1
|
Impact of MASP2 gene polymorphism and gene-tea drinking interaction on susceptibility to tuberculosis. Sci Rep 2021; 11:6544. [PMID: 33753877 PMCID: PMC7985323 DOI: 10.1038/s41598-021-86129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
Mannan-binding lectin-associated serine protease-2 (MASP-2) has been reported to play an important role as a key enzyme in the lectin pathway of the complement system. The objectives of our study were to determine whether the single-nucleotide polymorphism (SNPs) of MASP2 and the gene-tea drinking interaction were associated with the susceptibility to TB. In total, 503 patients and 494 healthy controls were contained. Three SNPs (rs12142107, rs12711521, and rs7548659) were genotyped. The association between the SNPs and susceptibility to TB were investigated by conducting multivariate unconditional logistic regression analysis. The gene-tea drinking interactions were analyzed by the additive model of marginal structural linear odds models. Both genotype AC + AA at rs12711521 of MASP2 genes and genotype GT + GG at rs7548659 of MASP2 genes were more prevalent in the TB patient group than the healthy control group (OR: 1.423 and 1.439, respectively, P < 0.05). In addition, The relative excess risk of interaction (RERI) between tea drinking and rs12142107, rs12711521, and rs7548659 of MASP2 genes was found to suggest negative interactions, which reached − 0.2311 (95% confidence interval (CI): − 0.4736, − 0.0113), − 0.7080 (95% CI − 1.3998, − 0.0163), and − 0.5140 (95% CI − 0.8988, − 0.1291), respectively (P < 0.05). Our finding indicated that the SNPs (rs12711521 and rs7548659) of MASP2 were associated with the susceptibility to TB. Furthermore, there were negative interactions between tea drinking and rs12142107, rs12711521, and rs75548659 of MASP2 gene, respectively. Our research provides a basis for studying the pathogenesis and prevention of tuberculosis.
Collapse
|
2
|
Jagatia H, Tsolaki AG. The Role of Complement System and the Immune Response to Tuberculosis Infection. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:84. [PMID: 33498555 PMCID: PMC7909539 DOI: 10.3390/medicina57020084] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022]
Abstract
The complement system orchestrates a multi-faceted immune response to the invading pathogen, Mycobacterium tuberculosis. Macrophages engulf the mycobacterial bacilli through bacterial cell surface proteins or secrete proteins, which activate the complement pathway. The classical pathway is activated by C1q, which binds to antibody antigen complexes. While the alternative pathway is constitutively active and regulated by properdin, the direct interaction of properdin is capable of complement activation. The lectin-binding pathway is activated in response to bacterial cell surface carbohydrates such as mannose, fucose, and N-acetyl-d-glucosamine. All three pathways contribute to mounting an immune response for the clearance of mycobacteria. However, the bacilli can reside, persist, and evade clearance by the immune system once inside the macrophages using a number of mechanisms. The immune system can compartmentalise the infection into a granulomatous structure, which contains heterogenous sub-populations of M. tuberculosis. The granuloma consists of many types of immune cells, which aim to clear and contain the infection whilst sacrificing the affected host tissue. The full extent of the involvement of the complement system during infection with M. tuberculosis is not fully understood. Therefore, we reviewed the available literature on M. tuberculosis and other mycobacterial literature to understand the contribution of the complement system during infection.
Collapse
Affiliation(s)
- Heena Jagatia
- Department for Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK
| | - Anthony G. Tsolaki
- Department of Life Sciences, College of Health and Life Sciences, Brunel University of London, Uxbridge UB8 3PN, UK;
| |
Collapse
|
3
|
Sokołowska A, Świerzko AS, Szala-Poździej A, Augustynowicz-Kopeć E, Kozińska M, Niemiec T, Błachnio M, Borkowska-Tatar D, Jensenius JC, Thiel S, Dziadek J, Cedzyński M. Selected factors of the innate immunity in Polish patients suffering from pulmonary tuberculosis. Immunobiology 2020; 225:151905. [PMID: 32007302 DOI: 10.1016/j.imbio.2020.151905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/01/2023]
Abstract
We conducted a prospective study of 453 Polish patients suffering from pulmonary tuberculosis and 267 healthy controls. Selected polymorphisms of the genes encoding for collectins, ficolins and MBL-associated serine protease 2 were investigated as were serum concentrations of mannose-binding lectin, surfactant protein D, ficolin-1 and ficolin-3. The number of MBL2 gene exon 1 variant allele carriers was significantly higher in patients, compared with controls. The homozygosity for SFTPA2 +26 C > A SNP variant allele occurred less commonly within TB, while homozygosity for the FCN1 -542 G > A major allele was less frequent within the control group. Two patients were found MASP-2-deficient. Serum concentrations of MBL, SP-D and ficolin-1 were higher amongst patients while the converse was found for ficolin-3. Ficolin-1 had high specificity to differentiate between individuals with tuberculosis and healthy persons and therefore may be considered potential disease marker.
Collapse
Affiliation(s)
- Anna Sokołowska
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
| | - Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
| | | | - Monika Kozińska
- Institute of Tuberculosis and Lung Diseases, Plocka 26, 01-138, Warsaw, Poland
| | - Tomasz Niemiec
- The Voivodeship Hospital of Lung Diseases in Jaroszowiec, Kolejowa 1a, 32-312, Jaroszowiec, Poland
| | - Maria Błachnio
- Masovian Center of Lung Diseases and Tuberculosis Treatment, Narutowicza 80, 05-400, Otwock, Poland
| | | | - Jens C Jensenius
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus, Denmark
| | - Jarosław Dziadek
- Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland.
| |
Collapse
|
4
|
Personalized Approach as a Basis for the Future Diagnosis of Tuberculosis (Literature Review). ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2019-4.3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The global spread of tuberculosis remains one of actual problems of public health despite of introduction of public health safety programs. Early, rapid and accurate identification of M. tuberculosis and determination of drug susceptibility are essential for treatment and management of this disease. Delay in delivering results prolongs potentially inappropriate antituberculosis therapy, contributing to emergence of drug resistance, reducing treatment options and increasing treatment duration and associated costs, resulting in increased mortality and morbidity. Faster, more comprehensive diagnostics will enable earlier use of the most appropriate drug regimen, thus improving patient outcomes and reducing overall healthcare costs. The treatment of infection based on the using of massive antimicrobial therapy with analysis of bacterial strains resistance to first line drugs (FLD) isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), ethambutol (EMB) and streptomycin (SM). However, the public health practitioners pay no attention to functional activity of human immune system genes. The interaction of bacterial genomes and immune system genes plays the major role in infection progress. There is growing evidence that, together with human and environmental factors, Mycobacterium tuberculosis complex strain diversity contributes to the variable outcome of infection and disease in human TB. We suppose that the future of diagnosis and treatment of tuberculosis lies in the field of personal medicine with comprehensive analysis of host and pathogen genes.
Collapse
|
5
|
Tong X, Wan Q, Li Z, Liu S, Huang J, Wu M, Fan H. Association between the mannose-binding lectin (MBL)-2 gene variants and serum MBL with pulmonary tuberculosis: An update meta-analysis and systematic review. Microb Pathog 2019; 132:374-380. [PMID: 30999018 DOI: 10.1016/j.micpath.2019.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 04/12/2019] [Indexed: 02/05/2023]
Abstract
In recent years, many studies have demonstrated that the MBL-2 gene polymorphisms may be associated with pulmonary tuberculosis (PTB) susceptibility. Moreover, some studies have shown that serum MBL levels were influenced by the MBL-2 gene polymorphisms and that it plays an important role in tuberculosis infection. However, the results of these studies were inconsistent and underpowered. The current meta-analysis and systematic review aimed to evaluate the association between the MBL-2 gene polymorphisms and serum MBL levels with PTB. Finally, 30 eligible articles were included in the study. The overall results indicated that the MBL-2 rs1800450 (54 A/B) and rs5030737 (52 A/D) polymorphisms were risk factors for PTB, but the MBL-2 rs1800451 (57 A/C) and rs7095891 (+4 P/Q) polymorphisms as protective factors against PTB. No associations were found in the other three polymorphisms (exon 1, rs7096206 (-221 X/Y), and rs11003125 (-550 H/L) of the MBL-2 gene. In addition, we could not detect any significant differences between haplotypes among PTB patients and healthy controls. More important, the meta-analysis results indicated that the serum MBL levels in patients with PTB were significantly lower than those in healthy controls (SMD = 0.43, 95% CI = 0.33-0.52). This study suggested that the MBL-2 gene polymorphisms may be involved in the pathogenesis of PTB, and serum MBL may be a biomarker for the diagnosis of PTB. More rigorous research is needed in the future to confirm these findings further.
Collapse
Affiliation(s)
- Xiang Tong
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Qunfang Wan
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Zhenzhen Li
- Health Management Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Sitong Liu
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Jizhen Huang
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Man Wu
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Hong Fan
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Bidula S, Sexton DW, Schelenz S. Ficolins and the Recognition of Pathogenic Microorganisms: An Overview of the Innate Immune Response and Contribution of Single Nucleotide Polymorphisms. J Immunol Res 2019; 2019:3205072. [PMID: 30868077 PMCID: PMC6379837 DOI: 10.1155/2019/3205072] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
Ficolins are innate pattern recognition receptors (PRR) and play integral roles within the innate immune response to numerous pathogens throughout the circulation, as well as within organs. Pathogens are primarily removed by direct opsonisation following the recognition of cell surface carbohydrates and other immunostimulatory molecules or via the activation of the lectin complement pathway, which results in the deposition of C3b and the recruitment of phagocytes. In recent years, there have been a number of studies implicating ficolins in the recognition and removal of numerous bacterial, viral, fungal, and parasitic pathogens. Moreover, there has been expanding evidence highlighting that mutations within these key immune proteins, or the possession of particular haplotypes, enhance susceptibility to colonization by pathogens and dysfunctional immune responses. This review will therefore encompass previous knowledge on the role of ficolins in the recognition of bacterial and viral pathogens, while acknowledging the recent advances in the immune response to fungal and parasitic infections. Additionally, we will explore the various genetic susceptibility factors that predispose individuals to infection.
Collapse
Affiliation(s)
- Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Darren W. Sexton
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Silke Schelenz
- Department of Microbiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| |
Collapse
|
7
|
Klassert TE, Goyal S, Stock M, Driesch D, Hussain A, Berrocal-Almanza LC, Myakala R, Sumanlatha G, Valluri V, Ahmed N, Schumann RR, Flores C, Slevogt H. AmpliSeq Screening of Genes Encoding the C-Type Lectin Receptors and Their Signaling Components Reveals a Common Variant in MASP1 Associated with Pulmonary Tuberculosis in an Indian Population. Front Immunol 2018. [PMID: 29515573 PMCID: PMC5826192 DOI: 10.3389/fimmu.2018.00242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is a multifactorial disease governed by bacterial, host and environmental factors. On the host side, growing evidence shows the crucial role that genetic variants play in the susceptibility to Mycobacterium tuberculosis (Mtb) infection. Such polymorphisms have been described in genes encoding for different cytokines and pattern recognition receptors (PRR), including numerous Toll-like receptors (TLRs). In recent years, several members of the C-type lectin receptors (CTLRs) have been identified as key PRRs in TB pathogenesis. Nevertheless, studies to date have only addressed particular genetic polymorphisms in these receptors or their related pathways in relation with TB. In the present study, we screened the main CTLR gene clusters as well as CTLR pathway-related genes for genetic variation associated with pulmonary tuberculosis (PTB). This case-control study comprised 144 newly diagnosed pulmonary TB patients and 181 healthy controls recruited at the Bhagwan Mahavir Medical Research Center (BMMRC), Hyderabad, India. A two-stage study was employed in which an explorative AmpliSeq-based screening was followed by a validation phase using iPLEX MassARRAY. Our results revealed one SNP (rs3774275) in MASP1 significantly associated with PTB in our population (joint analysis p = 0.0028). Furthermore, serum levels of MASP1 were significantly elevated in TB patients when compared to healthy controls. Moreover, in the present study we could observe an impact of increased MASP1 levels on the lectin pathway complement activity in vitro. In conclusion, our results demonstrate a significant association of MASP1 polymorphism rs3774275 and MASP1 serum levels with the development of pulmonary TB. The present work contributes to our understanding of host-Mtb interaction and reinforces the critical significance of mannose-binding lectin and the lectin-complement pathway in Mtb pathogenesis. Moreover, it proposes a MASP1 polymorphism as a potential genetic marker for TB resistance.
Collapse
Affiliation(s)
| | - Surabhi Goyal
- Institute of Microbiology and Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Abid Hussain
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | | | | | | | | | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Ralf R Schumann
- Institute of Microbiology and Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carlos Flores
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | |
Collapse
|
8
|
李 捷, 朱 玲, 左 大, 张 丽, 卢 晓, 陈 政, 周 嘉. [Plasma mannan?binding lectin and MBL?associated serine protease 2 in patients with hepatocellular carcinoma]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1667-1672. [PMID: 29292263 PMCID: PMC6744007 DOI: 10.3969/j.issn.1673-4254.2017.12.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To detect the plasma levels of mannan?binding lectin (MBL) and MBL?associated serine protease?2 (MASP-2) in patients with hepatocellular carcinoma (HCC) and explore their role in the tumorigenesis and progression of HCC. METHODS The plasma levels of MBL and MASP?2 were detected by enzyme?linked immunosorbent assay in 64 HCC patients and 30 healthy control subjects. The correlation of MBL and MASP?2 with the clinical parameters of HCC patients were analyzed. RESULTS The plasma levels of MBL (P=0.014) and MASP?2 (P=0.002) were significantly higher in HCC patients than in the healthy controls, but the MBL?to?MASP?2 ratio did not differ significantly between the two groups. In HCC patients, plasma MBL level was positively correlated with vascular invasion (r=0.253, P=0.047) and total bilirubin level (r=0.283, P=0.024). The plasma level of MASP?2 was positively correlated with TNM stage (r=0.276, P=0.027) and negatively correlated with plasma albumin level (r=0.?0.317, P=0.015). ROC curve analysis revealed an area under curve of 0.665 for MBL (P=0.010) and 0.694 for MASP?2 (P=0.003). The sensitivities of MBL and MASP?2 were 50% and 89.1% in the diagnosis of HCC, respectively. CONCLUSION MBL and MASP?2 are associated with the inflammatory state and disease progression in patients with HCC.
Collapse
Affiliation(s)
- 捷 李
- 南方医科大学基础医学院免疫教研室,广东 广州 510515Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- 南方医科大学第三附属医院(广东省骨科研究院),广东 广州 510000Third Affiliated Hospital of Southern Medical University, Guangdong Academy of Orthopaedics, Guangzhou 510000, China
| | - 玲燕 朱
- 中山大学生命科学学院,广东 广州 5102750School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - 大明 左
- 南方医科大学基础医学院免疫教研室,广东 广州 510515Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 丽芸 张
- 南方医科大学基础医学院免疫教研室,广东 广州 510515Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 晓 卢
- 南方医科大学基础医学院免疫教研室,广东 广州 510515Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 政良 陈
- 南方医科大学基础医学院免疫教研室,广东 广州 510515Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 嘉 周
- 南方医科大学基础医学院免疫教研室,广东 广州 510515Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Smolnikova MV, Freidin MB, Tereshchenko SY. The prevalence of the variants of the L-ficolin gene (FCN2) in the arctic populations of East Siberia. Immunogenetics 2017; 69:409-413. [PMID: 28391359 DOI: 10.1007/s00251-017-0984-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023]
Abstract
L-ficolin encoded by FCN2 gene is a crucial factor of defence against infection in humans. We studied the prevalence of the two common variants (rs17549193 and rs7851696) in aboriginal and alien populations of the Taymyr-Dolgan-Nenets region of Krasnoyarskiy Kray, East Siberia, Russia (Nenets, Dolgans, Nganasans, Russians). We found a decreased prevalence of the rs17549193*T allele in all aboriginal populations as compared to Russians. Also, its frequency was the lowest in the Nenets among the studied populations, while frequency of the rs7851696*T allele was increased in this population. The results suggest that the Arctic populations of East Siberia are characterised by specificity of genetic make-up responsible for the activity of L-ficolin. Clinical and epidemiological studies are required to discover if these genetic features correlate with the infant infectious morbidity in East Siberian populations.
Collapse
Affiliation(s)
- Marina V Smolnikova
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of medical problems of the North, Partizana Zheleznyaka street, 3G, Krasnoyarsk, Russia, 660022
| | - Maxim B Freidin
- Research Institute of Medical Genetics, Tomsk NRMC, 10 Nab. Ushaiki, Tomsk, Russia, 634050
| | - Sergey Yu Tereshchenko
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of medical problems of the North, Partizana Zheleznyaka street, 3G, Krasnoyarsk, Russia, 660022.
| |
Collapse
|
10
|
Rosbjerg A, Genster N, Pilely K, Garred P. Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway. Front Microbiol 2017; 8:868. [PMID: 28553281 PMCID: PMC5427104 DOI: 10.3389/fmicb.2017.00868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022] Open
Abstract
The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition molecules that bind specific patterns on microbial surfaces, a group of associated proteases that initiates the complement cascade, and a group of proteins that interact in proteolytic complexes or the terminal pore-forming complex. In addition, various regulatory proteins are important for controlling the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system. Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination.
Collapse
Affiliation(s)
- Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
11
|
Tereshchenko SY, Kasparov EV, Smol'nikova MV, Kuvshinova EV. Mannose-binding lectin deficiency in respiratory diseases. PULMONOLOGIYA 2017; 26:748-752. [DOI: 10.18093/0869-0189-2016-26-6-748-752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mannosebinding lectin is a part of the innate immunity that, being the first barrier of the antiinfectious defense, acts in first minutes or hours after pathogen challenge. The review provides data about mechanisms of action of mannosebinding lectin and its particular pathogenic role in a wide range of respiratory diseases: bacterial pneumonia, viral respiratory tract infections, tuberculosis, cystic fibrosis, chronic obstructive pulmonary disease, and asthma in adults and children.
Collapse
Affiliation(s)
- S. Yu. Tereshchenko
- Federal Research Institute of Medical Problems of the North, Siberian Department of Russian Academy of Medical Science
| | - E. V. Kasparov
- Federal Research Institute of Medical Problems of the North, Siberian Department of Russian Academy of Medical Science
| | - M. V. Smol'nikova
- Federal Research Institute of Medical Problems of the North, Siberian Department of Russian Academy of Medical Science
| | - E. V. Kuvshinova
- Federal Research Institute of Medical Problems of the North, Siberian Department of Russian Academy of Medical Science
| |
Collapse
|
12
|
Abstract
ABSTRACT
Familial risk of tuberculosis (TB) has been recognized for centuries. Largely through studies of mono- and dizygotic twin concordance rates, studies of families with Mendelian susceptibility to mycobacterial disease, and candidate gene studies performed in the 20th century, it was recognized that susceptibility to TB disease has a substantial host genetic component. Limitations in candidate gene studies and early linkage studies made the robust identification of specific loci associated with disease challenging, and few loci have been convincingly associated across multiple populations. Genome-wide and transcriptome-wide association studies, based on microarray (commonly known as genechip) technologies, conducted in the past decade have helped shed some light on pathogenesis but only a handful of new pathways have been identified. This apparent paradox, of high heritability but few replicable associations, has spurred a new wave of collaborative global studies. This review aims to comprehensively review the heritability of TB, critically review the host genetic and transcriptomic correlates of disease, and highlight current studies and future prospects in the study of host genomics in TB. An implicit goal of elucidating host genetic correlates of susceptibility to
Mycobacterium tuberculosis
infection or TB disease is to identify pathophysiological features amenable to translation to new preventive, diagnostic, or therapeutic interventions. The translation of genomic insights into new clinical tools is therefore also discussed.
Collapse
|
13
|
C-type lectin receptors in tuberculosis: what we know. Med Microbiol Immunol 2016; 205:513-535. [DOI: 10.1007/s00430-016-0470-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022]
|
14
|
Bjarnadottir H, Arnardottir M, Ludviksson BR. Frequency and distribution of FCN2 and FCN3 functional variants among MBL2 genotypes. Immunogenetics 2016; 68:315-25. [PMID: 26795763 PMCID: PMC4842218 DOI: 10.1007/s00251-016-0903-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022]
Abstract
The six types of pattern recognition molecules (PRMs) that initiate complement via the lectin pathway (LP) comprise collectins and ficolins. The importance of having various PRMs to initiate the LP is currently unclear. Mannan-binding lectin (MBL) is a collectin member of the LP PRMs. MBL deficiency is common with mild clinical consequence. Thus, the lack of MBL may be compensated for by the other PRMs. We hypothesized that variants FCN2 + 6424 and FCN3 + 1637delC that cause gene-dose-dependent reduction in ficolin-2 and ficolin-3 levels, respectively, may be rare in MBL-deficient individuals due to the importance of compensation within the LP. The aim of this study was to investigate the distribution and frequency of these variants among MBL2 genotypes in healthy subjects. The allele frequency of FCN2 + 6424 and FCN3 + 1637delC was 0.099 and 0.015, respectively, in the cohort (n = 498). The frequency of FCN2 + 6424 tended to be lower among MBL-deficient subjects (n = 53) than among MBL-sufficient subjects (n = 445) (0.047 versus 0.106, P = 0.057). In addition, individuals who were homozygous for FCN2 + 6424 were sufficient MBL producers. The frequency of FCN3 + 1637delC did not differ between the groups. The frequency of FCN2 + 6424 was similar in FCN3 + 1637delC carriers (n = 15) versus wild type (n = 498). Furthermore, subjects that were heterozygote carriers of both FCN2 + 6424 and FCN3 + 1637delC were sufficient MBL producers. In conclusion, FCN2 + 6424 carriers with MBL deficiency tend to be rare among healthy individuals. MBL-deficient individuals with additional LP PRM defects may be at risk to morbidity.
Collapse
Affiliation(s)
- Helga Bjarnadottir
- Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut (Building 14 at Eiriksgata), 101, Reykjavik, Iceland.
| | - Margret Arnardottir
- Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut (Building 14 at Eiriksgata), 101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Bjorn Runar Ludviksson
- Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut (Building 14 at Eiriksgata), 101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
15
|
Xu DD, Wang C, Jiang F, Wei LL, Shi LY, Yu XM, Liu CM, Liu XH, Feng XM, Ping ZP, Jiang TT, Chen ZL, Li ZJ, Li JC. Association of the FCN2 Gene Single Nucleotide Polymorphisms with Susceptibility to Pulmonary Tuberculosis. PLoS One 2015; 10:e0138356. [PMID: 26379154 PMCID: PMC4574923 DOI: 10.1371/journal.pone.0138356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
Ficolin-2 (FCN2) is an innate immune pattern recognition molecule that can activate the complement pathway, opsonophagocytosis, and elimination of the pathogens. The present study aimed to investigate the association of the FCN2 gene single nucleotide polymorphisms (SNPs) with susceptibility to pulmonary tuberculosis (TB). A total of seven SNPs in exon 8 (+6359 C>T and +6424 G>T) and in the promoter region (-986 G>A, -602 G>A, -557 A>G, -64 A>C and -4 A>G) of the FCN2 gene were genotyped using the PCR amplification and DNA sequencing methods in the healthy controls group (n = 254) and the pulmonary TB group (n = 282). The correlation between SNPs and pulmonary TB was analyzed using the logistic regression method. The results showed that there were no significant differences in the distribution of allelic frequencies of seven SNPs between the pulmonary TB group and the healthy controls group. However, the frequency of the variant homozygous genotype (P = 0.037, -557 A>G; P = 0.038, -64 A>C; P = 0.024, +6424 G>T) in the TB group was significantly lower than the control group. After adjustment for age and gender, these variant homozygous genotypes were found to be recessive models in association with pulmonary TB. In addition, -64 A>C (P = 0.047) and +6424 G>T (P = 0.03) were found to be codominant models in association with pulmonary TB. There was strong linkage disequilibrium (r2 > 0.80, P < 0.0001) between 7 SNPs except the -602 G>A site. Therefore, -557 A>G, -64 A>C and +6424 G>T SNPs of the FCN2 gene were correlated with pulmonary TB, and may be protective factors for TB. This study provides a novel idea for the prevention and control of TB transmission from a genetics perspective.
Collapse
Affiliation(s)
- Dan-Dan Xu
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chong Wang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Feng Jiang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Li-Liang Wei
- Department of Respiratory Medicine, The Sixth Hospital of Shaoxing, Shaoxing 312000, P.R. China
| | - Li-Ying Shi
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, P.R. China
| | - Xiao-Mei Yu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, P.R. China
| | - Chang-Ming Liu
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xue-Hong Liu
- School of Medicine, Shaoxing University, Shaoxing 312000, P.R. China
| | - Xian-Min Feng
- School of Laboratory Medicine, Jilin Medical College, Jilin 132013, P.R. China
| | - Ze-Peng Ping
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ting-Ting Jiang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Liang Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Jie Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ji-Cheng Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|