1
|
Mahmoud AM, Alfadl EMA, Ahmed ARH, Abouelella AMA, Alshazly O, Mohamed MFA, Allaf HE, Allam RM. Disclosing the impact of metformin and methotrexate in adjuvant arthritis in female rats: molecular docking and biochemical insights on visfatin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03823-7. [PMID: 39878818 DOI: 10.1007/s00210-025-03823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Rheumatoid arthritis (RA) is one of the most common systemic autoimmune inflammatory diseases, with a progressive etiology that results in serious complications and a higher chance of early death. Visfatin, an adipokine, is correlated with disease pathologic features and becomes a key biomarker and therapeutic target for RA. This study aimed to evaluate the anti-arthritic activity of metformin (an antidiabetic drug with anti-inflammatory activities) and methotrexate (the first choice for disease-modifying antirheumatic drugs in RA, with diverse adverse effects) in complete Freund's adjuvant (CFA)-induced arthritis in female rats. Treatment outcomes were assessed using arthritis severity, serum levels of inflammatory markers, and pro-inflammatory adipokine (visfatin). In addition to radiological and histopathological examination, and docking analysis. Results showed that Met, MTX, and Met/MTX significantly (p ≤ 0.05) lowered paw swelling and arthritic score, as well as attenuated serum levels of rheumatoid factor (RF), C-reactive protein (CRP), and visfatin. The combined treatment gives the best results. The previously mentioned findings were further confirmed through radiological and histopathological examinations. In conclusion, the co-administration of metformin could potentiate the anti-arthritic activity of methotrexate, providing a medical strategy for arthritis management.
Collapse
Affiliation(s)
- Ahmed Mostafa Mahmoud
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Department of Basic Medical Sciences, Aqaba Medical Sciences University, Aqaba, Jordan
| | - Esam Mohamed Abu Alfadl
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmed R H Ahmed
- Department of Pathology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Azza M A Abouelella
- Department of Pharmacology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Omar Alshazly
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Hasan El Allaf
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Department of Basic Medical Sciences, Aqaba Medical Sciences University, Aqaba, Jordan
| | - Rasha M Allam
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
2
|
Guo C, Huang Q, Wang Y, Yao Y, Li J, Chen J, Wu M, Zhang Z, E M, Qi H, Ji P, Liu Q, Zhao D, Su H, Qi W, Li X. Therapeutic application of natural products: NAD + metabolism as potential target. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154768. [PMID: 36948143 DOI: 10.1016/j.phymed.2023.154768] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD+) metabolism is involved in the entire physiopathological process and is critical to human health. Long-term imbalance in NAD+ homeostasis is associated with various diseases, including non-alcoholic fatty liver disease, diabetes mellitus, cardiovascular diseases, neurodegenerative disorders, aging, and cancer, making it a potential target for effective therapeutic strategies. Currently, several natural products that target NAD+ metabolism have been widely reported to have significant therapeutic effects, but systematic summaries are lacking. PURPOSE To summarize the latest findings on the prevention and treatment of various diseases through the regulation of NAD+ metabolism by various natural products in vivo and in vitro models, and evaluate the toxicities of the natural products. METHODS PubMed, Web of Science, and ScienceDirect were searched using the keywords "natural products sources," "toxicology," "NAD+ clinical trials," and "NAD+," and/or paired with "natural products" and "diseases" for studies published within the last decade until January 2023. RESULTS We found that the natural products mainly include phenols (curcumin, cyclocurcumin, 4-hydroxybenzyl alcohol, salvianolic acid B, pterostilbene, EGCG), flavonoids (pinostrobin, apigenin, acacetin, tilianin, kaempferol, quercetin, isoliquiritigenin, luteolin, silybin, hydroxysafflor yellow A, scutellarin), glycosides (salidroside), quinones (emodin, embelin, β-LAPachone, shikonin), terpenoids (notoginsenoside R1, ginsenoside F2, ginsenoside Rd, ginsenoside Rb1, ginsenoside Rg3, thymoquinone, genipin), pyrazines (tetramethylpyrazine), alkaloids (evodiamine, berberine), and phenylpropanoids (ferulic acid). These natural products have antioxidant, energy-producing, anti-inflammatory, anti-apoptotic and anti-aging effects, which mainly influence the NAMPT/NAD+/SIRT, AMPK/SIRT1/PGC-1α, Nrf2/HO-1, PKCs/PARPs/NF-κB, and AMPK/Nrf2/mTOR signaling pathways, thereby regulating NAD+ metabolism to prevent and treat various diseases. These natural products have been shown to be safe, tolerable and have fewer adverse effects in various in vivo and in vitro studies and clinical trials. CONCLUSION We evaluated the toxic effects of natural products and summarized the available clinical trials on NAD+ metabolism, as well as the recent advances in the therapeutic application of natural products targeting NAD+ metabolism, with the aim to provide new insights into the treatment of multiple disorders.
Collapse
Affiliation(s)
- Chen Guo
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Qingxia Huang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Yisa Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Yao Yao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jing Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jinjin Chen
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Mingxia Wu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Zepeng Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Mingyao E
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Hongyu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Peng Ji
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Qing Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Hang Su
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
3
|
Wu YJ, Zhang SS, Yin Q, Lei M, Wang QH, Chen WG, Luo TT, Zhou P, Ji CL. α-Mangostin Inhibited M1 Polarization of Macrophages/Monocytes in Antigen-Induced Arthritis Mice by Up-Regulating Silent Information Regulator 1 and Peroxisome Proliferators-Activated Receptor γ Simultaneously. Drug Des Devel Ther 2023; 17:563-577. [PMID: 36860800 PMCID: PMC9969869 DOI: 10.2147/dddt.s397914] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Background α-Mangostin (MG) showed the potentials in alleviating experimental arthritis, inhibiting inflammatory polarization of macrophages/monocytes, and regulating peroxisome proliferators-activated receptor γ (PPAR-γ) and silent information regulator 1 (SIRT1) signals. The aim of this study was to analyze the correlations among the above-mentioned properties. Methods Antigen-induced arthritis (AIA) was established in mouse, which was treated with MG in combination with SIRT1/PPAR-γ inhibitors to clarify the role of the two signals in the anti-arthritic actions. Pathological changes were systematically investigated. Phenotypes of cells were investigated by flow cytometry. Expression and co-localization of SIRT1 and PPAR-γ proteins in joint tissues were observed by the immunofluorescence method. Finally, clinical implications from the synchronous up-regulation of SIRT1 and PPAR-γ were validated by experiments in vitro. Results SIRT1 and PPAR-γ inhibitors (nicotinamide and T0070097) reduced the therapeutic effects of MG on AIA mice, and abrogated MG-induced up-regulation of SIRT1/PPAR-γ and inhibition of M1 polarization in macrophages/monocytes. MG has a good binding affinity to PPAR-γ, and MG promoted the co-expression of SIRT1 and PPAR-γ in joints. Synchronously activating SIRT1 and PPAR-γ was revealed to be necessary by MG to repress inflammatory responses in THP-1 monocytes. Conclusion MG binds PPAR-γ and excites this signaling to initiate ligand-dependent anti-inflammatory activity. Due to certain unspecified signal transduction crosstalk mechanism, it then promoted SIRT1 expression and further limited inflammatory polarization of macrophages/monocytes in AIA mice.
Collapse
Affiliation(s)
- Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China,Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China,Vascular Diseases Research Center of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Sa-Sa Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Ming Lei
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qi-Hai Wang
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, 241000, People’s Republic of China
| | - Wen-Gang Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Ting-Ting Luo
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230000, People’s Republic of China,Correspondence: Peng Zhou; Cong-Lan Ji, Email ;
| | - Cong-Lan Ji
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, 241000, People’s Republic of China,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| |
Collapse
|
4
|
Zhang SS, Wu YJ, Pan S, Wang QH, Chen WG, Wang ZF, Xu JY, Zuo J, Yin Q. Xanthones from securidaca inappendiculata antagonizes the anti-rheumatic effect of methotrexate by inhibiting reduced folate carrier 1. Immunopharmacol Immunotoxicol 2023; 45:16-25. [PMID: 35850595 DOI: 10.1080/08923973.2022.2103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND The first-line anti-rheumatic drug methotrexate (MTX) is used in the combination. Because of the unpredictable adverse reactions, optimization of relevant regimens is necessary and meaningful. This study aimed to study the possible interaction between Securidaca inappendiculate Hassk. Derived xanthones and MTX. METHODS We established adjuvant-induced arthritis (AIA) model, which was treated with MTX and MTX + xanthone-rich fraction (XRF). The clinical efficacy was evaluated by histopathological examination, and LC-MS was used to monitor the blood concentration of MTX. Western blotting and immunohistochemistry were used to detect protein expression. In vitro, we assessed the activity of related transporters by cellular uptake assay based on HEK-293T cells. RESULTS Compared with MTX-treated rats, inflammation in the immunized rats in the MTX + XRF group was obvious, indicating that XRF antagonized the anti-rheumatic effect of MTX. Meanwhile, XRF reduced liver and kidney injuries caused by MTX in addition to MTX. Results from immunohistochemical and nappendiculat assays suggested that XRF may reduce uptake of MTX by down-regulating reduced folate carrier 1 (RFC1). CONCLUSION This study indicated that XRF could reduce the plasma concentration of MTX by inhibiting the expression of RFC1, antagonize the therapeutic effect of MTX on AIA rats, and reduce its oral bioavailability. The combination of S. inappendiculate and MTX should be further optimized to achieve the goal of increasing efficiency and reducing toxicity.
Collapse
Affiliation(s)
- Sa-Sa Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Shu Pan
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qi-Hai Wang
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, China
| | - Wen-Gang Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zhong-Fang Wang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jin-Ying Xu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
5
|
Shehata AM, Elbadawy HM, Ibrahim SRM, Mohamed GA, Elsaed WM, Alhaddad AA, Ahmed N, Abo-Haded H, El-Agamy DS. Alpha-Mangostin as a New Therapeutic Candidate for Concanavalin A-Induced Autoimmune Hepatitis: Impact on the SIRT1/Nrf2 and NF-κB Crosstalk. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11182441. [PMID: 36145841 PMCID: PMC9502360 DOI: 10.3390/plants11182441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 05/04/2023]
Abstract
Alpha-mangostin (α-MN) is a xanthone obtained from Garcinia mangostana that has diverse anti-oxidative and anti-inflammatory potentials. However, its pharmacological activity against autoimmune hepatitis (AIH) has not been investigated before. Concanavalin A (Con A) was injected into mice to induce AIH and two doses of α-MN were tested for their protective effects against Con A-induced AIH. The results demonstrated the potent hepatoprotective activity of α-MN evidenced by a remarkable decrease of serum indices of the hepatic injury and amendment of the histological lesions. α-MN significantly attenuated the level and immuno-expression of myeloperoxidase (MPO) indicating a decrease in the neutrophil infiltration into the liver. Additionally, the recruitment of the CD4+ T cell was suppressed in the α-MN pre-treated animals. α-MN showed a potent ability to repress the Con A-induced oxidative stress evident by the reduced levels of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and protein carbonyl (PC), as well as the enhanced levels of antioxidants as the reduced glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (TAC). The ELISA, RT-PCR, and IHC analyses revealed that α-MN enhanced the sirtuin1/nuclear factor erythroid 2 related factor-2 (SIRT1/Nrf2) signaling and its downstream cascade genes concurrently with the inhibition of the nuclear factor kappa B (NF-κB) and the inflammatory cytokines (tumor necrosis factor-alpha and interleukine-6) signaling. Taken together, these results inferred that the hepatoprotective activity of α-MN could prevent Con A-induced AIH through the modulation of the SIRT1/Nrf2/NF-κB signaling. Hence, α-MN may be considered as a promising candidate for AIH therapy.
Collapse
Affiliation(s)
- Ahmed M Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hossein M Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Aisha A Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Nishat Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Hany Abo-Haded
- College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
- Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Chen WG, Zhang SS, Pan S, Wang ZF, Xu JY, Sheng XH, Yin Q, Wu YJ. α-Mangostin Treats Early-Stage Adjuvant-Induced Arthritis of Rat by Regulating the CAP-SIRT1 Pathway in Macrophages. Drug Des Devel Ther 2022; 16:509-520. [PMID: 35250263 PMCID: PMC8893152 DOI: 10.2147/dddt.s348836] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Background Studies have found that α-mangostin (MG) can relieve experimental arthritis by activating cholinergic anti-inflammatory pathway (CAP). It affects the polarization of macrophages and the balance of related immune cell subpopulations, but the specific mechanism is still unclear. It has been found that silent information regulator 1 (SIRT1) is closely related to macrophage activity. The purpose of this study is to explore the mechanism of MG intervening in macrophage polarization during treatment of early adjuvant-induced (AIA) rats through the CAP-SIRT1 pathway. Methods We investigated the polarization of M1 macrophages and the differentiation of Th1 in AIA rats by flow cytometry. Activity of acetylcholinesterase (AChE) and the level of nicotinic adenine dinucleotide (NAD+) in serum were also detected, and immunohistochemical was used to detect the levels of α7 nicotinic cholinergic receptor (α7nAChR) and SIRT1. Then in macrophages, the molecular mechanism of MG regulating the abnormal activation of macrophages in rats with early AIA through the CAP-SIRT1 pathway was studied. Results MG can significantly inhibit the polarization of M1 macrophages and the differentiation of Th1 in AIA rats in the acute phase of inflammation. MG can significantly inhibit the activity of AChE and increase the level of NAD+, thereby further up-regulated the expression levels of α7nAChR and SIRT1. Meanwhile, MG inhibited nuclear factor-κB (NF-κB)-mediated inflammation by activating the CAP-SIRT1 pathway in macrophages. Conclusion In summary, the stimulation of MG induced CAP activation, which up-regulated SIRT1 signal, and thereby inhibited M1 polarization through the NF-κB pathway, and improved the pathological immune environment of early-stage AIA rats.
Collapse
Affiliation(s)
- Wen-Gang Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Sa-Sa Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China.,Graduate School, Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China.,Xin'An Medicine Research Center, Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Shu Pan
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China.,Graduate School, Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China.,Xin'An Medicine Research Center, Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Zhong-Fang Wang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Jin-Ying Xu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Xue-He Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China.,Graduate School, Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China.,Xin'An Medicine Research Center, Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| |
Collapse
|
7
|
Zhao C, Zhang H, Zhou J, Lu Q, Zhang Y, Yu X, Wang S, Liu R, Pu Y, Yin L. Metabolomics-based molecular signatures reveal the toxic effect of co-exposure to nitrosamines in drinking water. ENVIRONMENTAL RESEARCH 2022; 204:111997. [PMID: 34506781 DOI: 10.1016/j.envres.2021.111997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Nitrosamines, a group of emerging nitrogenous pollutants, are ubiquitously found in the drinking water system. However, less is known about how systemic biological responses resist or tolerate nitrosamines, especially long-term co-exposure at low concentrations. In this study, untargeted metabolomics was used to investigate the metabolic perturbations in human esophageal epithelial Het-1A cells induced by a mixture of nine common nitrosamines in drinking water at environmentally relevant, human-internal-exposure, and genotoxic concentrations. Generally, the disrupted metabolic spectrum became complicated with nitrosamines dose increasing. Notably, two inflammation-associated pathways, namely, cysteine (Cys) and methionine (MET) metabolism, and nicotinate and nicotinamide metabolism, changed significantly under the action of nitrosamines, even at the environmentally relevant level. Furthermore, targeted metabolomics and molecular biology indicators in cells were identified in mice synchronously. For one thing, the up-regulated Cys and MET metabolism provided methyl donors for histone methylation in the context of pro-inflammatory response. For another, the down-regulated NAD+/NADH ratio inhibited the deacetylation of NF-кB p65 and eventually activated the NF-кB signaling pathway. Taken collectively, the metabolomics molecular signatures were important indicative markers for nitrosamines-induced inflammation. The potential crosstalk between the inflammatory cascade and metabolic regulation also requires further studies. These findings suggest that more attention should be paid to long-term co-exposure at low concentrations in the control of nitrosamines pollution in drinking water. Additionally, this study also highlights a good prospect of the combined metabolomic-molecular biology approach in environmental toxicology.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jingjing Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qiang Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xiaojin Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
8
|
Lei M, Tao MQ, Wu YJ, Xu L, Yang Z, Li Y, Olatunji OJ, Wang XW, Zuo J. Metabolic Enzyme Triosephosphate Isomerase 1 and Nicotinamide Phosphoribosyltransferase, Two Independent Inflammatory Indicators in Rheumatoid Arthritis: Evidences From Collagen-Induced Arthritis and Clinical Samples. Front Immunol 2022; 12:795626. [PMID: 35111160 PMCID: PMC8801790 DOI: 10.3389/fimmu.2021.795626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/27/2021] [Indexed: 01/13/2023] Open
Abstract
Metabolic intervention is a novel anti-rheumatic approach. The glycolytic regulator NAMPT has been identified as a therapeutic target of rheumatoid arthritis (RA), while other metabolic regulators coordinating NAMPT to perpetuate inflammation are yet to be investigated. We continuously monitored and validated expression changes of Nampt and inflammatory indicators in peripheral while blood cells from rats with collagen-induced arthritis (CIA). Gene transcriptional profiles of Nampt+ and Nampt++ samples from identical CIA rats were compared by RNA-sequencing. Observed gene expression changes were validated in another batch of CIA rats, and typical metabolic regulators with persistent changes during inflammatory courses were further investigated in human subjects. According to expression differences of identified genes, RA patients were assigned into different subsets. Clinical manifestation and cytokine profiles among them were compared afterwards. Nampt overexpression typically occurred in CIA rats during early stages, when iNos and Il-1β started to be up-regulated. Among differentially expressed genes between Nampt+ and Nampt++ CIA rat samples, changes of Tpi1, the only glycolytic enzyme identified were sustained in the aftermath of acute inflammation. Similar to NAMPT, TPI1 expression in RA patients was higher than general population, which was synchronized with increase in RFn as well as inflammatory monocytes-related cytokines like Eotaxin. Meanwhile, RANTES levels were relatively low when NAMPT and TPI1 were overexpressed. Reciprocal interactions between TPI1 and HIF-1α were observed. HIF-1α promoted TPI1 expression, while TPI1 co-localized with HIF-1α in nucleus of inflammatory monocytes. In short, although NAMPT and TPI1 dominate different stages of CIA, they similarly provoke monocyte-mediated inflammation.
Collapse
Affiliation(s)
- Ming Lei
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Meng-Qing Tao
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Yi-Jin Wu
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Liang Xu
- Department of Rheumatology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Zhe Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Yan Li
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | | | - Xiao-Wan Wang
- Department of Rheumatology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Jian Zuo
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
9
|
Jiang TT, Ji CF, Cheng XP, Gu SF, Wang R, Li Y, Zuo J, Han J. α-Mangostin Alleviated HIF-1α-Mediated Angiogenesis in Rats With Adjuvant-Induced Arthritis by Suppressing Aerobic Glycolysis. Front Pharmacol 2021; 12:785586. [PMID: 34987400 PMCID: PMC8721667 DOI: 10.3389/fphar.2021.785586] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
A previously validated anti-rheumatic compound α-mangostin (MAN) shows significant metabolism regulatory effects. The current study aimed to clarify whether this property contributed to its inhibition on synovial angiogenesis. Male wistar rats with adjuvant-induced arthritis (AIA) were orally treated by MAN for 32 days. Afterwards, biochemical parameters and cytokines in plasma were determined by corresponding kits, and glycometabolism-related metabolites were further accurately quantified by LC-MS method. Anti-angiogenic effects of MAN were preliminarily assessed by joints based-immunohistochemical examination and matrigel plug assay. Obtained results were then validated by experiments in vitro. AIA-caused increase in circulating transforming growth factor beta, interleukin 6, hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in blood and local HIF-1α/VEGF expression in joints was abrogated by MAN treatment, and pannus formation within matrigel plugs implanted in AIA rats was inhibited too. Scratch and transwell assays revealed the inhibitory effects of MAN on human umbilical vein endothelial cells (HUVECs) migration. Furthermore, MAN inhibited tubule formation capability of HUVECs and growth potential of rat arterial ring-derived endothelial cells in vitro. Meanwhile, MAN eased oxidative stress, and altered glucose metabolism in vivo. Glycolysis-related metabolites including glucose 6-phosphate, fructose 6-phosphate, 3-phosphoglyceric acid and phosphoenolpyruvic acid in AIA rats were decreased by MAN, while the impaired pyruvate-synthesizing capability of lactate dehydrogenase (LDH) was recovered. Consistently, MAN restored lipopolysaccharide-elicited changes on levels of glucose and LDH in HUVECs culture system, and exerted similar effects with LDH inhibitor stiripentol on glycometabolism and VEGF production as well as tubule formation capability of HUVECs. These evidences show that MAN treatment inhibited aerobic glycolysis in AIA rats, which consequently eased inflammation-related hypoxia, and hampered pathological neovascularization.
Collapse
Affiliation(s)
- Tian-Tian Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, China
| | - Chao-Fan Ji
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Xiu-Ping Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Shao-Fei Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Rui Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Yan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, China
| |
Collapse
|
10
|
Hu YH, Han J, Wang L, Shi C, Li Y, Olatunji OJ, Wang X, Zuo J. α-Mangostin Alleviated Inflammation in Rats With Adjuvant-Induced Arthritis by Disrupting Adipocytes-Mediated Metabolism-Immune Feedback. Front Pharmacol 2021; 12:692806. [PMID: 34305602 PMCID: PMC8293671 DOI: 10.3389/fphar.2021.692806] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
A previously identified anti-rheumatic compound α-mangostin (MAN) possesses notable metabolism regulatory properties. In this study, we investigated the immune implication of MAN-altered fat metabolism on adjuvant-induced arthritis (AIA) in rats. Seven days after AIA induction, the rats received oral treatment of MAN at 50 mg/kg/day for 30 days. Metabolic indicators and basic clinical parameters were evaluated using samples collected on day 20 and 38 since immunization. Expression of nicotinamide phosphoribosyltransferase (NAMPT), sirtuin 1 (SIRT1), peroxisome proliferator activated receptor gamma (PPAR-γ), stearoyl-coa desaturase 1 (SCD-1), toll like receptor 4 (TLR4), prostaglandin-endoperoxide synthase 2 (COX-2), (p)-JNK, (p)-p65 and IL-1β were investigated by either RT-qPCR or immunobloting methods. In in vitro experiments, we treated (pre)-adipocytes with monocytes/macrophages and MAN, and investigated the changes of macrophages brought by pre-adipocytes co-culture. Generally, MAN restored the impaired fat anabolism in AIA rats, indicated by increased fat reservoir, leptin and adiponectin secretion, and PPAR-γ and SCD-1 expression. Meanwhile, it decreased circulating IL-1β and IL-6 levels, restored serological lipid profile changes, and relieved oxidative stresses, demonstrating potent therapeutic effects on AIA. AIA rats-derived monocytes inhibited mRNA PPAR-γ and SCD-1 expression in pre-adipocytes. Contrarily, MAN facilitated adipocyte differentiation in vitro, and increased free fatty acids production. It also significantly increased PPAR-γ and SCD-1 expression, which can be abrogated by PPAR-γ inhibitor T0070907. Similarly, lipopolysaccharide-primed macrophages inhibited PPAR-γ expression in the co-cultured pre-adipocytes, which was reversed by MAN. In the same co-culture system, lipopolysaccharide-induced inflammation was amplified by the co-existence of pre-adipocytes. More secretion of IL-1β and IL-6 and higher levels expression of COX-2, p-JNK, p-p65 and TLR4 were observed in lipopolysaccharide-treated macrophages when co-cultured by pre-adipocytes. The intensified inflammatory situation was eased by MAN. The treatment with pre-adipocytes culture medium achieved similar effects. Medium from lipopolysaccharide-treated adipocytes promoted IL-1β, IL-6 and MCP-1 production in separately cultured macrophages, and COX-2, p-JNK, p-p65 and TLR4 expression were increased at the meantime. MAN treatment on pre-adipocytes impaired these changes. It suggests that fat anabolism in AIA rats was deficient due to increased energy expenditure caused by inflammatory conditions. MAN restored fat metabolism homeostasis by up-regulating PPAR-γ, and reshaped secretion profile of adipocytes.
Collapse
Affiliation(s)
- Ying-Hao Hu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Jun Han
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China.,Drug Research and Development Center, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Lin Wang
- Department of Pharmacy, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Chao Shi
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Yan Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | | | - Xiu Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
11
|
Yang Z, Yin Q, Olatunji OJ, Li Y, Pan S, Wang DD, Zuo J. Activation of cholinergic anti-inflammatory pathway involved in therapeutic actions of α-mangostin on lipopolysaccharide-induced acute lung injury in rats. Int J Immunopathol Pharmacol 2021; 34:2058738420954941. [PMID: 32886564 PMCID: PMC7485160 DOI: 10.1177/2058738420954941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Introduction: Alpha-mangostin (MAN) possesses a wide variety of pharmacological effects. In
this study, we investigated its effect on cholinergic anti-inflammatory
pathway (CAP), and tested if CAP regulation was involved in the therapeutic
action on acute lung injury (ALI). Methods: Male Sprague Dawley rats were pre-treated with MAN (40 mg/kg) for 3 days and
ALI was induced with an intraperitoneal injection of lipopolysaccharide
(LPS). Certain rats received monolateral vagotomy or sham surgery. The
effects on inflammatory reactions and relevant pathways in ALI rats or LPS
pre-treated RAW 264.7 cells were investigated by histological,
immunohistochemical, immunoblotting, RT-qPCR, and immunofluorescence assays,
while levels of proinflammatory cytokines, acetylcholine (Ach) and the
enzymatic activity of acetylcholinesterase (AchE) were determined by
corresponding quantitative kits. Results: Oral administration of MAN reduced the severity of ALI, while vagotomy
surgery antagonized this effect. MAN restored the decline in α7 nicotinic
acetylcholine receptor (α7nAchR) in the lungs of ALI rats, and promoted the
expression of α7nAchR and choline acetyltransferase (CHAT) in RAW 264.7
cells. Although AchE expression was barely affected by MAN at 5 μg/ml, its
catalytic activity was reduced by almost 95%. Extracellular rather than
intracellular Ach was notably raised shortly after MAN treatment.
Furthermore, MAN at 5 μg/ml effectively inhibited LPS-induced increase in
phosphorylation and nucleus translocation of p65 subunit, and secretion of
TNF-α and IL-1β, which was then offset by methyllycaconitine citrate
hydrate. Conclusion: MAN activated CAP by increasing peripheral Ach and up-regulating α7nAchR
expression, which eventually led to NF-κB inhibition and remission of acute
inflammations.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Qin Yin
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | | | - Yan Li
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Shu Pan
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Dan-Dan Wang
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
12
|
Ji CL, Dai S, Liu H, Dong JY, Liu CS, Zuo J. Polyphenols from Securidaca inappendiculata alleviated acute lung injury in rats by inhibiting oxidative stress sensitive pathways. CHINESE HERBAL MEDICINES 2021; 13:381-388. [PMID: 36118931 PMCID: PMC9476762 DOI: 10.1016/j.chmed.2020.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Securidaca inappendiculata is a medicinal plant frequently used in the treatment of inflammatory diseases in south China. In this study, we aimed to explore its bioactive constituent which contributes to the anti-inflammatory activity. Methods Polyphenol-enriched and polyphenol-deprived fractions (PRF and PDF, respectively) were separated from the ethanolic extract by HPD300 macroporous resin-based method, and their anti-inflammatory activities were investigated on a lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in rats. The possible mechanism of action in alleviating acute inflammation was studied using RAW264.7 cells. Results Both Folin-Ciocalteu and 1H nuclear magnetic resonance (NMR) analyses showed that polyphenolic content in PRF was approximately 10 times higher than that of PDF, and this observation reflected in their antioxidative capacities. PRF but not PDF significantly decreased the level of malondialdehyde, suppressed the expression of nicotinamide phosphoribosyltransferase (NAMPT) protein, and improved the severity of ALI in rats. PRF at 10 μg/mL effectively downregulated the expression of proteins NAMPT, HMGB1, TLR4, and p-p65, and scavenged the intracellular reactive oxygen species (ROS) in LPS-primed RAW264.7 cells. N-acetyl-L-cysteine exhibited similar inhibitory effects on ROS production and NAMPT-mediated TLR4/NF-κB activation in vitro, whereas nicotinamide mononucleotide antagonized all the changes induced by PRF during cotreatments. Conclusion As an antioxidant, PRF exhibited potent anti-inflammatory activity under both in vivo and in vitro conditions by downregulating NAMPT and TLR4/NF-κB. Accordingly, polyphenols were identified as important bioactive constituents in S. inappendiculata targeting oxidative stress-sensitive pro-inflammatory pathways.
Collapse
|
13
|
Wang QH, Li Y, Dou DY, Wang R, Jiang TT, Wang L, Li MQ, Joshua Olatunji O, Zuo J. Nicotinamide mononucleotide-elicited NAMPT signaling activation aggravated adjuvant-induced arthritis in rats by affecting peripheral immune cells differentiation. Int Immunopharmacol 2021; 98:107856. [PMID: 34130151 DOI: 10.1016/j.intimp.2021.107856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Supplement of nicotinamide mononucleotide (NMN), the direct precursor of nicotinamide adenine dinucleotide (NAD+) has gained prominence due to the significant anti-aging potentials of nicotinamide phosphoribosyltransferas (NAMPT)/NAD+ signaling. Because over-expression of NAMPT is deeply implicated in inflammatory arthritis, we investigated the effects of NMN supplement on rats with adjuvant-induced arthritis (AIA). Tested rats were given oral treatment of NMN at 200 mg/kg/day for 25 days. Arthritis score and body weight were periodically recorded. Clinical outcomes were evaluated based on arthritic manifestations, ELISA analysis and histological examination. T cells subsets were analyzed by flow cytometry. Expressions of protein and mRNA were assessed by immunoblotting and PCR methods, respectively. Levels of CD172a, CD43, and NAMPT in peripheral blood mononuclear cells (PBMCs) were investigated by immunofluorescence approach. Obtained results were further validated by experiments in vitro. Generally, NMN exacerbated AIA severity in rats. It deteriorated MMP3-controlled tissues damages, and altered immune profile by increasing Th17/Treg cells ratio. The up-regulation of NAMPT in PBMCs from NMN-treated rats was confirmed by both immunofluorescence and PCR experiments, which was synchronized with significant increase in iNOS, MCP-1, IL-1β expression. NMN-primed AIA PBMCs were potent in up-regulating MCP-1, IL-1β, MMP3 and p-JNK expression in synovioblast. NMN stimulus barely affected Th17 cells count in in vitro cultured splenocytes, but it greatly potentiated the capability of AIA monocytes in inducing IL-17α secretion and Th17 cells differentiation in the co-cultured splenocytes. It suggested that long-term NMN supplement could exacerbate inflammatory arthritis by reshaping the immune milieu through the up-regulation of NAMPT.
Collapse
Affiliation(s)
- Qi-Hai Wang
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu 241000, Anhui, China
| | - Yan Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China; Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241000, China
| | - De-Yu Dou
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241000, China
| | - Rui Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | - Tian-Tian Jiang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | - Lin Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | - Ming-Qiang Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | | | - Jian Zuo
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China; Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241000, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241000, China.
| |
Collapse
|
14
|
Wang DD, Li Y, Wu YJ, Wu YL, Han J, Olatunji OJ, Wang L, Zuo J. Xanthones from Securidaca inappendiculata antagonized the antirheumatic effects of methotrexate in vivo by promoting its secretion into urine. Expert Opin Drug Metab Toxicol 2020; 17:241-250. [PMID: 33107357 DOI: 10.1080/17425255.2021.1843634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Dan-Dan Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Yan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yi-Lai Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Jun Han
- Drug Research and Development Center, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | | | - Li Wang
- Department of Pharmacy, Wuhu Medicine and Health School, Wuhu, Anhui, China
| | - Jian Zuo
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
15
|
Yin Q, Wu YJ, Pan S, Wang DD, Tao MQ, Pei WY, Zuo J. Activation of Cholinergic Anti-Inflammatory Pathway in Peripheral Immune Cells Involved in Therapeutic Actions of α-Mangostin on Collagen-Induced Arthritis in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1983-1993. [PMID: 32546965 PMCID: PMC7250306 DOI: 10.2147/dddt.s249865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/25/2020] [Indexed: 01/10/2023]
Abstract
Background Studies have shown that α-mangostin (MG) could exert anti-rheumatic effects in vivo by restoring immunity homeostasis, and have indicated that activation of the choline anti-inflammatory pathway (CAP) may contribute to this immunomodulatory property. The current study was designed to further investigate the effects of MG on the CAP in peripheral immune cells and clarify its relevance to the potential anti-rheumatic actions. Methods The catalytic activity of acetylcholinesterase (AChE) and expression of α7-nicotinic cholinergic receptor (α7nAChR) in peripheral blood mononuclear cells (PBMCs) from rats with collagen-induced arthritis (CIA) or human volunteers were evaluated after MG treatment. Consequent influences on the immune environment were assessed by flow cytometry and ELISA analyses. Indirect effects on joints resulting from these immune changes were studied in a co-culture system comprised of fibroblast-like synoviocytes (FLSs) and PBMCs. Results MG promoted α7nAChR expression in PBMCs both in vivo and in vitro, and inhibited the enzymatic activity of AChE simultaneously. Activation of the CAP was accompanied by a significant decrease in Th17 cells (CD4+IL-17A+), while no obvious changes concerning the distribution of other T-cell subsets were noticed upon MG treatment. Meanwhile, MG decreased the secretion of TNF-α and IL-1β under inflammatory conditions. PBMCs from MG-treated CIA rats lost the potential to stimulate NF-κB activation and pro-inflammatory cytokine production of FLSs in the co-culture system. Conclusion Overall, the evidence suggested that MG can improve the peripheral immune milieu in CIA rats by suppressing Th17-cell differentiation through CAP activation, and achieve remission of inflammation mediated by FLSs.
Collapse
Affiliation(s)
- Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu 241000, People's Republic of China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu 241000, People's Republic of China
| | - Shu Pan
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu 241000, People's Republic of China
| | - Dan-Dan Wang
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu 241000, People's Republic of China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241000, People's Republic of China
| | - Meng-Qing Tao
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu 241000, People's Republic of China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241000, People's Republic of China
| | - Wei-Ya Pei
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu 241000, People's Republic of China
| | - Jian Zuo
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu 241000, People's Republic of China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241000, People's Republic of China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241000, People's Republic of China
| |
Collapse
|
16
|
Zuo J, Ji C, Olatunji OJ, Yang Z, Xu H, Han J, Dong J. Bioactive fractions from
Securidaca inappendiculata
alleviated collagen‐induced arthritis in rats by regulating metabolism‐related signaling. Kaohsiung J Med Sci 2020; 36:523-534. [PMID: 32187848 DOI: 10.1002/kjm2.12205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jian Zuo
- Yijishan HospitalWannan Medical College Wuhu China
- Key Laboratory of Non‐coding RNA Transformation Research of Anhui Higher Education InstitutionWannan Medical College Wuhu China
| | - Cong‐Lan Ji
- School of PharmacyAnhui College of Traditional Chinese Medicine Wuhu China
| | | | - Zhe Yang
- Yijishan HospitalWannan Medical College Wuhu China
| | - Hui‐Fang Xu
- Yijishan HospitalWannan Medical College Wuhu China
| | - Jun Han
- School of PharmacyWannan Medical College Wuhu China
| | - Jiyang Dong
- Department of Electronic ScienceXiamen University Xiamen China
| |
Collapse
|
17
|
Li XZ, Zhang SN. Herbal compounds for rheumatoid arthritis: Literatures review and cheminformatics prediction. Phytother Res 2019; 34:51-66. [PMID: 31515874 DOI: 10.1002/ptr.6509] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/31/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic disease characterized by autoimmunity, joint inflammation, and cartilage destruction, which affects 0.5-1% of the population. Many compounds from herbal medicines show the potentials to treat RA. On this basis, the compounds with good pharmacokinetic behaviors and drug-likeness properties will be further studied and developed. Therefore, the herbal compounds with anti-RA activities were reviewed in this paper, and the cheminformatics tools were used to predict their drug-likeness properties and pharmacokinetic parameters. A total of 90 herbal compounds were analyzed, which were reported to be effective on RA models through anti-inflammation, chondroprotection, immunoregulation, antiangiogenesis, and antioxidation. Most of the herbal compounds have good drug-likeness properties. Most of the compounds can be an alternative and valuable source for anti-RA drug discovery.
Collapse
Affiliation(s)
- Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, PR China
| | - Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, PR China
| |
Collapse
|
18
|
Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, Jorge-Mora A, Gualillo O, Gómez-Reino JJ, Gómez Bahamonde R. Visfatin as a therapeutic target for rheumatoid arthritis. Expert Opin Ther Targets 2019; 23:607-618. [DOI: 10.1080/14728222.2019.1617274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- Research laboratory 9 (NEIRID LAB), Institute of Medical Research, SERGAS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan J. Gómez-Reino
- Rheumatology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Rodolfo Gómez Bahamonde
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|