPS-stimulated human mast cells were determined using ELISA. Western blot was used to test the protein expression of JAK2, p-JAK2, STAT5, p-STAT5, IKKβ, p-IKKβ, IκBα, p-IκBα and NF-κB (p65) of LPS-stimulated human mast cells. RESULTS The oral administration of baicalin at doses of 50 and 200 mg/kg improved allergic rhinitis symptoms and the histological changes of nasal mucosa and decreased the serum levels of histamine, ECP, interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α and OVA-specific IgE in OVA-induced allergic rhinitis guinea pigs. In vitro, baicalin suppressed the release of histamine and β-hexosaminidase in compound 48/80-induced human mast cells. In addition, baicalin also inhibited the productions of inflammatory cytokines such as IL-1β, IL-6, IL-8 and TNF-α and suppressed the phosphorylation of JAK2, STAT5, IKKβ, IκBα and the nuclear translocation of NF-κB (p65) subunit in LPS-stimulated human mast cells. CONCLUSIONS These results suggest that baicalin can effectively prevent allergic response in OVA-induced allergic rhinitis guinea pigs and inhibit inflammatory response via blocking JAK2-STAT5 and NF-κB signaling pathways in LPS-stimulated human mast cells. Considered together,the results show that baicalin may be a useful drug in the treatment of allergic rhinitis.
Collapse
|