1
|
Gibbs RJ, Chambers AC, Hill DJ. The emerging role of Fusobacteria in carcinogenesis. Eur J Clin Invest 2024; 54 Suppl 2:e14353. [PMID: 39674881 DOI: 10.1111/eci.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
The Fusobacterium genus comprises Gram-negative, obligate anaerobic bacteria that typically reside in the periodontium of the oral cavity, gastrointestinal tract, and female genital tract. The association of Fusobacterial spp. with colorectal tumours is widely accepted, with further evidence that this pathogen may also be implicated in the development of other malignancies. Fusobacterial spp. influence malignant cell behaviours and the tumour microenvironment in various ways, which can be related to the multiple surface adhesins expressed. These adhesins include Fap2 (fibroblast-activated protein 2), CpbF (CEACAM binding protein of Fusobacteria), FadA (Fusobacterium adhesin A) and FomA (Fusobacterial outer membrane protein A). This review outlines the influence of Fusobacteria in promoting cancer initiation and progression, impacts of therapeutic outcomes and discusses potential therapeutic interventions where appropriate.
Collapse
|
2
|
Pokharel SM, Mohanty I, Mariasoosai C, Miura TA, Maddison LA, Natesan S, Bose S. Human beta defensin-3 mediated activation of β-catenin during human respiratory syncytial virus infection: interaction of HBD3 with LDL receptor-related protein 5. Front Microbiol 2023; 14:1186510. [PMID: 37426017 PMCID: PMC10324619 DOI: 10.3389/fmicb.2023.1186510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is a non-segmented negative-sense RNA virus belonging to the paramyxovirus family. RSV infects the respiratory tract to cause pneumonia and bronchiolitis in infants, elderly, and immunocompromised patients. Effective clinical therapeutic options and vaccines to combat RSV infection are still lacking. Therefore, to develop effective therapeutic interventions, it is imperative to understand virus-host interactions during RSV infection. Cytoplasmic stabilization of β-catenin protein results in activation of canonical Wingless (Wnt)/β-catenin signaling pathway that culminates in transcriptional activation of various genes regulated by T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors. This pathway is involved in various biological and physiological functions. Our study shows RSV infection of human lung epithelial A549 cells triggering β-catenin protein stabilization and induction of β-catenin mediated transcriptional activity. Functionally, the activated β-catenin pathway promoted a pro-inflammatory response during RSV infection of lung epithelial cells. Studies with β-catenin inhibitors and A549 cells lacking optimal β-catenin activity demonstrated a significant loss of pro-inflammatory chemokine interleukin-8 (IL-8) release from RSV-infected cells. Mechanistically, our studies revealed a role of extracellular human beta defensin-3 (HBD3) in interacting with cell surface Wnt receptor LDL receptor-related protein-5 (LRP5) to activate the non-canonical Wnt independent β-catenin pathway during RSV infection. We showed gene expression and release of HBD3 from RSV-infected cells and silencing of HBD3 expression resulted in reduced stabilization of β-catenin protein during RSV infection. Furthermore, we observed the binding of extracellular HBD3 with cell surface localized LRP5 protein, and our in silico and protein-protein interaction studies have highlighted a direct interaction of HBD3 with LRP5. Thus, our studies have identified the β-catenin pathway as a key regulator of pro-inflammatory response during RSV infection of human lung epithelial cells. This pathway was induced during RSV infection via a non-canonical Wnt-independent mechanism involving paracrine/autocrine action of extracellular HBD3 activating cell surface Wnt receptor complex by directly interacting with the LRP5 receptor.
Collapse
Affiliation(s)
- Swechha M. Pokharel
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Indira Mohanty
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Charles Mariasoosai
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Lisette A. Maddison
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
Pan H, Li H, Guo S, Wang C, Long L, Wang X, Shi H, Zhang K, Chen H, Li S. The mechanisms and functions of TNF-α in intervertebral disc degeneration. Exp Gerontol 2023; 174:112119. [PMID: 36758650 DOI: 10.1016/j.exger.2023.112119] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Low back pain (LBP) is one of the most common health problems in people's lives, which brings a massive burden to clinicians, and the leading cause of LBP is intervertebral disc degeneration (IDD). IDD is mainly caused by factors such as aging, mechanical stress, and lack of nutrition. The pathological mechanism of IDD is very complex, involving inflammatory response, cell metabolism disorder, and so on. Unfortunately, in the current treatment of IDD, only relieving symptoms as the primary means of relieving a patient's pain cannot effectively inhibit or reverse the progression of IDD. Tumor necrosis factor-α (TNF-α) is a multifunctional pro-inflammatory factor involved in many diseases' pathological processes. With the in-depth study of the pathological mechanism of IDD, more and more evidence has shown that TNF-α is an essential activator of IDD, which is related to the metabolic disorder, inflammatory responses, apoptosis, and other pathological processes of extracellular dissociation in the intervertebral disc. Therefore, anti-TNF-α therapy is an effective therapeutic target for alleviating IDD, especially in inhibiting extracellular matrix degradation and reducing inflammatory responses. This article reviews the pathological role of TNF-α in IDD and the latest research progress of TNF-α inhibitors in treating IDD.
Collapse
Affiliation(s)
- Hongyu Pan
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongtao Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng Guo
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chenglong Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Longhai Long
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqiang Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Houyin Shi
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Kaiquan Zhang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Chen
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Sen Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Luo Q, Ma H, Guo E, Yu L, Jia L, Zhang B, Feng G, Liu R. MicroRNAs Promote the Progression of Sepsis-Induced Cardiomyopathy and Neurovascular Dysfunction Through Upregulation of NF-kappaB Signaling Pathway-Associated HDAC7/ACTN4. Front Neurol 2022; 13:909828. [PMID: 35756932 PMCID: PMC9218607 DOI: 10.3389/fneur.2022.909828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The objective of this study was to determine the NF-kappaB pathway, hub genes, and transcription factors (TFs) in monocytes implicated in the progression of neurovascular-related sepsis-induced cardiomyopathy (SIC) as well as potential miRNAs with regulatory functions. Methods : Sepsis-induced cardiomyopathy—and heart failure (HF)-related differentially expressed genes (DEGs) between SIC and HF groups were identified separately by differential analysis. In addition, DEGs and differentially expressed miRNAs (DEmiRNAs) in monocytes between sepsis and the HC group were identified. Then, common DEGs in SIC, HF, and monocyte groups were identified by intersection analysis. Based on the functional pathways enriched by these DEGs, genes related to the NF-kB-inducing kinase (NIK)/NF-kappaB signaling pathway were selected for further intersection analysis to obtain hub genes. These common DEGs, together with sepsis-related DEmiRNAs, were used to construct a molecular interplay network and to identify core TFs in the network. Results : A total of 153 upregulated genes and 25 downregulated genes were obtained from SIC-, HF-, and monocyte-related DEGs. Functional pathway analysis revealed that the upregulated genes were enriched in NF-κB signaling pathway. A total of eight genes associated with NF-κB signaling pathway were then further identified from the 178 DEGs. In combination with sepsis-related DEmiRNAs, HDAC7/ACTN4 was identified as a key transcriptional regulatory pair in the progression of SIC and in monocyte regulation. hsa-miR-23a-3p, hsa-miR-3175, and hsa-miR-23b-3p can regulate the progression of SIC through the regulation of HDAC7/ACTN4. Finally, gene set enrichment analysis (GSEA) suggested that HDAC7/ACTN4 may be associated with apoptosis in addition to the inflammatory response. Conclusion : hsa-miR-23a-3p, hsa-miR-3175, and hsa-miR-23b-3p are involved in SIC progression by regulating NF-κB signaling signaling pathway-related HDAC7/ACTN4 in monocytes and cardiac tissue cells. These mechanisms may contribute to sepsis-induced neurovascular damage.
Collapse
Affiliation(s)
- Qiancheng Luo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Hanning Ma
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Shanghai, China
| | - Enwei Guo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Lin Yu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Ling Jia
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Bingyu Zhang
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Gang Feng
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Rui Liu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| |
Collapse
|
5
|
Zhang X, Xu H, Hua J, Zhu Z, Wang M. Protective Effects of Grapefruit Essential Oil against Staphylococcus Aureus-Induced Inflammation and Cell Damage in Human Epidermal Keratinocytes. Chem Biodivers 2022; 19:e202200205. [PMID: 35505451 DOI: 10.1002/cbdv.202200205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022]
Abstract
Staphylococcus aureus (S. aureus) is a common skin pathogenic bacterium, over-colonization can induce skin infections, while its metabolites can also produce irritation to the skin, often accompanied by eczema dermatitis, specific dermatitis and other skin diseases. Grapefruit essential oil is extracted from the fruit of grapefruit (Citrus maxima (Burm) Merr.), a citrus plant that is rich in flavonoids, phenolic acids and high flavanones. Due to its good odor and biological activity such as anti-inflammatory, antibacterial, etc., grapefruit essential oil has been widely used as an additive in food. To evaluate the potential application of grapefruit essential oil as raw materials in cosmetics products and health foods, we developed a cell damage model of skin inflammation stimulated by S. aureus metabolites. Compared to that of lime essential oil, an internal control, we found that grapefruit essential oil could significantly promote HaCaT cells proliferation, reduce reactive oxygen species (ROS) production induced by S. aureus metabolites, inhibit the upregulated expression of IL-1 and COX-2. In the 3D epidermal model, grapefruit essential oil could recover the decreased LOR and FLG contents caused by S. aureus metabolites. These results demonstrated pharmacological evidence for the anti-inflammatory effect of grapefruit essential oil, suggesting a potential application of grapefruit essential oil as cosmetic raw materials for repair and alleviating of skin inflammation caused by S. aureus.
Collapse
Affiliation(s)
- Xiaona Zhang
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, Beijing, 100048, P. R. China
| | - Heran Xu
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, Beijing, 100048, P. R. China
| | - Jinglin Hua
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, Beijing, 100048, P. R. China
| | - Ziying Zhu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, 100048, P. R. China
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, Beijing, 100048, P. R. China.,BTBU-TANGYI Innovation Center for The Evaluation of The Safety and Efficacy of Bioengineering Raw Materials, Beijing, 100048, P. R. China
| |
Collapse
|
6
|
Sang Y, Ren J, Aballay A. The transcription factor HLH-26 controls probiotic-mediated protection against intestinal infection through up-regulation of the Wnt/BAR-1 pathway. PLoS Biol 2022; 20:e3001581. [PMID: 35263319 PMCID: PMC8936500 DOI: 10.1371/journal.pbio.3001581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/21/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022] Open
Abstract
Probiotics play a critical role in the control of host intestinal microbial balance, protecting the host from gastrointestinal pathogens, modulating the host immune response, and decreasing host susceptibility to infection. To understand the mechanism underlying the protective effect of probiotics against infections through immune regulation, we examined protection against Salmonella enterica infection following exposure to nonpathogenic Enterococcus faecium in the nematode Caenorhabditis elegans. We found that the transcription factor HLH-26, a REF-1 family member of basic helix-loop-helix transcription factors, was required in the intestine for E. faecium-mediated protection of C. elegans against a lethal S. enterica infection. In addition, we uncovered that defense response genes controlled by the canonical Wnt/BAR-1 pathway were activated upon exposure to E. faecium in an HLH-26-dependent manner. Our findings highlight a role for REF-1/HLH-26 in the control of the Wnt/BAR-1 pathway in probiotic-mediated protection against gut infection.
Collapse
Affiliation(s)
- Yu Sang
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jie Ren
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Alejandro Aballay
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
7
|
He Z, Wang Y, Zhuan L, Li Y, Tang ZO, Wu Z, Ma Y. MIF-mediated NF-κB signaling pathway regulates the pathogenesis of polycystic ovary syndrome in rats. Cytokine 2021; 146:155632. [PMID: 34242901 DOI: 10.1016/j.cyto.2021.155632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) resulting from abnormal glucose metabolism is a relatively common and complex endocrine disorder among women in their reproductive years, However, the pathogenesis of PCOS is still unclear. The purpose of this study is to investigate the macrophage migration inhibitory factor (MIF) involvement of the nuclear factor (NF)-κB in rats with PCOS. Results indicated that testosterone promoted the increase in the levels of MIF and luteinizing hormone (LH) but inhibited the increase in the level of follicular stimulating hormone (FSH). The MIF antibody could alleviate the process of PCOS to a certain extent. Testosterone promoted the expression of interleukin 1-beta (IL-1β), interleukin 6 (IL-6), Inducible nitric oxide synthase (iNOS), and tumor necrosis factor alpha (TNF-α); the MIF antibody could reverse this effect. Testosterone could inhibit the expression of NF-κB protein whereas MIF antibody could promote the expression in the ovarian cytoplasm. Testosterone promoted the expression of NF-κB protein in the nucleus, this effect also could be reversed by the MIF antibody. Hyperandrogenism activated the NF-κB pathway. After using the MIF antibody, this effect was reversed. This finding suggested that hyperandrogenism activated the NF-κB pathway through MIF. In short, increased MIF levels activated the NF-κB pathway in ovaries, leading to inflammation and the increase in the levels of relevant inflammatory indicators, which might be one of the important factors in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zhenlin He
- Department of Reproduction and Genetics, Reproductive Medical Centre, The First People(,)s Hospital of Yunnan Province, Kunming Medical University, 650000, China
| | - Yuelong Wang
- Department of Neurosurgery, Third Military Medical University, Chongqing 400038, China
| | - Li Zhuan
- Department of Reproduction and Genetics, Reproductive Medical Centre, The First People(,)s Hospital of Yunnan Province, 650000, China
| | - Yunxiu Li
- Department of Reproduction and Genetics, Reproductive Medical Centre, The First People(,)s Hospital of Yunnan Province, 650000, China
| | - Z-Ouyin Tang
- Department of Reproduction and Genetics, Reproductive Medical Centre, The First People(,)s Hospital of Yunnan Province, 650000, China
| | - Ze Wu
- Department of Reproduction and Genetics, Reproductive Medical Centre, The First People(,)s Hospital of Yunnan Province, 650000, China
| | - Yanping Ma
- Department of Reproduction and Genetics, Reproductive Medical Centre, The First People(,)s Hospital of Yunnan Province, 650000, China.
| |
Collapse
|
8
|
Wang C, Ruan L, Shi H, Lin W, Liu L, Li S. Phosphorylation of Shrimp Tcf by a Viral Protein Kinase WSV083 Suppresses Its Antiviral Effect. Front Immunol 2021; 12:698697. [PMID: 34408747 PMCID: PMC8365339 DOI: 10.3389/fimmu.2021.698697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Nuclear DNA-binding TCF proteins, which act as the main downstream effectors of Wnt signaling, are essential for the regulation of cell fate and innate immunity. However, their role during viral infection in shrimp remains unknown. Herein, we demonstrated that Litopenaeus vannamei TCF (LvTcf) acts independently of Lvβ-catenin to promote interferon-like protein LvVago1 production, thus mounting the response to WSSV infection. Further, we observed that WSV083, a WSSV serine/threonine protein kinase, bound to LvTcf and phosphorylated it. Phosphorylated LvTcf was then recognized and degraded via the ubiquitin-proteasome pathway. Moreover, mass spectrometry analyses indicated that the T39 and T104 residues of LvTcf were target sites phosphorylated by WSV083. Point mutation analyses suggested that additional sites of LvTcf may undergo phosphorylation via WSV083. Taken together, the current work provides valuable insights into host immunity and viral pathogenesis. LvTcf is not only a modulator of shrimp innate immunity but is also an important target for WSSV immune evasion. Thus, the current findings will help improve disease control in shrimps.
Collapse
Affiliation(s)
- Chuanqi Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.,School of Life Science, Xiamen University, Xiamen, China
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Wenyang Lin
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.,School of Life Science, Xiamen University, Xiamen, China
| | - Linmin Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Sujie Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| |
Collapse
|
9
|
Liu S, Liu Q, Xie H, Li M, Wang F, Shen J, Liu M, Ren C, Hou X. Imbalance of uterine innate lymphoid cells is involved in the abnormal pregnancy induced by Toxoplasma gondii infection. J Reprod Immunol 2021; 145:103312. [PMID: 33770728 DOI: 10.1016/j.jri.2021.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
Toxoplasma gondii (T. gondii) is a ubiquitous intracellular protozoan parasite that causes adverse pregnancy outcomes. Innate lymphoid cells (ILCs) are critical mediators of mucosal immunity, and have been reported to play an important role in uterine vascular adaptation for successful pregnancy. However, the specific role of ILCs in T. gondii-infection-induced adverse pregnancy outcomes remains elusive. In the present study, we found that T. gondii infection caused the imbalance of uterine ILC cells (uILCs). It was characterized by substantially lower expression of the transcription factor GATA-3 and RORγt and higher expression of T-bet in uILCs. Consistent with the transcription factor changes, uILCs from T. gondii-infected mice produced much less IL-5 and IL-17 and substantially more IFN-γ and TNF-α than did uILCs from uninfected mice. Notably, IL-12, IL-18, and their receptors were increased in the uterus of T. gondii-infected mice. In vitro experiments showed that IL-12 and IL-18 treatment reduced the percentages of uILC2 and uILC3 and increased the percentages of uILC1. Conclusion, our data suggest that alterations in uILC composition may disrupt the balance of immune microenvironment after T. gondii infection and contribute to the adverse pregnancy outcomes caused by T. gondii infection.
Collapse
Affiliation(s)
- Siqi Liu
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Qi Liu
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Huiyuan Xie
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Minmin Li
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Fuyan Wang
- School of Medicine, Ningbo University, Ningbo, PR China
| | - Jijia Shen
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Miao Liu
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Cuiping Ren
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Xin Hou
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China; School of Medicine, Ningbo University, Ningbo, PR China.
| |
Collapse
|
10
|
Lymphatic Metastasis of NSCLC Involves Chemotaxis Effects of Lymphatic Endothelial Cells through the CCR7-CCL21 Axis Modulated by TNF-α. Genes (Basel) 2020; 11:genes11111309. [PMID: 33158173 PMCID: PMC7694274 DOI: 10.3390/genes11111309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Metastasis and recurrence are the main causes of lung adenocarcinoma patients’ death. Lymphatic metastasis is the main way of non-small cell lung cancer (NSCLC) metastasis. C-C chemokine receptor type 7 (CCR7) overexpression has been demonstrated to mediate occurrence and progression of NSCLC. Moreover, Chemokine ligand 21 (CCL21) was used to activate CCR7. The CCR7–CCL21 axis is one of the most common “chemokine-receptor” modes of action in the development and metastasis of multiple tumors. However, the role of the CCR7–CCL21 axis in lymphatic metastasis of NSCLC is poorly understood. The study was conducted to investigate the molecular mechanism underlying CCR7–CCL21 axis-mediated lymphatic metastasis of NSCLC A549 cells. Tumor necrosis factor α (TNF-α) could regulate the tumor microenvironment balance by promoting chemokine secretion. Our study demonstrated that TNF-α promoted CCL21 production in human lymphatic endothelial cells (HLEC). Results further showed that TNF-α significantly activated the NF-κB pathway in HLEC. NF–κB pathway inhibition with ammonium pyrrolidinedithiocarbamate (PDTC) caused a significant decrease in CCL21 secretion, suggesting that TNF-α-induced CCL21 secretion in HLEC was through NF–κB pathway. Co-culture of A549 cells and TNF-α-treated HLEC confirmed that the metastasis of A549 cells was enhanced, meanwhile, apoptosis-related proteins were hardly affected. The data proved that a co-culture system prevented cell apoptosis while inducing the lymphatic metastasis of A549 cells. However, the situation was reversed after neutralizing CCL21 expression, suggesting that TNF-α-induced CCL21 secretion in HLEC is involved in A549 cells metastasis. Collectively, our finding demonstrated that NF-κB pathway-controlled CCL21 secretion of HLEC contributing to the lymphatic metastasis of A549 cells via the CCR7–CCL21 axis, validating the CCR7–CCL21 axis as a potential target to inhibit metastasis of NSCLC.
Collapse
|
11
|
Ruhee RT, Ma S, Suzuki K. Sulforaphane Protects Cells against Lipopolysaccharide-Stimulated Inflammation in Murine Macrophages. Antioxidants (Basel) 2019; 8:antiox8120577. [PMID: 31766492 PMCID: PMC6943607 DOI: 10.3390/antiox8120577] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammation is an essential part for the general or innate immune defenses to defend against tissue damage and accelerate the curing process by providing protection against pathogens. Sulforaphane (SFN) is a natural isothiocyanate that has potential properties against inflammation, along with other protective functions. The purpose of this study was to examine the mechanism of its protective effect on lipopolysaccharide (LPS)-induced inflammation in Raw 264.7 macrophages. Here, we compared LPS-challenged macrophages with or without SFN pretreatment. Macrophages were pre-incubated for 6 h with a wide range of concentrations of SFN (0 to 50 µM), and then treated with LPS for 24 h. Nitric oxide (NO) concentration and gene expression of different inflammatory mediators, i.e., interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β, were measured. SFN neither directly reacted with cytokines, nor with NO. To understand the mechanisms, we performed analyses of the expression of regulatory enzyme inducible nitic oxide synthase (iNOS), the transcription factor NF-E2-related factor 2 (Nrf2), and its enzyme heme-oxygenase (HO)-1. Our results revealed that LPS increased significantly the expression of inflammatory cytokines and concentration of NO in non-treated cells. SFN was able to prevent the expression of NO and cytokines through regulating inflammatory enzyme iNOS and activation of Nrf2/HO-1 signal transduction pathway.
Collapse
Affiliation(s)
- Ruheea Taskin Ruhee
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Sihui Ma
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: (S.M.); (K.S.); Tel.: +81-4-2947-6753 (S.M.); +81-4-2947-6898 (K.S.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: (S.M.); (K.S.); Tel.: +81-4-2947-6753 (S.M.); +81-4-2947-6898 (K.S.)
| |
Collapse
|
12
|
Ljungberg JK, Kling JC, Tran TT, Blumenthal A. Functions of the WNT Signaling Network in Shaping Host Responses to Infection. Front Immunol 2019; 10:2521. [PMID: 31781093 PMCID: PMC6857519 DOI: 10.3389/fimmu.2019.02521] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
It is well-established that aberrant WNT expression and signaling is associated with developmental defects, malignant transformation and carcinogenesis. More recently, WNT ligands have emerged as integral components of host responses to infection but their functions in the context of immune responses are incompletely understood. Roles in the modulation of inflammatory cytokine production, host cell intrinsic innate defense mechanisms, as well as the bridging of innate and adaptive immunity have been described. To what degree WNT responses are defined by the nature of the invading pathogen or are specific for subsets of host cells is currently not well-understood. Here we provide an overview of WNT responses during infection with phylogenetically diverse pathogens and highlight functions of WNT ligands in the host defense against infection. Detailed understanding of how the WNT network orchestrates immune cell functions will not only improve our understanding of the fundamental principles underlying complex immune response, but also help identify therapeutic opportunities or potential risks associated with the pharmacological targeting of the WNT network, as currently pursued for novel therapeutics in cancer and bone disorders.
Collapse
Affiliation(s)
- Johanna K Ljungberg
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica C Kling
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thao Thanh Tran
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Yli-Karjanmaa M, Larsen KS, Fenger CD, Kristensen LK, Martin NA, Jensen PT, Breton A, Nathanson L, Nielsen PV, Lund MC, Carlsen SL, Gramsbergen JB, Finsen B, Stubbe J, Frich LH, Stolp H, Brambilla R, Anthony DC, Meyer M, Lambertsen KL. TNF deficiency causes alterations in the spatial organization of neurogenic zones and alters the number of microglia and neurons in the cerebral cortex. Brain Behav Immun 2019; 82:279-297. [PMID: 31505254 DOI: 10.1016/j.bbi.2019.08.195] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Although tumor necrosis factor (TNF) inhibitors are used to treat chronic inflammatory diseases, there is little information about how long-term inhibition of TNF affects the homeostatic functions that TNF maintains in the intact CNS. MATERIALS AND METHODS To assess whether developmental TNF deficiency causes alterations in the naïve CNS, we estimated the number of proliferating cells, microglia, and neurons in the developing neocortex of E13.5, P7 and adult TNF knock out (TNF-/-) mice and wildtype (WT) littermates. We also measured changes in gene and protein expression and monoamine levels in adult WT and TNF-/- mice. To evaluate long-term effects of TNF inhibitors, we treated healthy adult C57BL/6 mice with either saline, the selective soluble TNF inhibitor XPro1595, or the nonselective TNF inhibitor etanercept. We estimated changes in cell number and protein expression after two months of treatment. We assessed the effects of TNF deficiency on cognition by testing adult WT and TNF-/- mice and mice treated with saline, XPro1595, or etanercept with specific behavioral tasks. RESULTS TNF deficiency decreased the number of proliferating cells and microglia and increased the number of neurons. At the same time, TNF deficiency decreased the expression of WNT signaling-related proteins, specifically Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Frizzled receptor 6 (FZD6). In contrast to XPro1595, long-term inhibition of TNF with etanercept in adult C57BL/6 mice decreased the number of BrdU+ cells in the granule cell layer of the dentate gyrus. Etanercept, but not XPro1595, also impaired spatial learning and memory in the Barnes maze memory test. CONCLUSION TNF deficiency impacts the organization of neurogenic zones and alters the cell composition in brain. Long-term inhibition of TNF with the nonselective TNF inhibitor etanercept, but not the soluble TNF inhibitor XPro1595, decreases neurogenesis in the adult mouse hippocampus and impairs learning and memory after two months of treatment.
Collapse
Affiliation(s)
- Minna Yli-Karjanmaa
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kathrine Solevad Larsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina Dühring Fenger
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lotte Kellemann Kristensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Nellie Anne Martin
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Peter Toft Jensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Pernille Vinther Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Minna Christiansen Lund
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stephanie Lindeman Carlsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jan Bert Gramsbergen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars Henrik Frich
- Orthopedic Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Helen Stolp
- Department of Pharmacology, University of Oxford, Oxford, UK; Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Roberta Brambilla
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Daniel Clive Anthony
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Pharmacology, University of Oxford, Oxford, UK; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
14
|
Yamindago A, Lee N, Woo S, Yum S. Transcriptomic profiling of Hydra magnipapillata after exposure to naproxen. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103215. [PMID: 31301532 DOI: 10.1016/j.etap.2019.103215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/12/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
The extensive use in humans and animals of nonsteroidal anti-inflammatory drugs (NSAIDs) increases their possible impact on aquatic organisms. In the present study, we investigated acute toxicity, morphological responses, and potential physiological and metabolic impacts of naproxen exposure on Hydra magnipapillata. The median lethal concentrations (LC50) of naproxen in H. magnipapillata were 51.999 mg/L, 44.935 mg/L, and 42.500 mg/L after exposure for 24, 48, and 72 h, respectively. Morphological observation of the exposed Hydra showed that 40 mg/L naproxen stimulated the contraction of body column and tentacles after 24 h. A KEGG pathway analysis of the genes differentially expressed in the Hydra after exposure to naproxen for 6, 24, or 48 h demonstrated various cellular and metabolic effects, including protein processing in the endoplasmic reticulum, Wnt signaling, and tryptophan metabolism. These results suggest that exposure to naproxen affects the genetic material, inflammatory processes, and metabolic processes of aquatic organisms.
Collapse
Affiliation(s)
- Ade Yamindago
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea; The Faculty of Applied Ocean Science, University of Science and Technology (UST), Geoje, 53201, Republic of Korea; Faculty of Fisheries and Marine Science, Brawijaya University, Malang, 65145, Indonesia
| | - Nayun Lee
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea
| | - Seonock Woo
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan, 49111, Republic of Korea
| | - Seungshic Yum
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea; The Faculty of Applied Ocean Science, University of Science and Technology (UST), Geoje, 53201, Republic of Korea.
| |
Collapse
|
15
|
Han C, Yang J, Song P, Wang X, Shi W. Effects of Salvia miltiorrhiza Polysaccharides on Lipopolysaccharide-Induced Inflammatory Factor Release in RAW264.7 Cells. J Interferon Cytokine Res 2019; 38:29-37. [PMID: 29328882 DOI: 10.1089/jir.2017.0087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study investigated the anti-inflammatory effects and possible underlying mechanisms of Salvia miltiorrhiza polysaccharides (SMP) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The cytotoxicity of SMP was detected by the MTT method. The morphological change of RAW264.7 was observed by Diff-Quik staining. Enzyme-linked immunosorbent assay was used to evaluate the production of cytokines in LPS-induced RAW264.7 cells. The nitric oxide (NO) kit assay detected the NO release from LPS-induced RAW264.7 cells. Real-time polymerase chain reaction was used to detect the transcriptions of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), inducible NO synthase (iNOS), and cyclooxygenase (COX)-2 in LPS-induced RAW264.7 cells. The protein expression of nuclear NF-κB was measured by Western blot. The results showed that the safe medication range of SMP was less than 3 mg/mL. Compared with the LPS model group, SMP (2, 1, and 0.5 mg/mL) improved the degree of cell deformation and reduced the amount of pseudopodia, and statistically reduced the secretions of cytokines in cells induced by LPS (P < 0.01) at different time points. SMP significantly inhibited the mRNA transcriptions of TNF-α, IL-6, iNOS, and COX-2 and the protein expressions of NF-κB, p-p65, and p-IκBa. In conclusion, this study preliminarily proved the protective effect of SMP on LPS-induced RAW264.7 macrophage. Its mechanism might be related to inhibition of NF-κB signal pathway and the gene expressions and secretion of cytokines.
Collapse
Affiliation(s)
- Chao Han
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Jinkai Yang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Pengyan Song
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| |
Collapse
|
16
|
Xi Y, An L, Yang X, Song Z, Zhang J, Tuerhong M, Jin DQ, Ohizumi Y, Lee D, Xu J, Guo Y. NO inhibitory phytochemicals as potential anti-inflammatory agents from the twigs of Trigonostemon heterophyllus. Bioorg Chem 2019; 87:417-424. [DOI: 10.1016/j.bioorg.2019.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/14/2019] [Accepted: 03/13/2019] [Indexed: 11/17/2022]
|
17
|
Liang H, Yang X, Liu C, Sun Z, Wang X. Effect of NF-kB signaling pathway on the expression of MIF, TNF-α, IL-6 in the regulation of intervertebral disc degeneration. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2018; 18:551-556. [PMID: 30511959 PMCID: PMC6313038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Τo investigate the effect of NF-kB signaling pathway on the expression of MIF, TNF-α, and IL-6 in the regulation of disc degeneration. METHODS The disc tissue was taken from 56 patients with cervical spondylosis. According to the preoperative MRI and intraoperative disc herniation, the patients were divided into two groups: degeneration group and herniation group. The control group was 34 patients with cervical trauma with no history of cervical spondylosis. According to the preoperative JOA scores of cervical spondylosis, patients were divided into three groups: mild, moderate and severe. ELISA was used to detect the expression of MIF, IL-6, and TNF-α in the cervical intervertebral disc. NF-kB mRNA expression in the intervertebral disc was detected by qRT-PCR. RESULTS The expression levels of NF-kB mRNA, MIF, IL-6 and TNF-α in the control group were significantly higher than those in the degeneration group and the herniation group (p⟨0.05). There was a positive correlation between the expression of NF-kB mRNA, MIF, IL-6, TNF- and cervical intervertebral disc degeneration. The expression of MIF, IL-6, and TNF-α in the mild, moderate, and severe group was negatively correlated with the JOA score. CONCLUSIONS The expressions of NF-kB, MIF, IL-6, and TNF-α in intervertebral disc tissue in patients with disc herniation were increased and related to the degree of disc herniation. It may play an important role in the pathophysiological process of disc herniation.
Collapse
Affiliation(s)
- He Liang
- Department of Orthopedics, Shanghai Songjiang District Central Hospital, Shanghai, P.R.China
| | - Xinjian Yang
- Department of Spinal Surgery, The Second People’s Hospital of Shenzhen, Shenzhen, P.R.China
| | - Chao Liu
- Department of Orthopedics, Shanghai Songjiang District Central Hospital, Shanghai, P.R.China
| | - Zhongyi Sun
- Department of Orthopedics, Shanghai Songjiang District Central Hospital, Shanghai, P.R.China
| | - Xiaobin Wang
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, P.R.China,Corresponding author: Dr. Xiaobin Wang, Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, No.139 Renmin Middle Road, Changsha 410011, P.R.China E-mail:
| |
Collapse
|
18
|
Zhang B, Wu H, Fang L, Ding P, Xu K, Yang Q, Liu R. MerTK Does Not Mediate Phagocytosis of Staphylococcus aureus but Attenuates Inflammation Induced by Staphylococcal Lipoteichoic Acid Through Blocking NF-κB Activation. Inflammation 2018; 40:1543-1552. [PMID: 28528507 DOI: 10.1007/s10753-017-0595-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mer receptor tyrosine kinase (MerTK) expressed in macrophages is essential for phagocytosis of apoptotic cells. Here, we investigate whether MerTK is involved in the phagocytosis of Staphylococcus aureus (S. aureus) and regulation of staphylococcal lipoteichoic acid (LTA)-induced inflammatory response in macrophages. We found that stimulating RAW264.7 macrophages with S. aureus activated multiple signaling pathways including toll-like receptor 2 (TLR2), scavenger receptor A (SR-A), and MerTK. Meanwhile, S. aureus stimulation also induced activation of proteins focal adhesion kinase (FAK) and Rac1, which are related to phagocytosis. Pretreatment with a specific Mer-blocking antibody significantly inhibited S. aureus-induced phosphorylation of MerTK, while it had no effect on S. aureus-induced activation of FAK and Rac1. Moreover, by confocal laser microscope, we observed that the antibody blockade of MerTK had little impact on the phagocytosis of S. aureus by RAW264.7 macrophages. Additionally, pretreatment with this antibody further promoted LTA-induced phosphorylation of nuclear factor κB (NF-κB) p65 subunit and production of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, and macrophage inflammatory protein-2 (MIP-2). Collectively, these results suggest that MerTK does not play an essential role in the phagocytosis of S. aureus but attenuates inflammation induced by staphylococcal LTA through blocking NF-κB activation.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Respiration, Hefei Second People's Hospital, Anhui Medical University, Heping Road 246, Hefei, Anhui, 230022, People's Republic of China
| | - Huimei Wu
- Department of Respiration, Anhui Geriatric Institute, First Affiliated Hospital, Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
| | - Lei Fang
- Department of Respiration, Anhui Geriatric Institute, First Affiliated Hospital, Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
| | - Peishan Ding
- Department of Respiration, Anhui Geriatric Institute, First Affiliated Hospital, Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
| | - Ke Xu
- Department of Respiration, Anhui Geriatric Institute, First Affiliated Hospital, Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
| | - Qingbin Yang
- Department of Respiration, Hefei Second People's Hospital, Anhui Medical University, Heping Road 246, Hefei, Anhui, 230022, People's Republic of China
| | - Rongyu Liu
- Department of Respiration, Anhui Geriatric Institute, First Affiliated Hospital, Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
19
|
Piao LX, Cheng JH, Aosai F, Zhao XD, Norose K, Jin XJ. Cellular immunopathogenesis in primary Toxoplasma gondii
infection during pregnancy. Parasite Immunol 2018; 40:e12570. [DOI: 10.1111/pim.12570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Lian Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| | - Jia Hui Cheng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| | - Fumie Aosai
- Department of Infection and Host Defense; Graduate School of Medicine; Chiba University; Chiba Japan
- Department of Infection and Host Defense; Graduate School of Medicine; Shinshu University; Matsumoto Japan
| | - Xu Dong Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| | - Kazumi Norose
- Department of Infection and Host Defense; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Xue Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| |
Collapse
|
20
|
Banerjee D, Sinha A, Saikia S, Gogoi B, Rathore AK, Das AS, Pal D, Buragohain AK, Dasgupta S. Inflammation-induced mTORC2-Akt-mTORC1 signaling promotes macrophage foam cell formation. Biochimie 2018; 151:139-149. [DOI: 10.1016/j.biochi.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 06/04/2018] [Indexed: 01/10/2023]
|
21
|
Jian D, Wang W, Zhou X, Jia Z, Wang J, Yang M, Zhao W, Jiang Z, Hu X, Zhu J. Interferon-induced protein 35 inhibits endothelial cell proliferation, migration and re-endothelialization of injured arteries by inhibiting the nuclear factor-kappa B pathway. Acta Physiol (Oxf) 2018; 223:e13037. [PMID: 29350881 DOI: 10.1111/apha.13037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
AIM Endothelial recovery, or re-endothelialization, plays an important role in intimal hyperplasia and atherosclerosis after endothelial injury. Studying the mechanisms of re-endothelialization and strategies to promote efficient endothelial recovery are still needed. Interferon-induced protein 35 (IFI35) is an IFN-γ-induced protein that plays important roles in the antivirus-related immune-inflammatory response. In this study, we tested whether overexpression IFI35 affects the proliferation and migration of endothelial cells (ECs) and re-endothelialization. METHODS Wire injury of the carotid artery was induced in C57BL/6 mice, which was followed by IFI35 or null adenovirus transduction. Evans blue staining and HE staining were performed to evaluate the re-endothelialization rate and neointima formation. In vitro studies, primary human umbilical vein endothelial cells (HUVECs) were transfected with Ad-IFI35 or siRNA-IFI35 to evaluate its potential roles in cell proliferation and migration. Furthermore, the potential mechanism relating inhibition of NF-κB/p65 pathway was elaborated by luciferase assay and IFI35 domain deletion assay. RESULTS In IFI35 adenovirus-transduced mice, the re-endothelialization rates at days 3, 7 were significantly reduced compared to those in null adenovirus-transduced mice (5% and 35%, vs 20% and 50%, respectively). Meanwhile, subsequent neointimal hyperplasia was obviously increased in IFI35 adenovirus-transduced mice. In vitro studies further indicated that IFI35 inhibits both EC proliferation and migration by inhibiting the NF-κB/p65 pathway. Subsequent studies demonstrated that IFI35 functionally interacted with Nmi through its NID1 domain and that knock-down of Nmi significantly mitigated the inhibitory effect of IFI35 on EC proliferation and migration. CONCLUSION Our study revealed a novel mechanism through which IFI35 affects the proliferation and migration of ECs as well as neointima formation, specifically through inhibition of the NF-κB/p65 pathway. Thus, IFI35 is a promising target for the prevention and treatment of post-injury vascular intimal hyperplasia.
Collapse
Affiliation(s)
- D. Jian
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - W. Wang
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - X. Zhou
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - Z. Jia
- Department of Cardio-Thoracic Surgery; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - J. Wang
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - M. Yang
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - W. Zhao
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - Z. Jiang
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - X. Hu
- Department of Intensive Care Unit; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - J. Zhu
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| |
Collapse
|
22
|
Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Interactions Between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma on Neuroinflammation, Demyelination, and Remyelination in Multiple Sclerosis. Cell Mol Neurobiol 2018; 38:783-795. [PMID: 28905149 PMCID: PMC11482031 DOI: 10.1007/s10571-017-0550-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/09/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is marked by neuroinflammation and demyelination with loss of oligodendrocytes in the central nervous system. The immune response is regulated by WNT/beta-catenin pathway in MS. Activated NF-kappaB, a major effector of neuroinflammation, and upregulated canonical WNT/beta-catenin pathway positively regulate each other. Demyelinating events present an upregulation of WNT/beta-catenin pathway, whereas proper myelinating phases show a downregulation of WNT/beta-catenin pathway essential for the promotion of oligodendrocytes precursors cells proliferation and differentiation. The activation of WNT/beta-catenin pathway results in differentiation failure and impairment in remyelination. However, PI3K/Akt pathway and TCF7L2, two downstream targets of WNT/beta-catenin pathway, are upregulated and promote proper remyelination. The interactions of these signaling pathways remain unclear. PPAR gamma activation can inhibit NF-kappaB, and can also downregulate the WNT/beta-catenin pathway. PPAR gamma and canonical WNT/beta-catenin pathway act in an opposite manner. PPAR gamma agonists appear as a promising treatment for the inhibition of demyelination and the promotion of proper remyelination through the control of both NF-kappaB activity and canonical WNT/beta-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
23
|
Huangfu N, Wang Y, Cheng J, Xu Z, Wang S. Metformin protects against oxidized low density lipoprotein-induced macrophage apoptosis and inhibits lipid uptake. Exp Ther Med 2018; 15:2485-2491. [PMID: 29456653 PMCID: PMC5795518 DOI: 10.3892/etm.2018.5704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/28/2017] [Indexed: 12/31/2022] Open
Abstract
Oxidized low density lipoprotein (ox-LDL)-induced macrophage apoptosis contributes to the formation of atherosclerosis. Metformin, an antidiabetic drug, has been reported to attenuate lipid accumulation in macrophages. In this study, the effects of metformin on ox-LDL-induced macrophage apoptosis were investigated and the mechanisms involved in this process were examined. By performing flow cytometry analysis, it was demonstrated that metformin inhibited ox-LDL-induced macrophage apoptosis. Increased expression of endoplasmic reticulum (ER) stress marker proteins, including C/EBP-homologous protein, eukaryotic translation initiation factor 2A, and glucose-regulated protein 78 kDa, induced by ox-LDL was also reversed by metformin. Furthermore, ox-LDL-induced cytochrome c (cyto-c) release and mitochondrial membrane potential loss were inhibited by metformin. As lipid uptake in macrophages contributed to ER stress, cyto-c release and mitochondrial membrane potential loss, the mechanisms involved in metformin-inhibited macrophage lipid uptake were investigated. Expression of scavenger receptors, including scavenger receptor A, cluster of differentiation 36 and lectin-type oxidized LDL receptor 1 was examined in the presence or absence of metformin with ox-LDL treatment. Additionally, the upstream regulatory mechanism of scavenger receptors by metformin was also analyzed. In conclusion, metformin protects against ox-LDL-induced macrophage apoptosis and inhibits macrophage lipid uptake.
Collapse
Affiliation(s)
- Ning Huangfu
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yong Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Jingsong Cheng
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Zhenyu Xu
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Shenghuang Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
24
|
Hashimoto R, Kakigi R, Nakamura K, Itoh S, Daida H, Okada T, Katoh Y. LPS enhances expression of CD204 through the MAPK/ERK pathway in murine bone marrow macrophages. Atherosclerosis 2017; 266:167-175. [DOI: 10.1016/j.atherosclerosis.2017.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/09/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
|
25
|
Meng QT, Chen R, Chen C, Su K, Li W, Tang LH, Liu HM, Xue R, Sun Q, Leng Y, Hou JB, Wu Y, Xia ZY. Transcription factors Nrf2 and NF-κB contribute to inflammation and apoptosis induced by intestinal ischemia-reperfusion in mice. Int J Mol Med 2017; 40:1731-1740. [PMID: 29039475 PMCID: PMC5716448 DOI: 10.3892/ijmm.2017.3170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
Intestinal ischemia/reperfusion (IIR) is a common pathological event associated with intestinal injury and apoptosis with high mortality. Nuclear factor (NF)-E2-related factor-2 (Nrf2) is a key transcription factor that interacts with NF-κB and has a vital anti-inflammatory effect. However, whether Nrf2 has a role in IIR-induced apoptosis and the possible underlining mechanisms, such as modulation of the inflammation regulation pathway, have remained to be fully elucidated. In the present study, IIR was identified to cause significant intestinal injury and apoptosis, with high expression levels of inflammatory cytokines, as well as the apoptotic proteins B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) and caspase-3, while simultaneously decreasing the protein levels of Bcl-2. The effect was more pronounced after pretreatment of the animals with all-trans retinoic acid or brusatol, potent inhibitors of Nrf2. t-Butylhydroquinone, an Nrf2 activator, significantly attenuated IIR-induced intestinal injury and apoptosis, with inhibition of the overexpression of the inflammatory cytokines, Bax and caspase-3 protein and partial restoration of Bcl-2 protein expression. Taken together, these results indicated that increased Nrf2 expression reduced IIR-induced intestinal apoptosis and that the protective function of Nrf2 may be based on its anti-inflammatory effects through the inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cheng Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ke Su
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ling-Hua Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hui-Min Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rui Xue
- Department of Anesthesiology, Renmin Hospital of Shiyan City, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jia-Bao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
26
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 2017; 8:90579-90604. [PMID: 29163854 PMCID: PMC5685775 DOI: 10.18632/oncotarget.21234] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.,CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
27
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Aerobic Glycolysis Hypothesis Through WNT/Beta-Catenin Pathway in Exudative Age-Related Macular Degeneration. J Mol Neurosci 2017; 62:368-379. [PMID: 28689265 DOI: 10.1007/s12031-017-0947-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
Exudative age-related macular degeneration (AMD) is characterized by molecular mechanisms responsible for the initiation of choroidal neovascularization (CNV). Inflammatory processes are associated with upregulation of the canonical WNT/beta-catenin pathway in exudative AMD. We focus this review on the link between WNT/beta-catenin pathway activation and neovascular progression in exudative AMD through activation of aerobic glycolysis for production of angiogenic factors. Increased WNT/beta-catenin pathway involves hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2). WNT/beta-catenin pathway stimulates PI3K/Akt pathway and then HIF-1alpha which activates glycolytic enzymes: glucose transporter (Glut), pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A (LDH-A), and monocarboxylate lactate transporter (MCT-1). This phenomenon is called aerobic glycolysis or the Warburg effect. Consequently, phosphorylation of PDK-1 inhibits the pyruvate dehydrogenase complex (PDH). Thus, a large part of pyruvate cannot be converted into acetyl-CoA in mitochondria and only a part of acetyl-CoA can enter the tricarboxylic acid cycle. Cytosolic pyruvate is converted into lactate through the action of LDH-A. In exudative AMD, high level of cytosolic lactate is correlated with increase of VEGF expression, the angiogenic factor of CNV. Photoreceptors in retina cells can metabolize glucose through aerobic glycolysis to protect them against oxidative damage, as cancer cells do.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.
| | | | - Rémy Guillevin
- DACTIM, Laboratoire de Mathématiques et Applications, Université de Poitiers et CHU de Poitiers, UMR CNRS 7348, SP2MI Futuroscope, Chasseneuil-du-Poitou, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
28
|
Pachori AS, Madan M, Nunez Lopez YO, Yi F, Meyer C, Seyhan AA. Reduced skeletal muscle secreted frizzled-related protein 3 is associated with inflammation and insulin resistance. Obesity (Silver Spring) 2017; 25:697-703. [PMID: 28240822 DOI: 10.1002/oby.21787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the role of secreted frizzled-related protein 3 (Sfrp3) in insulin sensitivity (ISi) and β-cell function in humans across a spectrum of glucose homeostasis. METHODS Subjects included those with normal glucose homeostasis (NGT; n = 18), prediabetes (PD; n = 11), or type 2 diabetes (T2D; n=12). Serum and skeletal muscle (SkM) Sfrp3 levels were measured by ELISA and qPCR, respectively, and insulin signaling pathway was assessed by Western blot. IS and β-cell function were assessed by indices derived from frequently sampled intravenous glucose tolerance test. RESULTS SkM Sfrp3 mRNA levels were significantly reduced in PD and T2D versus NGT. Similarly, serum Sfrp3 levels tended to be decreased in PD and T2D versus NGT. SkM Sfrp3 mRNA levels correlated negatively with circulating proinflammatory cytokines (IL-6, IFN-γ) and positively with IS. In vitro-differentiated myotubes from lean insulin-sensitive subjects treated with either lipopolysaccharide (LPS) or recombinant IL-6 demonstrated a dose-dependent reduction in Sfrp3 gene expression. Treatment of myotubes with recombinant Sfrp3 restored LPS- and IL-6-induced attenuation of insulin-stimulated Akt phosphorylation. CONCLUSIONS Inflammation-induced reduction in SkM Sfrp3 expression may contribute to insulin resistance, and this effect may be prevented by addition of exogenous Sfrp3. Thus, Sfrp3 may be a novel target for insulin sensitization.
Collapse
Affiliation(s)
- Alok S Pachori
- Translational Research Institute for Metabolism and Diabetes at Florida Hospital, Orlando, Florida, USA
| | - Meenu Madan
- Translational Research Institute for Metabolism and Diabetes at Florida Hospital, Orlando, Florida, USA
| | - Yury O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes at Florida Hospital, Orlando, Florida, USA
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes at Florida Hospital, Orlando, Florida, USA
| | - Christian Meyer
- Translational Research Institute for Metabolism and Diabetes at Florida Hospital, Orlando, Florida, USA
| | - Attila A Seyhan
- Translational Research Institute for Metabolism and Diabetes at Florida Hospital, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
- Chemical Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
29
|
Zhang L, Xiao X, An H, Wang J, Ma Y, Qian YH. Inhibition of CCR7 promotes NF-κB-dependent apoptosis and suppresses epithelial-mesenchymal transition in non-small cell lung cancer. Oncol Rep 2017; 37:2913-2919. [DOI: 10.3892/or.2017.5524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/12/2016] [Indexed: 11/06/2022] Open
|
30
|
Ai XY, Liu HJ, Lu C, Liang CL, Sun Y, Chen S, Sun B, Li Y, Liu YR, Zhang Q, Liu XQ, Xiao T, Jing XS, Sun T, Zhou HG, Yang C. Phenytoin silver: a new nanocompound for promoting dermal wound healing via comprehensive pharmacological action. Am J Cancer Res 2017; 7:425-435. [PMID: 28255340 PMCID: PMC5327358 DOI: 10.7150/thno.17073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/28/2016] [Indexed: 11/18/2022] Open
Abstract
Phenytoin, an antiepileptic drug, has been widely used for wound healing. Inspired by previous studies, phenytoin silver (PnAg), a sparingly soluble silver nanocompound, was synthesized which exhibited good therapeutic efficacy in tissue repair with low toxicity (LD50 >5 g/kg). In vivo studies showed that PnAg could accelerate dermal wound healing and strong inflammation control in Sprague-Dawley rats (SD rat) and Bama minipigs. Due to its low solubility, PnAg led to low toxicity and blood enrichment in animals. Furthermore, PnAg could upregulate the promoter activity of Jak, Stat3, and Stat3 downstream proteins. Therefore, PnAg may serve as an effective therapeutic compound for wound healing through regulating the gp130/Jak/Stat3 signaling pathway.
Collapse
|
31
|
Ma B, Hottiger MO. Crosstalk between Wnt/β-Catenin and NF-κB Signaling Pathway during Inflammation. Front Immunol 2016; 7:378. [PMID: 27713747 PMCID: PMC5031610 DOI: 10.3389/fimmu.2016.00378] [Citation(s) in RCA: 463] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
Besides its important role in embryonic development and homeostatic self-renewal in adult tissues, Wnt/β-catenin signaling exerts both anti-inflammatory and proinflammatory functions. This is, at least partially, due to either repressing or enhancing the NF-κB pathway. Similarly, the NF-κB pathway either positively or negatively regulates Wnt/β-catenin signaling. Different components of the two pathways are involved in this crosstalk, forming a complex regulatory network. This review summarizes our current understanding of the molecular mechanisms underlying the cross-regulation between the two pathways and discusses their involvement in inflammation and inflammation-associated diseases such as cancer.
Collapse
Affiliation(s)
- Bin Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Renji Hospital Clinical Stem Cell Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich , Zurich , Switzerland
| |
Collapse
|
32
|
Singh A, Yang K, Liu Z, Gong J. Expression of scavenger receptor A in rat's liver tissue during acute obstructive cholangitis and its significance. SPRINGERPLUS 2016; 5:606. [PMID: 27247902 PMCID: PMC4864784 DOI: 10.1186/s40064-016-2222-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 04/22/2016] [Indexed: 11/12/2022]
Abstract
Objective Acute obstructive cholangitis (AOC) is a severe disease that leads to sepsis, shock and multiple organ dysfunction syndrome. Liver is the largest and the major organ for the defense mechanisms during the sepsis. Our aim was to investigate the expression of scavenger receptor A (SRA) in rat’s liver tissue during AOC and its relation with the inflammatory mediators and hepatic injury caused by endotoxins. Methods Ninety Wistar rats were randomly divided into three equal groups. In group one, the choledochus were ligagted and Escherichia coli O111B4 injected into it to produce AOC model. Group two had choledochus ligated and group three had sham surgery. Six animals from each group were sacrificed at 0, 3, 6, 12 and 24 h for comparative analysis of endotoxins, tumor necrosis factor-alpha, interleukin-6 in plasma and expression of SRA protein and SRA mRNA in liver tissue. The P < 0.05 was considered significant. Ethical approval was obtained. Results The plasma endotoxins, tumor necrosis factor-alpha and interleukin-6 levels in AOC rats increased progressively with time. The SRA protein and SRA mRNA expression decreased with time. The differences among groups were significant (P < 0.01). Liver histopathology showed gradually aggravated hepatic injury with neutrophil infiltration, degeneration and necrosis of hepatocytes. Conclusion In AOC, the expression of SRA in liver gradually decreased with progressive increase in level of plasma endotoxins and hepatic injury suggesting its importance in the defense mechanism.
Collapse
Affiliation(s)
- Akanand Singh
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400010 People's Republic of China
| | - Kang Yang
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400010 People's Republic of China
| | - Zuojin Liu
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400010 People's Republic of China
| | - Jianping Gong
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400010 People's Republic of China
| |
Collapse
|
33
|
The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. J Immunol Methods 2016; 430:64-70. [PMID: 26826276 DOI: 10.1016/j.jim.2016.01.012] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/04/2016] [Accepted: 01/26/2016] [Indexed: 11/22/2022]
Abstract
The human monocytic cell line, THP-1, is the most widely used model for primary human monocytes/macrophages. This is because, following differentiation using phorbol 12-myristate 13-acetate (PMA), THP-1 cells acquire a macrophage-like phenotype, which mimics, in many respects, primary human macrophages. Despite the widespread use of THP-1 cells in studies elucidating macrophage responses to inflammatory stimuli, as well as the development and screening of potential therapeutics, there is currently no standardised protocol for the reliable differentiation of THP-1 monocytes to a macrophage phenotype using PMA. Consequently, reports using THP-1 cells have demonstrated significant phenotypic and functional differences between resultant THP-1 macrophage populations, which are largely attributable to the varying PMA differentiation methods used. Thus, to guarantee consistency and reproducibility between studies, and to ensure the relevance of THP-1 cells as an appropriate model for primary human macrophages, it is crucial to develop a standardised protocol for the differentiation of THP-1 macrophages. Accordingly, we compared the function and phenotype of THP-1 macrophages generated using the range of published PMA differentiation protocols, specifically in response to the pro-inflammatory stimulus, lipopolysaccharide (LPS). Our results demonstrated that the function of the resultant THP-1 macrophage populations, as determined by tumour necrosis factor (TNF) secretion in response to LPS stimulation, varied significantly, and was dependent upon the concentration of PMA used to stimulate the differentiation of monocytes, and the period of rest following PMA exposure. These data indicate that exposure of monocytic THP-1 cells to 25 nM PMA over 48 h, followed by a recovery period of 24h in culture in the absence of PMA, was the optimal protocol for the differentiation of THP-1 cells.
Collapse
|