1
|
Yue L, Li N, Ye X, Xiu Y, Wang B. Polymethoxylated flavones for modulating signaling pathways in inflammation. Int Immunopharmacol 2024; 143:113522. [PMID: 39515044 DOI: 10.1016/j.intimp.2024.113522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Aberrant signaling pathways play a crucial role in the pathogenesis of various diseases, including inflammatory disorders and autoimmune conditions. Polymethoxylated flavones (PMFs), a class of natural compounds found in citrus fruits, have obtained increasing attention for their potential therapeutic effects in modulating inflammatory responses. Although significant progress has been made in the pharmacological research of PMFs, the mechanisms by which they modulate signaling pathways to treat inflammation have not been systematically reviewed or analyzed. To address this gap in the literature, this review explores the mechanisms underlying the anti-inflammatory properties of PMFs and their prospects as drugs for treating inflammatory diseases. We discuss the molecular targets and signaling pathways through which PMFs exert their anti-inflammatory effects, including NF-κB pathway, PI3K/Akt pathway, MAPK pathway, Nrf2 pathway, and regulation of inflammatory cytokine production. Furthermore, we highlight preclinical studies evaluating the efficacy of PMFs in various inflammatory conditions, such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and osteoarthritis (OA). Despite promising findings, challenges remain in optimizing the pharmacokinetic properties and therapeutic efficacy of PMFs for clinical use. Future research directions include elucidating the structure-activity relationships of PMFs, developing novel delivery strategies, and conducting large-scale clinical trials to validate their efficacy and safety profiles. Overall, PMFs represent a promising class of natural compounds with potential applications as anti-inflammatory drugs, offering novel therapeutic opportunities for managing inflammatory diseases.
Collapse
Affiliation(s)
- Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Li
- Shenzhen Research Institute, the Hong Kong University of Science and Technology, Shenzhen 518054, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Salem MB, El-Lakkany NM, Seif el-Din SH, Hammam OA, Samir S. Diosmin alleviates ulcerative colitis in mice by increasing Akkermansia muciniphila abundance, improving intestinal barrier function, and modulating the NF-κB and Nrf2 pathways. Heliyon 2024; 10:e27527. [PMID: 38500992 PMCID: PMC10945203 DOI: 10.1016/j.heliyon.2024.e27527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Ulcerative colitis is a common type of inflammatory bowel disease that affects millions of individuals around the world. Traditional UC treatment has focused on suppressing immune responses rather than treating the underlying causes of UC, which include oxidative stress, inflammation, and microbiota dysbiosis. Diosmin (DIO), a naturally occurring flavonoid, possesses antioxidant and anti-inflammatory properties. This study aimed to assess the efficacy of DIO in treating dextran-sulfate sodium (DSS)-induced colitis, and to investigate some of its underlying mechanisms, with an emphasis on Akkermansia muciniphila abundance, inflammatory markers, and intestinal barrier function. C57BL/6 mice were given 4% (w/v) DSS to induce colitis. DSS-induced mice were administered DIO (100 and 200 mg/kg) or sulfasalazine orally for 7 days. Every day, the disease activity index (DAI) was determined by recording body weight, diarrhea, and bloody stool. Changes in fecal A. muciniphila abundance, colonic MUC1 and MUC2 expression, as well as oxidative stress and inflammatory markers were all assessed. Histopathological changes, colonic PIK3PR3 and ZO-1 levels, and immunohistochemical examinations of occludin and claudin-1, were investigated. DIO administration resulted in a dose-dependent decrease in DAI, as well as increase in A. muciniphila abundance and MUC2 expression while decreasing MUC1 expression. DIO also dramatically reduced colonic oxidative stress and inflammation by regulating the NF-κB and Nrf2 cascades, restored intestinal barrier integrity by inhibiting PIK3R3 and inducing ZO-1, and improved occludin/claudin-1 gene expression and immunostaining. This study provides the first evidence that DIO preserves intestinal barrier integrity and increases A. muciniphila abundance in DSS-induced colitis. However, more research is required to explore the impact of DIO on the overall composition and diversity of the gut microbiota. Likewise, it will be important to fully understand the molecular mechanisms by which A. muciniphila maintains intestinal barrier function and its potential use as an adjuvant in the treatment of UC.
Collapse
Affiliation(s)
- Maha Badr Salem
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Naglaa Mohamed El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Sayed Hassan Seif el-Din
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Olfat Ali Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| |
Collapse
|
3
|
Yoo D, Horacek M, Chae MK, Kim JY, Bu P, Yoon JS. The Effect of Rho Kinase Inhibitors on In Vitro Human Orbital Preadipocytes. Ophthalmic Plast Reconstr Surg 2024; 40:181-186. [PMID: 37995134 DOI: 10.1097/iop.0000000000002523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
PURPOSE To identify the effects of Rho Kinase (ROCK) inhibitor medications on human orbital adipogenesis, fibroblast proliferation, and fibrosis. METHODS Orbital adipose tissue was obtained from patients with Graves' ophthalmopathy (GO) as well as controls (non-GO or normal) after informed consent was done. These tissue samples were cultured and adipogenesis was initiated. Levels of Rho Kinase as well as cellular mediators of orbital inflammation and fibrosis. The same cultures and measurements were then repeated with the use of a ROCK inhibitor (KD025-ROCK2) to assess for changes in adipogenesis as well as markers associated with inflammation and fibrosis. RESULTS Rho Kinase levels in GO tissue were more highly expressed than in controls. These levels were suppressed with the use of the ROCK inhibitor KD025. There was a dose-dependent reduction in differentiation of orbital adipocytes with the use of KD025. KD025 reduced the levels of fibrosis-related gene expression. Finally, there was a significant reduction of transforming growth factor beta mediated phosphorylation signaling pathways in the KD025-treated GO tissue. CONCLUSION This study shows that the ROCK inhibitor, KD025, helps to reduce the expression of ROCK in GO tissue along with reducing orbital adipocyte differentiation as well as cell mediators involved in fibrosis that occurs in GO.
Collapse
Affiliation(s)
- David Yoo
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois, U.S.A
| | - Meredith Horacek
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois, U.S.A
| | - Min Kyung Chae
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Young Kim
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Ping Bu
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois, U.S.A
| | - Jin Sook Yoon
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Chen S, Tang S, Zhang C, Li Y. Cynarin ameliorates dextran sulfate sodium-induced acute colitis in mice through the STAT3/NF-κB pathway. Immunopharmacol Immunotoxicol 2024; 46:107-116. [PMID: 37937889 DOI: 10.1080/08923973.2023.2281281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE Cynarin is a derivative of hydroxycinnamic acid presented in various medicinal plants, such as Cynara scolymus L. and Onopordum illyricum L. To date, the antioxidant and antihypertensive activities of cynarin have been reported. However, whether cynarin has a therapeutic impact on ulcerative colitis (UC) is unclear. Therefore, the aim of this study was to explore the potential effect of cynarin on dextran sulfate sodium (DSS)-induced acute colitis in vivo and on lipopolysaccharide (LPS)/interferon-γ (IFN-γ)-induced RAW264.7 and J774A.1 cellular inflammation model in vitro. METHODS AND RESULTS In this study, we investigated that cynarin alleviated clinical symptoms in animal models, including disease activity index (DAI) and histological damage. Furthermore, cynarin can attenuate colon inflammation through decreasing the proportion of neutrophils in peripheral blood, reducing the infiltration of neutrophils, and macrophages in colon tissue, inhibiting the release of pro-inflammatory cytokines and suppressing the expression of STAT3 and p65. In cellular inflammation models, cynarin inhibited the expression of M1 macrophage markers, such as TNF-α, IL-1β, and iNOS. Besides, cynarin suppressed the expression of STAT3 and p65 as well as the phosphorylation of STAT3, p65. Cynarin inhibited the polarization of RAW264.7 and J774A.1 cells toward M1 and alleviated LPS/IFN-γ-induced cellular inflammation. CONCLUSION Considering these results, we conclude that cynarin mitigates experimental UC partially through inhibiting the STAT3/NF-кB signaling pathways and macrophage polarization toward M1. Accordingly, cynarin might be a potential and effective therapy for UC.
Collapse
Affiliation(s)
- Shumin Chen
- Department of Basic Medicine, Zhangzhou Health Vocational College/Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou, PR China
| | - Shaoshuai Tang
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College of Jimei University, Xiamen, PR China
| | - Chunbin Zhang
- Department of Medical Technology, Zhangzhou Health Vocational College/Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou, PR China
| | - Yuanyue Li
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College of Jimei University, Xiamen, PR China
| |
Collapse
|
5
|
Chen H, Zheng Q, Lv Y, Yang Z, Fu Q. CUL4A-mediated ZEB1/microRNA-340-5p/HMGB1 axis promotes the development of osteoporosis. J Biochem Mol Toxicol 2023; 37:e23373. [PMID: 37253097 DOI: 10.1002/jbt.23373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/17/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Understanding the molecular mechanisms underlying osteoclast differentiation provides insights into bone loss and even osteoporosis. The specific mechanistic actions of cullin 4A (CUL4A) in osteoclast differentiation and resultant osteoporosis is poorly explored. We developed a mouse model of osteoporosis using bilateral ovariectomy (OVX) and examined CUL4A expression. It was noted that CUL4A expression was increased in the bone marrow of OVX mice. Overexpression of CUL4A promoted osteoclast differentiation, and knockdown of CUL4A alleviated osteoporosis symptoms of OVX mice. Bioinformatic analyses were applied to identify the downstream target genes of microRNA-340-5p (miR-340-5p), followed by interaction analysis. The bone marrow macrophages (BMMs) were isolated from femur of OVX mice, which were transfected with different plasmids to alter the expression of CUL4A, Zinc finer E-box binding homeobox 1 (ZEB1), miR-340-5p, and Toll-like receptor 4 (TLR4). ChIP assay was performed to detect enrichment of ZEB1 promoter by H3K4me3 antibody in BMMs. ZEB1 was overexpressed in the bone marrow of OVX mice. Overexpression of CUL4A mediated H3K4me3 methylation to increase ZEB1 expression, thus promoting osteoclast differentiation. Meanwhile, ZEB1 could inhibit miR-340-5p expression and upregulate HMGB1 to induce osteoclast differentiation. Overexpressed ZEB1 activated the TLR4 pathway by regulating the miR-340-5p/HMGB1 axis to induce osteoclast differentiation, thus promoting the development of osteoporosis. Overall, E3 ubiquitin ligase CUL4A can upregulate ZEB1 to repress miR-340-5p expression, leading to HMGB1 upregulation and the TLR4 pathway activation, which promotes osteoclast differentiation and the development of osteoporosis.
Collapse
Affiliation(s)
- Hongliang Chen
- Department of Joint Surgery, Shenyang Sujiatun District Central Hospital, Shenyang, China
| | - Qiang Zheng
- Department of Joint Surgery, Shenyang Sujiatun District Central Hospital, Shenyang, China
| | - You Lv
- Department of Joint Surgery, Shenyang Sujiatun District Central Hospital, Shenyang, China
| | - Zhongfeng Yang
- Department of Joint Surgery, Shenyang Sujiatun District Central Hospital, Shenyang, China
| | - Qin Fu
- Department of Joint Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Tang S, Zhong W, Li T, Li Y, Song G. Isochlorogenic acid A alleviates dextran sulfate sodium-induced ulcerative colitis in mice through STAT3/NF-кB pathway. Int Immunopharmacol 2023; 118:109989. [PMID: 36958213 DOI: 10.1016/j.intimp.2023.109989] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Isochlorogenic acid A (ICGA-A) is a dicaffeoylquinic acid widely found in various medicinal plants or vegetables, such as Lonicerae japonicae Flos and chicory, and multiple properties of ICGA-A have been reported. However, the therapeutic effect of ICGA-A on colitis is not clear, and thus were investigated in our present study, as well as the underlying mechanisms. Here we found that ICGA-A alleviated clinical symptoms of dextran sodium sulfate (DSS) induced colitis model mice, including disease activity index (DAI) and histological damage. In addition, DSS-induced inflammation was significantly attenuated in mice given ICGA-A supplementation. ICGA-A reduced the fraction of neutrophils in peripheral blood and the infiltration of neutrophils and macrophages in colon tissue, and reduced pro-inflammatory cytokine production and tight junctions in mouse models. Furthermore, ICGA-A down-regulated expression of STAT3 and up-regulated the protein level of IκBα. Our in vitro studies confirmed that ICGA-A inhibited the mRNA expression of pro-inflammatory cytokines. ICGA-A blocked the phosphorylation of STAT3, p65, and IκBα, suppressed the expression STAT3 and p65. In addition, the present study also demonstrated that ICGA-A had no obvious toxicity on normal cells and organs. Taken together, we conclude that ICGA-A mitigates experimental ulcerative colitis (UC) at least in part by inhibiting the STAT3/NF-кB signaling pathways. Hence, ICGA-A may be a promising and effective drug for treating UC.
Collapse
Affiliation(s)
- Shaoshuai Tang
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Wei Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yuanyue Li
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China.
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
7
|
Shahini A, Shahini A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J Cell Commun Signal 2023; 17:55-74. [PMID: 36112307 PMCID: PMC10030733 DOI: 10.1007/s12079-022-00695-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is considered a chronic inflammatory and multifactorial disease of the gastrointestinal tract. Crohn's disease (CD) and ulcerative colitis (UC) are two types of chronic IBD. Although there is no accurate information about IBD pathophysiology, evidence suggests that various factors, including the gut microbiome, environment, genetics, lifestyle, and a dysregulated immune system, may increase susceptibility to IBD. Moreover, inflammatory mediators such as interleukin-6 (IL-6) are involved in the immunopathogenesis of IBDs. IL-6 contributes to T helper 17 (Th17) differentiation, mediating further destructive inflammatory responses in CD and UC. Moreover, Th1-mediated responses participate in IBD, and the antiapoptotic IL-6/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signals are responsible for preserving Th1 cells in the site of inflammation. It has been revealed that fecal bacteria isolated from UC-active and UC-remission patients stimulate the hyperproduction of several cytokines, such as IL-6, tumor necrosis factor-α (TNF-α), IL-10, and IL-12. Given the importance of the IL-6/IL-6R axis, various therapeutic options exist for controlling or treating IBD. Therefore, alternative therapeutic approaches such as modulating the gut microbiome could be beneficial due to the failure of the target therapies so far. This review article summarizes IBD immunopathogenesis focusing on the IL-6/IL-6R axis and discusses available therapeutic approaches based on the gut microbiome alteration and IL-6/IL-6R axis targeting and treatment failure.
Collapse
Affiliation(s)
- Arshia Shahini
- Department of Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Bamboo Shoot and Artemisia capillaris Extract Mixture Ameliorates Dextran Sodium Sulfate-Induced Colitis. Curr Issues Mol Biol 2022; 44:5086-5103. [PMID: 36286060 PMCID: PMC9600592 DOI: 10.3390/cimb44100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract and is characterized by recurrent chronic inflammation and mucosal damage of the gastrointestinal tract. Recent studies have demonstrated that bamboo shoot (BS) and Artemisia capillaris (AC) extracts enhance anti-inflammatory effects in various disease models. However, it is uncertain whether there is a synergistic protective effect of BS and AC in dextran sodium sulfate (DSS)-induced colitis. In the current study, we tested the combined effects of BS and AC extracts (BA) on colitis using in vivo and in vitro models. Compared with control mice, oral administration of DSS exacerbated colon length and increased the disease activity index (DAI) and histological damage. In DSS-induced colitis, treatment with BA significantly alleviated DSS-induced symptoms such as colon shortening, DAI, histological damage, and colonic pro-inflammatory marker expression compared to single extracts (BS or AC) treatment. Furthermore, we found BA treatment attenuated the ROS generation, F-actin formation, and RhoA activity compared with the single extract (BS or AC) treatment in DSS-treated cell lines. Collectively, these findings suggest that BA treatment has a positive synergistic protective effect on colonic inflammation compared with single extracts, it may be a highly effective complementary natural extract mixture for the prevention or treatment of IBD.
Collapse
|
9
|
Aliyu M, Zohora FT, Anka AU, Ali K, Maleknia S, Saffarioun M, Azizi G. Interleukin-6 cytokine: An overview of the immune regulation, immune dysregulation, and therapeutic approach. Int Immunopharmacol 2022; 111:109130. [PMID: 35969896 DOI: 10.1016/j.intimp.2022.109130] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 12/19/2022]
Abstract
Several studies have shown that interleukin 6 (IL-6) is a multifunctional cytokine with both pro-inflammatory and anti-inflammatory activity, depending on the immune response context. Macrophages are among several cells that secrete IL-6, which they express upon activation by antigens, subsequently inducing fever and production of acute-phase proteins from the liver. Moreover, IL-6 induces the final maturation of B cells into memory B cells and plasma cells as well as an adaptive role for short-term energy allocation. Activation of IL-6 receptors results in the intracellular activation of the JAK/STAT pathway with resultant production of inflammatory cytokines. Several mechanisms-controlled IL-6 expression, but aberrant production was shown to be crucial in the pathogenesis of many diseases, which include autoimmune and chronic inflammatory diseases. IL-6 in combination with transforming growth factor β (TGF-β) induced differentiation of naïve T cells to Th17 cells, which is the cornerstone in autoimmune diseases. Recently, IL-6 secretion was shown to form the backbone of hypercytokinemia seen in the Coronavirus disease 2019 (COVID-19)-associated hyperinflammation and multiorgan failure. There are two classes of approved IL-6 inhibitors: anti-IL-6 receptor monoclonal antibodies (e.g., tocilizumab) and anti-IL-6 monoclonal antibodies (i.e., siltuximab). These drugs have been evaluated in patients with rheumatoid arthritis, juvenile idiopathic arthritis, cytokine release syndrome, and COVID-19 who have systemic inflammation. JAK/STAT pathway blockers were also successfully used in dampening IL-6 signal transduction. A better understanding of different mechanisms that modulate IL-6 expression will provide the much-needed solution with excellent safety and efficacy profiles for the treatment of autoimmune and inflammatory diseases in which IL-6 derives their pathogenesis.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran; Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Kashif Ali
- Department of Pharmacy Abdul Wali, Khan University Mardan, Pakistan
| | - Shayan Maleknia
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Saffarioun
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
10
|
Ma L, Zhao X, Liu T, Wang Y, Wang J, Kong L, Zhao Q, Chen Y, Chen L, Zhang H. Xuanfei Baidu decoction attenuates intestinal disorders by modulating NF-κB pathway, regulating T cell immunity and improving intestinal flora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154100. [PMID: 35489324 DOI: 10.1016/j.phymed.2022.154100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A number of studies have shown that gastrointestinal manifestations co-exist with respiratory symptoms in coronavirus disease 2019 (COVID-19) patients. Xuanfei Baidu decoction (XFBD) was recommended by the National Health Commission to treat mild and moderate COVID-19 patients and proved to effectively alleviate intestinal symptoms. However, the exact mechanisms remain elusive. PURPOSE This study aimed at exploring potential mechanisms of XFBD by utilizing a mouse model of dextran sulfate sodium (DSS)-induced acute experimental colitis, mimicking the disease conditions of intestinal microecological disorders. METHODS The network pharmacology approach was employed to identify the potential targets and pathways of XFBD on the intestinal disorders. Mice with DSS-induced intestinal disorders were utilized to evaluate the protective effect of XFBD in vivo, including body weight, disease activity index (DAI) score, colon length, spleen weight, and serum tumor necrosis factor-α (TNF-α) level. Colon tissues were used to perform hematoxylin-eosin (H&E) staining, western blot analysis, and transcriptome sequencing. Macrophages, neutrophils and the proportions of T helper cell (Th) 1 and Th2 cells were measured by flow cytometry. Intestinal contents were collected for 16S rRNA gene sequencing. RESULTS Network pharmacology analysis indicated that XFBD inhibited the progression of COVID-19-related intestinal diseases by repressing inflammation. In mice with DSS-induced intestinal inflammation, XFBD treatment significantly reduced weight loss, the spleen index, the disease activity index, TNF-α levels, and colonic tissue damage, and prevented colon shortening. Transcriptomics and flow cytometry results suggested that XFBD remodeled intestinal immunity by downregulating the Th1/Th2 ratio. Western blot analysis showed that XFBD exerted its anti-inflammatory effects by blocking the nuclear factor-κB (NF-κB) signaling pathway. Indicator analysis of microbiota showed that 75 operational taxonomic units (OTUs) were affected after XFBD administration. Among them, Akkermansia, Muribaculaceae, Lachnospiraceae, and Enterorhabdus were simultaneously negatively correlated with intestinal disorders' parameters, and Bacteroides, Escherichia-Shigella, Eubacterium nodatum,Turicibacter, and Clostridium sensu stricto 1, showed positive correlations with intestinal disorders' parameters. CONCLUSIONS Our data indicate that XFBD treatment attenuated intestinal disorders associated with inhibiting inflammation, remodeling of intestinal immunity, and improving intestinal flora. These findings provide a scientific basis for the clinical use of XFBD and offer a potential therapeutic approach for the treatment of COVID-19 patients with intestinal symptoms.
Collapse
Affiliation(s)
- Lin Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Tao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiabao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lu Kong
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qianru Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuru Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
11
|
Long J, Liu XK, Kang ZP, Wang MX, Zhao HM, Huang JQ, Xiao QP, Liu DY, Zhong YB. Ginsenoside Rg1 ameliorated experimental colitis by regulating the balance of M1/M2 macrophage polarization and the homeostasis of intestinal flora. Eur J Pharmacol 2022; 917:174742. [PMID: 34999087 DOI: 10.1016/j.ejphar.2022.174742] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022]
Abstract
Aberrant M1/M2 macrophage polarization and dysbiosis are involved in the pathogenesis of ulcerative colitis (UC). Ginsenoside Rg1 exhibits optimal immunomodulatory and anti-inflammatory effects in treating UC of humans and animals, but the action mechanism through the regulation of M1/M2 macrophage polarization and intestinal flora composition remain unclear. Here, experimental colitis was induced in BALB/c mice using dextran sulfate sodium, and Rock1 inhibitor Y27632 was used to explore the action mechanism of ginsenoside Rg1. Following treatment with ginsenoside Rg1 (200 mg/kg/day) and Y27632 (10 mg/kg/day) for 14 consecutive days, the rate of change in mouse body weight, mouse final weight, colonic weight, colonic length, colonic weight index and pathological damage scores of colitis mice were effectively improved, accompanied by less ulcer formation and inflammatory cell infiltration, lower levels of interleukin (IL)-6, IL-33, chemokine (C-C motif) ligand 2 (CCL-2), tumor necrosis factor alpha (TNF-α), and higher IL-4 and IL-10. Importantly, ginsenoside Rg1 and Y27632 significantly down-regulated CD11b+F4/80+, CD11b+F4/80+Tim-1+ and CD11b+F4/80+TLR4+ macrophages, and CD11b+F4/80+iNOS+ M1 macrophages, and significantly up-regulated CD11b+F4/80+CD206+ and CD11b+F4/80+CD163+ M2 macrophages in colitis mice; concomitantly, ginsenoside Rg1 improved the diversity of colonic microbiota and regulated Lachnospiraceae, Staphylococcus, Bacteroide and Ruminococcaceae_UCG_014 at genus level in colitis mice, but the flora regulated by Y27632 was not identical to it. Moreover, ginsenoside Rg1 and Y27632 down-regulated the protein levels of Rock1, RhoA and Nogo-B in colitis mice. These results suggested that ginsenoside Rg1 and Y27632 ameliorated colitis by regulating M1/M2 macrophage polarization and microbiota composition, associated with inhibition of the Nogo-B/RhoA signaling pathway.
Collapse
Affiliation(s)
- Jian Long
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Xue-Ke Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Zeng-Ping Kang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Meng-Xue Wang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Hai-Mei Zhao
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Jia-Qi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Qiu-Ping Xiao
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, 330004, Jiangxi Province, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - You-Bao Zhong
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China; Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
12
|
Alsharif IA, Fayed HM, Abdel-Rahman RF, Abd-Elsalam RM, Ogaly HA. Miconazole Mitigates Acetic Acid-Induced Experimental Colitis in Rats: Insight into Inflammation, Oxidative Stress and Keap1/Nrf-2 Signaling Crosstalk. BIOLOGY 2022; 11:303. [PMID: 35205169 PMCID: PMC8869207 DOI: 10.3390/biology11020303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
Ulcerative colitis (UC) is the most common type of inflammatory bowel disease, characterized by oxidative stress and elevated pro-inflammatory cytokines. Miconazole is an azole antifungal that stimulates the expression of antioxidant enzymes via Nrf2 activation, which consequently inhibits ROS formation and NF-κB activation. Hence, the present study aimed to investigate the protective effect of miconazole, sulfasalazine (as a reference drug) and their combination on acetic acid (AA)-induced UC in a rat model which was induced by intra-rectal administration of 4% AA. Rats were pretreated with miconazole (20 and 40 mg/kg, orally) or sulfasalazine (100 mg/kg, orally), or their combination (20 mg/kg miconazole and 50 mg/Kg of sulfasalazine, orally). Pretreatment with miconazole significantly reduced wet colon weight and macroscopic scores, accompanied by a significant amelioration of the colonic architecture disorder. Moreover, the treatment also significantly decreased the malondialdehyde (MDA) level and prevented the depletion of superoxide dismutase (SOD) activity and GSH content in inflamed colons. Additionally, the treatment showed suppressive activities on pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and C-reactive protein (CRP), and upregulated the anti-inflammatory cytokine interleukin-10 (IL-10). Moreover, the treatment upregulated the protein levels of Nrf-2 and heme oxygenase-1 (HO-1) in the colon tissue. Taken together, miconazole is effective in alleviating AA-induced colitis in rats, and the mechanism of its action is associated with the activation of Nrf2-regulated cytoprotective protein expression.
Collapse
Affiliation(s)
- Ifat A. Alsharif
- Biology Department, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Hany M. Fayed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Rehab F. Abdel-Rahman
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Reham M. Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Hanan A. Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
13
|
Endometrial Regenerative Cell-Derived Conditioned Medium Alleviates Experimental Colitis. Stem Cells Int 2022; 2022:7842296. [PMID: 35126527 PMCID: PMC8813287 DOI: 10.1155/2022/7842296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Background Traditional interventions can play a certain role in attenuating ulcerative colitis (UC), known as one type of inflammatory bowel diseases, but sometimes are not effective. Endometrial regenerative cells (ERCs) have been shown to exert immunosuppressive effects in different models of inflammation, and stem cell-derived conditioned media (CM) have advantages over cell therapy in terms of easy access and direct action. However, whether ERC-CM could alleviate colitis remains unclear and will be explored in this study. Methods Menstrual blood was collected from healthy female volunteers to obtain ERCs and ERC-CM. Acute colitis was induced by 3% dextran sodium sulfate (DSS), and ERC-CM was injected on days 4, 6, and 8, respectively, after induction. The disease activity index was calculated through the record of weight change, bleeding, and fecal viscosity during the treatment process. Histological features, macrophage and CD4+ T cell in the spleen and colon, and cytokine profiles in the sera and colon were measured. In addition, an in vitro lymphocyte proliferation assay was measured by using a CCK-8 kit in this study. Results ERC-CM treatment significantly improved the symptoms and histological changes in colitis mice. ERC-CM increased the percentage of Tregs in the spleen and colon but decreased the percentages of M1 macrophages and Th1 and Th17 cells in the spleen and decreased the population of Th17 cells in the colon. In addition, ERC-CM treatment decreased the local expression of TNF-α, IL-6, and iNOS in the colon. Furthermore, ERC-CM increased the levels of anti-inflammatory cytokines IL-10 and IL-27 but decreased proinflammatory cytokines IL-6 and IL-17 in the sera. In addition, ERC-CM significantly inhibited ConA-induced mouse lymphocyte proliferation in vitro. Conclusion The results suggest that ERC-CM can exert similar therapeutic effects as ERCs and could be explored for future application of cell-free therapy in the treatment of colitis.
Collapse
|
14
|
Wei Z, Xue Y, Xue Y, Cheng J, Lv G, Chu L, Ma Z, Guan S. Ferulic acid attenuates non-alcoholic steatohepatitis by reducing oxidative stress and inflammation through inhibition of the ROCK/NF-κB signaling pathways. J Pharmacol Sci 2021; 147:72-80. [PMID: 34294375 DOI: 10.1016/j.jphs.2021.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Ferulic acid (FA) is a natural polyphenol compound existing in many plants. The purpose of this study was to investigate the effect of FA on non-alcoholic steatohepatitis (NASH) induced by high-cholesterol and high-fat diet (HCHF) and its possible mechanism. Rats were fed HCHF for 12 weeks to establish NASH model. FA improved liver coefficients and had no effect on body weight changes. FA could reduce serum alanine transferase (ALT) and aspartate transferase (AST) activities. FA attenuated the increase of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein (LDL) levels caused by NASH, improved the liver pathological damage induced by NASH, and inhibited the progression of liver fibrosis. FA prevented the production of reactive oxygen species (ROS) and the increase of malondialdehyde (MDA) levels, and attenuated the decrease in superoxide dismutase (SOD) activity. Meanwhile, FA significantly restored the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α). In addition, we also found that FA inhibited the activity of ROCK and the activation of NF-κB signaling pathway in the liver of NASH rats. Overall, FA has a hepatoprotective anti-oxidative stress and anti-inflammatory effects in NASH rats, and its mechanism may be related to the inhibition of ROCK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ziheng Wei
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yurun Xue
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yucong Xue
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Jie Cheng
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Guoping Lv
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, 050200, Hebei, China.
| | - Zhihong Ma
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China.
| | - Shengjiang Guan
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China; Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
15
|
Li X, Zhang C, Hui H, Tan Z. Effect of Gegenqinlian decoction on intestinal mucosal flora in mice with diarrhea induced by high temperature and humidity treatment. 3 Biotech 2021; 11:83. [PMID: 33505838 PMCID: PMC7815854 DOI: 10.1007/s13205-020-02628-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The objective of this study is to investigate the regulation effects of the active ingredients in Gegenqinlian Decoction (GD) on the intestinal mucosal flora of mice with diarrhea induced by high temperature and humidity based on systems pharmacology approach. Fifteen mice were randomly assigned to three equal groups of five mice, namely control (ctcm) group, model (ctmm) group and treatment (cttm) group. Mice in the cttm group were given 20 mL/kg of GD and sterile water was used as a placebo control twice a day for four consecutive days. We used the third-generation molecular high-throughput sequencing technology to measure the intestinal mucosal flora changes in mice. Combined with network pharmacology to predict the medicinal substances and action targets of GD against diarrhea. Results showed that Operational Taxonomic Unit (OTU) number and Alpha diversity in the intestinal mucosal flora of cttm group recovered and higher than that of the ctcm group. There were differences in the community structure between the ctmm and cttm groups in the Principal Coordinates Analysis (PCoA). The relative abundance results indicated dominant bacteria species (such as Lactobacillus crispatus, Muribaculum intestinal, Neisseria mucosa) in the intestinal mucosa of the three groups. Moreover, we screened out 146 active ingredients in GD corresponding to 252 component targets, and 328 disease targets in diarrhea to obtain 31 drug-disease common targets. Protein-protein interaction (PPI) networks mainly involved the core proteins such as Tumor necrosis factor (TNF) and Interleukin-6 (IL-6). Enrichment analyses showed that GD played a role in the treatment of diarrhea by regulating the hypoxia inducible factor-1 (HIF-1), vascular endothelial growth factor (VEGF) and adipocytokine signaling pathways and so on. In brief, the active ingredients of GD could intervene from oxidative stress and inflammatory response through multiple targets and multiple channels to adjust the balance of intestinal mucosa flora, thereby playing a role in the treatment of diarrhea. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02628-0.
Collapse
Affiliation(s)
- Xiaoya Li
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Chenyang Zhang
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Huaying Hui
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| |
Collapse
|
16
|
The Antioxidant and Anti-Inflammatory Effects of Quercus brantii Extract on TNBS-Induced Ulcerative Colitis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3075973. [PMID: 33505492 PMCID: PMC7808820 DOI: 10.1155/2021/3075973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/15/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022]
Abstract
Objectives Ulcerative colitis is a common subtype of persistent inflammatory bowel disease with high morbidity consequences. Despite unknown definite pathogenesis, multiple anti-inflammatory medications are used for its treatment. Traditionally, Quercus brantii (QB), mostly available in the Middle East, has been used for gastrointestinal disorders. Other beneficial effects associated with QB include reduction of oxidative stress, inflammations, homeostatic instability, and improvement in clinical conditions. Materials and Methods This experimental study was designed to assess the possible therapeutic effects of QB on UC and compare its effects with those of sulfasalazine. Of the 70 Wistar rats clustered in seven groups, ten received only alcohols and sixty were confirmed to be suffering from trinitrobenzene sulfonic acid- (TNBS-) induced colitis. Four groups received different dosages of QB extract via oral and rectal routes, one received sulfasalazine, and the other remaining two groups received nothing. The effects of QB were evaluated by assessing macroscopic and histologic scoring, measuring inflammatory mediators, and determining oxidative stress markers. Results Comparing to the untreated TNBS-induced control groups, QB-treated groups showed a dose- and route-dependent improvement comparable with sulfasalazine. Treating rats with QB reduced the microscopic and macroscopic damage, decreased TNF-α, IL-6, NO, MPO activity, and MDA content, increased superoxide dismutase (SOD) activity, and reduced body weight loss. Conclusions Our data recommended the anti-inflammatory and antioxidant effects of QB extract in a dose-dependent manner.
Collapse
|