1
|
Cha R, Nakagawa S, Arai Y, Inoue A, Okubo N, Fujii Y, Kaihara K, Nakamura K, Kishida T, Mazda O, Takahashi K. Intermittent hypoxic stimulation promotes efficient expression of Hypoxia-inducible factor-1α and exerts a chondroprotective effect in an animal osteoarthritis model. PLoS One 2025; 20:e0319976. [PMID: 40168275 PMCID: PMC11960973 DOI: 10.1371/journal.pone.0319976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/12/2025] [Indexed: 04/03/2025] Open
Abstract
Hypoxia-inducible factor-1α plays an important role in the homeostasis of articular cartilage in hypoxic environments. Therefore, modulation of hypoxia-inducible factor-1α by regulating the oxygen environment could be a useful treatment for osteoarthritis. This study aimed to assess the chondroprotective effects of intermittent hypoxia on cultured chondrocytes and an animal model of osteoarthritis. In vitro, human chondrocytes were exposed to 2 h of hypoxic stimulation three times at 1-h intervals, and protein and gene expression of hypoxia-inducible factor-1α, ACAN, and cell viability was measured over time. In vivo, 8-week-old male Wistar rats were injected with monosodium iodoacetate to induce osteoarthritis and then reared in 12% hypoxia for 24 h, followed by 24 h in steady oxygen, repeated alternately for a total of 28 days. A histological analysis was performed on days 8 and 28. In the intermittent hypoxia group, each protein expression increased with each repeated hypoxic stimulation to human chondrocytes; finally, the protein level was significantly higher with intermittent hypoxia than with continuous hypoxic stimulation, cell viability was increased, and gene expression was not significantly increased. In the osteoarthritis animal model, for 8 days, there were stronger hypoxia-inducible factor-1α staining and no significant differences in articular cartilage destruction. Furthermore, for 28 days, there was significantly less articular cartilage destruction in the rat osteoarthritis model with intermittent hypoxia than with steady oxygen rearing. Intermittent hypoxia increased cartilage metabolism by increasing hypoxia-inducible factor-1α proteins in articular chondrocytes, which may be effective in preventing articular cartilage degeneration in a rat osteoarthritis model.
Collapse
Affiliation(s)
- Ryota Cha
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuji Nakagawa
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Arai
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsuo Inoue
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoki Okubo
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuta Fujii
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenta Kaihara
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Nakamura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsunao Kishida
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Takahashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Luo L, Zhang S, Gong J, Zhang J, Xie P, Yin J, Zhang M, Zhang C, Chen H, Liu Y, Ni B, Li C, Tian Z. 3-D Sustained-Release Culture Carrier Alleviates Rat Intervertebral Disc Degeneration by Targeting STING in Transplanted Skeletal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410151. [PMID: 39985222 PMCID: PMC12005824 DOI: 10.1002/advs.202410151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/14/2025] [Indexed: 02/24/2025]
Abstract
The hypoxic and high-pressure microenvironment of the intervertebral discs poses a major challenge to the survival and therapeutic efficiency of exogenous stem cells. Therefore, improving the utilization efficiency and therapeutic effect of exogenous stem cells to delay intervertebral disc degeneration (IVDD) is of great importance. Here, hypoxic induction studies are conducted in vivo and in vitro using rat costal cartilage-derived skeletal stem cells (SSCs) and find that hypoxia activates the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway and increased reactive oxygen species (ROS) accumulation, triggering ferroptosis in SSCs through hypoxia-inducible factor-1 alpha-dependent mitophagy. Progressive hypoxia preconditioning reduce STING expression and ROS accumulation, inducing SSCs differentiation into nucleus pulposus-like cells via the Wnt signaling pathway. Considering this, a 3-D sustained-release culture carrier is generated by mixing SSCs with methacrylated hyaluronic acid and polydopamine nanoparticles coated with the STING inhibitor C-176 and evaluated its inhibitory effect on IVDD. This carrier is demonstrated to inhibit the cGAS/STING pathway and prevent ROS accumulation by continuously releasing C-176-coated polydopamine nanoparticles, thereby reducing ferroptosis, promoting differentiation, and ultimately attenuating IVDD, suggesting its potential as a novel treatment strategy.
Collapse
Affiliation(s)
- Liwen Luo
- Department of OrthopaedicsXinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingP. R. China
- State Key Laboratory of Trauma and Chemical PoisoningArmy Medical University (Third Military Medical University)ChongqingP. R. China
| | - Shiyu Zhang
- Department of OrthopaedicsXinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingP. R. China
| | - Junfeng Gong
- Department of General SurgeryThe Armed Police Corps Hospital of AnhuiHefeiP. R. China
| | - Ji Zhang
- Institute of ImmunologyPLAArmy Medical University (Third Military Medical University)ChongqingP. R. China
| | - Peng Xie
- Department of Military BiosafetyCollege of Basic MedicineArmy Medical UniversityChongqingP. R. China
| | - Jun Yin
- Department of PathophysiologyCollege of High Altitude Military MedicineArmy Military Medical UniversityChongqingP. R. China
| | - MengJie Zhang
- Department of PathophysiologyCollege of High Altitude Military MedicineArmy Military Medical UniversityChongqingP. R. China
| | - Cong Zhang
- Department of Laboratory Animal ScienceCollege of Basic MedicineArmy Medical UniversityChongqingP. R. China
| | - Hong Chen
- Department of Orthopedics903 Hospital of Joint Logistic Support Force of The People's Liberation ArmyHangzhouP. R. China
| | - Yao Liu
- Department of PharmacyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingP. R. China
| | - Bing Ni
- Department of PathophysiologyCollege of High Altitude Military MedicineArmy Military Medical UniversityChongqingP. R. China
| | - Changqing Li
- Department of OrthopaedicsXinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingP. R. China
- State Key Laboratory of Trauma and Chemical PoisoningArmy Medical University (Third Military Medical University)ChongqingP. R. China
| | - Zhiqiang Tian
- Institute of ImmunologyPLAArmy Medical University (Third Military Medical University)ChongqingP. R. China
| |
Collapse
|
3
|
Feng C, Hu Z, Zhao M, Leng C, Li G, Yang F, Fan X. Region-specific mitophagy in nucleus pulposus, annulus fibrosus, and cartilage endplate of intervertebral disc degeneration: mechanisms and therapeutic strategies. Front Pharmacol 2025; 16:1579507. [PMID: 40248091 PMCID: PMC12003974 DOI: 10.3389/fphar.2025.1579507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent condition contributing to various spinal disorders, posing a significant global health burden. Mitophagy plays a crucial role in maintaining mitochondrial quantity and quality and is closely associated with the onset and progression of IVDD. Well-documented region-specific mitophagy mechanisms in IVDD are guiding the development of therapeutic strategies. In the nucleus pulposus (NP), impaired mitochondria lead to apoptosis, oxidative stress, senescence, extracellular matrix degradation and synthesis, excessive autophagy, inflammation, mitochondrial instability, and pyroptosis, with key regulatory targets including AMPK, PGC-1α, SIRT1, SIRT3, Progerin, p65, Mfn2, FOXO3, NDUFA4L2, SLC39A7, ITGα5/β1, Nrf2, and NLRP3 inflammasome. In the annulus fibrosus (AF), mitochondrial damage induces apoptosis and oxidative stress mediated by PGC-1α, while in the cartilage endplate (CEP), mitochondrial dysfunction similarly triggers apoptosis and oxidative stress. These mechanistic insights highlight therapeutic strategies such as activating Parkin-dependent and Ub-independent mitophagy pathways for NP, enhancing Parkin-dependent mitophagy for AF, and targeting Parkin-mediated mitophagy for CEP. These strategies include the use of natural ingredients, hormonal modulation, gene editing technologies, targeted compounds, and manipulation of related proteins. This review summarizes the mechanisms of mitophagy in different regions of the intervertebral disc and highlights therapeutic approaches using mitophagy modulators to ameliorate IVDD. It discusses the complex mechanisms of mitophagy and underscores its potential as a therapeutic target. The objective is to provide valuable insights and a scientific basis for the development of mitochondrial-targeted drugs for anti-IVDD.
Collapse
Affiliation(s)
- Chaoqun Feng
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziang Hu
- Department of Orthopedics, The TCM Hospital of Longquanyi District, Chengdu, China
| | - Min Zhao
- International Ward (Gynecology), Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Leng
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangye Li
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Yang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Fan
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Wang Z, Fan B, Gu L, Zhang X, Sun T, Liu H, Li R, Wang L, Wang K, Li S, Ma Y, You H, Zhang D. Collagenase Chemonucleolysis for Treating Cervical Disc Herniation: An Exploratory, Single-Arm, Open-Label, Multicenter Clinical Trial. Pain Ther 2025; 14:217-235. [PMID: 39514049 PMCID: PMC11751348 DOI: 10.1007/s40122-024-00678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Cervical disc herniation (CDH) is the most common cause of cervical radiculopathy and causes persistent neck pain and neurological deficits. Collagenase chemonucleolysis has been successfully applied to treat lumbar disc herniation, which has a similar pathological mechanism to CDH. However, its application for CDH remains under-researched, and there is an even greater lack of high-quality clinical evidence. This study aims to evaluate the efficacy and safety of collagenase chemonucleolysis for treating CDH. METHODS Eligible patients with CDH underwent collagenase chemonucleolysis via anterior cervical intradiscal injection or epidural injection. The primary efficacy endpoint showed an excellent and good rate regarding the Odom criteria, which was not lower than the reference value (≥ 78%) at 6 months postoperatively. The secondary efficacy endpoints were the percentage reduction in Numeric Rating Scale (NRS) and Neck Disability Index (NDI) scores from baseline, which were not lower than the reference values (≥ 40%, ≥ 30%), and improvement in the 36-Item Short Form Health Survey (SF-36) score compared to the preoperative value. The pre- and postoperative CDH index of patients were also compared. Safety endpoints included the incidence of adverse events (AEs) and serious adverse events (SAEs). RESULTS An excellent and good rate regarding the Odom criteria 6 months postoperatively was 90.5% (133/147), which was significantly higher than 78% (P < 0.004, 95% confidence interval 85.7-95.2%). The reduction in NRS and NDI scores exceeded 40% (P < 0.001) and 30% (P < 0.001), respectively. The SF-36 scores at 3 months and 6 months postoperatively were significantly higher than those preoperatively (P < 0.001). A significant difference was observed in the pre- and postoperative CDH index (109.6 ± 119.1 vs. 70.8 ± 74.8, P < 0.001). The incidence of AEs was 22.5% (33/147), of which 97.8% were grade 1-2. No collagenase-related AEs and SAEs occurred. CONCLUSION Collagenase chemonucleolysis treatment for CDH exhibited favorable efficacy and safety and may be a better choice for patients in whom conservative treatment is ineffective. TRIAL REGISTRATION The trial was registered on www.Chictr.org.cn (ChiCTR2200063043).
Collapse
Affiliation(s)
- Zhijian Wang
- Department of Pain, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Bifa Fan
- Department of Pain, China-Japan Friendship Hospital, Beijing, 100000, China
| | - Lili Gu
- Department of Pain, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Xuexue Zhang
- Department of Pain, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Tao Sun
- Department of Pain, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Hui Liu
- Department of Pain, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan, China
| | - Rongchun Li
- Department of Pain, Wuhan Fourth Hospital, Wuhan, 430000, Hubei, China
| | - Likui Wang
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Kaiqiang Wang
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Shun Li
- Department of Pain, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Yong Ma
- Department of Pain, The Third People's Hospital of Yunnan Province, Kunming, 650000, Yunnan, China
| | - Haibo You
- Department of Pain, The Third People's Hospital of Linyi, Linyi, 276000, Shandong, China
| | - Daying Zhang
- Department of Pain, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
5
|
Zhang Y, Yang Y, Sun Y, Wei Z, Wang D, Chen S, Yang F, Wang J, Kang X. Assessing the toxicological impact of PET-MPs exposure on IVDD: Insights from network toxicology and molecular docking. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123830. [PMID: 39736229 DOI: 10.1016/j.jenvman.2024.123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Polyethylene terephthalate microplastics (PET-MPs) have emerged as a significant environmental concern due to their persistence and potential health hazards. Their role in degenerative diseases, particularly intervertebral disc degeneration (IVDD), remains poorly understood, highlighting the need for systematic evaluation of their molecular toxicity. In this study, network toxicology and molecular docking approaches were applied to investigate the toxicological mechanisms of PET-MPs-induced IVDD. Comprehensive analyses of GEO, ChEMBL, STITCH, GeneCards, and OMIM databases identified 46 potential targets associated with PET-MPs exposure, which were further refined to seven core targets, including AKT1, CASP3, and SRC, using STRING and Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that PET-MPs influence immune-related pathways, such as Ras signaling, apoptosis, VEGF receptor signaling, and neutrophil extracellular trap (NET) formation. Molecular docking analysis confirmed strong binding affinities of PET-MPs to these core targets, suggesting its potential to disrupt key cellular processes. These findings indicate that PET-MPs may accelerate IVDD progression by modulating apoptosis, extracellular matrix (ECM) metabolism, angiogenesis, and immune responses. This study provides valuable insights into the molecular mechanisms underlying PET-MPs-induced IVDD and highlights the utility of network toxicology in evaluating the toxicity of emerging environmental pollutants, offering a theoretical foundation for understanding the health risks of PET-MPs and guiding strategies to mitigate their impact on degenerative diseases.
Collapse
Affiliation(s)
- Yizhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730030, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China
| | - Yong Sun
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China
| | - Ziyan Wei
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China
| | - Dongxin Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China
| | - Shijie Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China
| | - Fengguang Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China
| | - JinQing Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China.
| |
Collapse
|
6
|
Zhou H, Wu C, Jin Y, Wu O, Chen L, Guo Z, Wang X, Chen Q, Kwan KYH, Li YM, Xia D, Chen T, Wu A. Role of oxidative stress in mitochondrial dysfunction and their implications in intervertebral disc degeneration: Mechanisms and therapeutic strategies. J Orthop Translat 2024; 49:181-206. [PMID: 39483126 PMCID: PMC11526088 DOI: 10.1016/j.jot.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is widely recognized as one of the leading causes of low back pain. Intervertebral disc cells are the main components of the intervertebral disc (IVD), and their functions include synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the IVD. In addition, IVD cells are involved in several physiological processes. They help maintain nutrient metabolism balance in the IVD. They also have antioxidant and anti-inflammatory effects. Because of these roles, IVD cells are crucial in IVDD. When IVD cells are subjected to oxidative stress, mitochondria may become damaged, affecting normal cell function and accelerating degenerative changes. Mitochondria are the energy source of the cell and regulate important intracellular processes. As a key site for redox reactions, excessive oxidative stress and reactive oxygen species can damage mitochondria, leading to inflammation, DNA damage, and apoptosis, thus accelerating disc degeneration. Aim of review Describes the core knowledge of IVDD and oxidative stress. Comprehensively examines the complex relationship and potential mechanistic pathways between oxidative stress, mitochondrial dysfunction and IVDD. Highlights potential therapeutic targets and frontier therapeutic concepts. Draws researchers' attention and discussion on the future research of all three. Key scientific concepts of review Origin, development and consequences of IVDD, molecular mechanisms of oxidative stress acting on mitochondria, mechanisms of oxidative stress damage to IVD cells, therapeutic potential of targeting mitochondria to alleviate oxidative stress in IVDD. The translational potential of this article Targeted therapeutic strategies for oxidative stress and mitochondrial dysfunction are particularly critical in the treatment of IVDD. Using antioxidants and specific mitochondrial therapeutic agents can help reduce symptoms and pain. This approach is expected to significantly improve the quality of life for patients. Individualized therapeutic approaches, on the other hand, are based on an in-depth assessment of the patient's degree of oxidative stress and mitochondrial functional status to develop a targeted treatment plan for more precise and effective IVDD management. Additionally, we suggest preventive measures like customized lifestyle changes and medications. These are based on understanding how IVDD develops. The aim is to slow down the disease and reduce the chances of it coming back. Actively promoting clinical trials and evaluating the safety and efficacy of new therapies helps translate cutting-edge treatment concepts into clinical practice. These measures not only improve patient outcomes and quality of life but also reduce the consumption of healthcare resources and the socio-economic burden, thus having a positive impact on the advancement of the IVDD treatment field.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Chenyu Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Qizhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, China
| | - Yan Michael Li
- Minimally Invasive Brain and Spine Institute, Upstate Medical University 475 Irving Ave, #402 Syracuse, NY, 13210, USA
| | - Dongdong Xia
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
7
|
Liu P, Ren X, Zhang B, Guo S, Fu Q. Investigating the characteristics of mild intervertebral disc degeneration at various age stages using single-cell genomics. Front Cell Dev Biol 2024; 12:1409287. [PMID: 39015652 PMCID: PMC11250600 DOI: 10.3389/fcell.2024.1409287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction: Intervertebral disc degeneration often occurs in the elderly population, but in recent years, there has been an increasing incidence of disc degeneration in younger individuals, primarily with mild degeneration. Methods: In order to explore the underlying mechanisms of disc degeneration in both young and aging individuals, we collected four types of nucleus pulposus (NP) single-cell sequencing samples for analysis based on Pfirrmann grading: normal-young (NY) (Grade I), normal-old (NO) (Grade I), mild degenerative-young (MY) (Grade II-III), and mild degenerative-old (MO) (Grade II-III). Results: We found that most NP cells in NO and MY samples exhibited oxidative stress, which may be important pathogenic factors in NO and MY groups. On the other hand, NP cells in MO group exhibited endoplasmic reticulum stress. In terms of inflammation, myeloid cells were mainly present in the degenerative group, with the MY group showing a stronger immune response compared to the MO group. Interestingly, dendritic cells in the myeloid lineage played a critical role in the process of mild degeneration. Discussion: Our study investigated the molecular mechanisms of intervertebral disc degeneration from an age perspective, providing insights for improving treatment strategies for patients with disc degeneration at different age groups.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Beiting Zhang
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Song Guo
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Fu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Song C, Hu P, Peng R, Li F, Fang Z, Xu Y. Bioenergetic dysfunction in the pathogenesis of intervertebral disc degeneration. Pharmacol Res 2024; 202:107119. [PMID: 38417775 DOI: 10.1016/j.phrs.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Intervertebral disc (IVD) degeneration is a frequent cause of low back pain and is the most common cause of disability. Treatments for symptomatic IVD degeneration, including conservative treatments such as analgesics, physical therapy, anti-inflammatories and surgeries, are aimed at alleviating neurological symptoms. However, there are no effective treatments to prevent or delay IVD degeneration. Previous studies have identified risk factors for IVD degeneration such as aging, inflammation, genetic factors, mechanical overload, nutrient deprivation and smoking, but metabolic dysfunction has not been highlighted. IVDs are the largest avascular structures in the human body and determine the hypoxic and glycolytic features of nucleus pulposus (NP) cells. Accumulating evidence has demonstrated that intracellular metabolic dysfunction is associated with IVD degeneration, but a comprehensive review is lacking. Here, by reviewing the physiological features of IVDs, pathological processes and metabolic changes associated with IVD degeneration and the functions of metabolic genes in IVDs, we highlight that glycolytic pathway and intact mitochondrial function are essential for IVD homeostasis. In degenerated NPs, glycolysis and mitochondrial function are downregulated. Boosting glycolysis such as HIF1α overexpression protects against IVD degeneration. Moreover, the correlations between metabolic diseases such as diabetes, obesity and IVD degeneration and their underlying molecular mechanisms are discussed. Hyperglycemia in diabetic diseases leads to cell senescence, the senescence-associated phenotype (SASP), apoptosis and catabolism of extracellualr matrix in IVDs. Correcting the global metabolic disorders such as insulin or GLP-1 receptor agonist administration is beneficial for diabetes associated IVD degeneration. Overall, we summarized the recent progress of investigations on metabolic contributions to IVD degeneration and provide a new perspective that correcting metabolic dysfunction may be beneficial for treating IVD degeneration.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Peixuan Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Renpeng Peng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Zhong Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yong Xu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
9
|
Jia C, Xiang Z, Zhang P, Liu L, Zhu X, Yu R, Liu Z, Wang S, Liu K, Wang Z, Vasilev K, Zhou S, Geng Z, Liu X, Zhao Y, Gao Y, Cheng L, Li Y. Selenium-SelK-GPX4 axis protects nucleus pulposus cells against mechanical overloading-induced ferroptosis and attenuates senescence of intervertebral disc. Cell Mol Life Sci 2024; 81:49. [PMID: 38252317 PMCID: PMC10803455 DOI: 10.1007/s00018-023-05067-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
Intervertebral disc degeneration (IVDD) is one of the most prevalent spinal degenerative disorders and imposes places heavy medical and economic burdens on individuals and society. Mechanical overloading applied to the intervertebral disc (IVD) has been widely recognized as an important cause of IVDD. Mechanical overloading-induced chondrocyte ferroptosis was reported, but the potential association between ferroptosis and mechanical overloading remains to be illustrated in nucleus pulposus (NP) cells. In this study, we discovered that excessive mechanical loading induced ferroptosis and endoplasmic reticulum (ER) stress, which were detected by mitochondria and associated markers, by increasing the intracellular free Ca2+ level through the Piezo1 ion channel localized on the plasma membrane and ER membrane in NP cells. Besides, we proposed that intracellular free Ca2+ level elevation and the activation of ER stress are positive feedback processes that promote each other, consistent with the results that the level of ER stress in coccygeal discs of aged Piezo1-CKO mice were significantly lower than that of aged WT mice. Then, we confirmed that selenium supplementation decreased intracellular free Ca2+ level by mitigating ER stress through upregulating Selenoprotein K (SelK) expression. Besides, ferroptosis caused by the impaired production and function of Glutathione peroxidase 4 (GPX4) due to mechanical overloading-induced calcium overload could be improved by selenium supplementation through Se-GPX4 axis and Se-SelK axis in vivo and in vitro, eventually presenting the stabilization of the extracellular matrix (ECM). Our findings reveal the important role of ferroptosis in mechanical overloading-induced IVDD, and selenium supplementation promotes significance to attenuate ferroptosis and thus alleviates IVDD, which might provide insights into potential therapeutic interventions for IVDD.
Collapse
Affiliation(s)
- Chunwang Jia
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Ziqian Xiang
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Pengfei Zhang
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Long Liu
- Department of Pathology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xuetao Zhu
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Ruixuan Yu
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Zhicheng Liu
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shaoyi Wang
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Kaiwen Liu
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Zihao Wang
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, SA, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ziwen Geng
- Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Xinyu Liu
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yunpeng Zhao
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Yuan Gao
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Lei Cheng
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Yuhua Li
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
10
|
Wang Y, Cheng H, Wang T, Zhang K, Zhang Y, Kang X. Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment. Cell Prolif 2023; 56:e13448. [PMID: 36915968 PMCID: PMC10472537 DOI: 10.1111/cpr.13448] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Low back pain (LBP) is a leading cause of labour loss and disability worldwide, and it also imposes a severe economic burden on patients and society. Among symptomatic LBP, approximately 40% is caused by intervertebral disc degeneration (IDD). IDD is the pathological basis of many spinal degenerative diseases such as disc herniation and spinal stenosis. Currently, the therapeutic approaches for IDD mainly include conservative treatment and surgical treatment, neither of which can solve the problem from the root by terminating the degenerative process of the intervertebral disc (IVD). Therefore, further exploring the pathogenic mechanisms of IDD and adopting targeted therapeutic strategies is one of the current research hotspots. Among the complex pathophysiological processes and pathogenic mechanisms of IDD, oxidative stress is considered as the main pathogenic factor. The delicate balance between reactive oxygen species (ROS) and antioxidants is essential for maintaining the normal function and survival of IVD cells. Excessive ROS levels can cause damage to macromolecules such as nucleic acids, lipids, and proteins of cells, affect normal cellular activities and functions, and ultimately lead to cell senescence or death. This review discusses the potential role of oxidative stress in IDD to further understand the pathophysiological processes and pathogenic mechanisms of IDD and provides potential therapeutic strategies for the treatment of IDD.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Huiguang Cheng
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Tao Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Kun Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yumin Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xin Kang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
11
|
Pan H, Li H, Guo S, Wang C, Long L, Wang X, Shi H, Zhang K, Chen H, Li S. The mechanisms and functions of TNF-α in intervertebral disc degeneration. Exp Gerontol 2023; 174:112119. [PMID: 36758650 DOI: 10.1016/j.exger.2023.112119] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Low back pain (LBP) is one of the most common health problems in people's lives, which brings a massive burden to clinicians, and the leading cause of LBP is intervertebral disc degeneration (IDD). IDD is mainly caused by factors such as aging, mechanical stress, and lack of nutrition. The pathological mechanism of IDD is very complex, involving inflammatory response, cell metabolism disorder, and so on. Unfortunately, in the current treatment of IDD, only relieving symptoms as the primary means of relieving a patient's pain cannot effectively inhibit or reverse the progression of IDD. Tumor necrosis factor-α (TNF-α) is a multifunctional pro-inflammatory factor involved in many diseases' pathological processes. With the in-depth study of the pathological mechanism of IDD, more and more evidence has shown that TNF-α is an essential activator of IDD, which is related to the metabolic disorder, inflammatory responses, apoptosis, and other pathological processes of extracellular dissociation in the intervertebral disc. Therefore, anti-TNF-α therapy is an effective therapeutic target for alleviating IDD, especially in inhibiting extracellular matrix degradation and reducing inflammatory responses. This article reviews the pathological role of TNF-α in IDD and the latest research progress of TNF-α inhibitors in treating IDD.
Collapse
Affiliation(s)
- Hongyu Pan
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongtao Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng Guo
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chenglong Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Longhai Long
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqiang Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Houyin Shi
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Kaiquan Zhang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Chen
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Sen Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
12
|
Lin Z, Wang H, Song J, Xu G, Lu F, Ma X, Xia X, Jiang J, Zou F. The role of mitochondrial fission in intervertebral disc degeneration. Osteoarthritis Cartilage 2023; 31:158-166. [PMID: 36375758 DOI: 10.1016/j.joca.2022.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Low back pain (LBP) is an extremely common disorder and is a major cause of disability globally. Intervertebral disc degeneration (IVDD) is the main contributor to LBP. Nevertheless, the specific mechanisms underlying the pathogenesis of IVDD remain unclear. Mitochondria are highly dynamic organelles that continuously undergo fusion and fission, known as mitochondrial dynamics. Accumulating evidence has revealed that aberrantly activated mitochondrial fission leads to mitochondrial fragmentation and dysfunction, which are involved in the development and progression of IVDD. To date, research into mitochondrial dynamics in IVDD is at an early stage. The present narrative review aims to summarize the most recent findings about the role of mitochondrial fission in the pathogenesis of IVDD.
Collapse
Affiliation(s)
- Z Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - H Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - J Song
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - G Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - F Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - X Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - X Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - J Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - F Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|