1
|
Qin Y, Liu L, Zhang Y, Chen X, Zhang J, Ling S, Wang J, Yang X. Citrullinated IGF2BP1 promotes rheumatoid synovial aggression via increasing the mRNA stability of SEMA3D. Commun Biol 2025; 8:50. [PMID: 39809921 PMCID: PMC11732996 DOI: 10.1038/s42003-025-07492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Protein citrullination modification plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA), and anti-citrullinated protein antibodies (ACPAs) are extensively employed for clinical diagnosis of RA. However, there remains limited understanding regarding specific citrullinated proteins and their implications in the progression of RA. In this study, we screen and verify insulin-like growth factor-2 mRNA binding protein 1 (IGF2BP1) as a novel citrullinated protein with significantly elevated citrullinated level in RA. Autoantibodies against citrullinated IGF2BP1 are further detected in serum and synovial fluid samples from RA patients, which are positively correlated with erythrocyte sedimentation rate (ESR) and disease activity score 28 (DAS28). Transcriptomic sequencing and functional verification show that citrullination at the R167 site of IGF2BP1 promotes the proliferation, migration, and invasion of RA fibroblast-like synoviocytes (RA-FLSs) by improving the mRNA stability of Semaphorin 3D (SEMA3D). Experiments in collagen-induced arthritis (CIA) mice, the classical animal model of RA, show that IGF2BP1 R176K point mutation (Igf2bp1R167K/R167K) mice exert reduced inflammatory response, clinical scores, and joint destruction. At a molecular level, citrullination of IGF2BP1 promotes the stability of SEMA3D mRNA by promoting the interaction between IGF2BP1 and its cofactor ELAV-like protein 1 (ELAVL1), thereby promoting the invasiveness of RA-FLSs. In this study, a new citrullinated protein of IGF2BP1 is discovered, and the molecular mechanism of its citrullinated modification promoting the progression of RA disease is elucidated, which provides theoretical basis for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Yang Qin
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanwen Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaowei Chen
- Department of Immunology and Rheumatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiani Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sunwang Ling
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianguang Wang
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Yang Y, Guan W, Sheng XM, Gu HJ. Role of Semaphorin 3A in common psychiatric illnesses such as schizophrenia, depression, and anxiety. Biochem Pharmacol 2024; 226:116358. [PMID: 38857830 DOI: 10.1016/j.bcp.2024.116358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
With societal development and an ageing population, psychiatric disorders have become a common cause of severe and long-term disability and socioeconomic burdens worldwide. Semaphorin 3A (Sema-3A) is a secreted glycoprotein belonging to the semaphorin family. Sema-3A is well known as an axon guidance factor in the neuronal system and a potent immunoregulator at all stages of the immune response. It is reported to have various biological functions and is involved in many human diseases, including autoimmune diseases, angiocardiopathy, osteoporosis, and tumorigenesis. The signals of sema-3A involved in the pathogenesis of these conditions, are transduced through its cognate receptors and diverse downstream signalling pathways. An increasing number of studies show that sema-3A plays important roles in synaptic and dendritic development, which are closely associated with the pathophysiological mechanisms of psychiatric disorders, including schizophrenia, depression, and autism, suggesting the involvement of sema-3A in the pathogenesis of mental diseases. This indicates that mutations in sema-3A and alterations in its receptors and signalling may compromise neurodevelopment and predispose patients to these disorders. However, the role of sema-3A in psychiatric disorders, particularly in regulating neurodevelopment, remains elusive. In this review, we summarise the recent progress in understanding sema-3A in the pathogenesis of mental diseases and highlight sema-3A as a potential target for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, China
| | - Xiao-Ming Sheng
- Department of Trauma Center, Affiliated Hospital of Nantong University, China
| | - Hai-Juan Gu
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, China.
| |
Collapse
|
3
|
Li X, Martinez-Ramos S, Heedge FT, Pitsillides A, Bou-Gharios G, Poulet B, Chenu C. Expression of semaphorin-3A in the joint and role in osteoarthritis. Cell Biochem Funct 2024; 42:e4012. [PMID: 38584583 DOI: 10.1002/cbf.4012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Osteoarthritis (OA) is characterised by the deterioration of cartilage in the joints and pain. We hypothesise that semaphorin-3A (sema-3A), a chemorepellent for sensory nerves, plays a role in joint degradation and pain. We used the mechanical joint loading (MJL) model of OA to investigate sema-3A expression in the joint and examine its association with the development of OA and pain. We also analyse its effect on chondrocyte differentiation using the ATDC5 cell line. We demonstrate that sema-3A is present in most tissues in the healthy joint and its expression increases in highly innervated tissues, such as cruciate ligaments, synovial lining and subchondral bone, in loaded compared to nonloaded control joints. In contrast, sema-3A expression in cartilage was decreased in the severe OA induced by the application of high loads. There was a significant increase in circulating sema-3A, 6 weeks after MJL compared to the nonloaded mice. mRNA for sema-3A and its receptor Plexin A1 were upregulated in the dorsal root ganglia of mice submitted to MJL. These increases were supressed by zoledronate, an inhibitor of bone pain. Sema-3A was expressed at all stages of Chondrocyte maturation and, when added exogenously, stimulated expression of markers of chondrocyte differentiation. This indicates that sema-3A could affect joint tissues distinctively during the development of OA. In highly innervated joint tissues, sema-3A could control innervation and/or induce pain-associated neuronal changes. In cartilage, sema-3A could favour its degeneration by modifying chondrocyte differentiation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Sara Martinez-Ramos
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Freija T Heedge
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Andrew Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - George Bou-Gharios
- Musculoskeletal and Ageing Sciences Department, Institute of Lifecourse and Medical Science, University of Liverpool, Liverpool, UK
| | - Blandine Poulet
- Musculoskeletal and Ageing Sciences Department, Institute of Lifecourse and Medical Science, University of Liverpool, Liverpool, UK
| | - Chantal Chenu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
4
|
Słuczanowska-Głąbowska S, Jankowska O, Staniszewska M, Pawlik A. The Involvement of Semaphorins in the Pathogenesis of Skin Diseases. Int J Mol Sci 2023; 24:17235. [PMID: 38139064 PMCID: PMC10743238 DOI: 10.3390/ijms242417235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Semaphorins belong to a group of membrane and secretory proteins that act as ligands for several receptor families and are involved in modulating cell signaling pathways. They bind multimeric receptor complexes on the cell membrane to exert their effects and initiate unique intracellular signal transduction cascades. These proteins can influence several processes that are very important for cell function, such as cell division and differentiation. Semaphorins are involved in cell migration, apoptosis, cell adhesion, aggregation, and numerous immune processes due to their immunoregulatory effects. Semaphorins are expressed in keratinocytes, which is why they have become a target for studies on the pathogenesis of skin diseases. Most studies to date on the role of semaphorins in the pathogenesis of skin diseases have been carried out in cellular or animal models, and there are few clinical studies evaluating the role of semaphorins in the pathogenesis and therapy of skin diseases. In this narrative review, we summarized the current state of knowledge on the role of semaphorins in the pathogenesis of skin diseases and their potential importance as targets for therapy. We also tried to present the key findings and weaknesses of previous research in this field. The novelty of this article lies in the comprehensive presentation of the role of semaphorins in the pathogenesis of skin diseases, including the results of studies on cell cultures and animal models, elucidating the mechanisms and signaling pathways through which semaphorins affect the development of skin diseases, as well as on the presentation of the results of existing clinical trials evaluating the role of semaphorins in the pathogenesis of skin diseases, and as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp 72, 70-111 Szczecin, Poland; (S.S.-G.); (O.J.); (M.S.)
| |
Collapse
|
5
|
Effects of Semaphorin3A on the growth of sensory and motor neurons. Exp Cell Res 2023; 424:113506. [PMID: 36764590 DOI: 10.1016/j.yexcr.2023.113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
After peripheral nerve injury, motor and sensory axons can regenerate, but the inaccurate reinnervation of the target leads to poor functional recovery. Schwann cells (SCs) express sensory and motor phenotypes associated with selective regeneration. Semaphorin 3A (Sema3A) is an axonal chemorepellent that plays an essential role in axon growth. SCs can secret Sema3A, and Sema3A presents a different expression pattern at the proximal and distal ends of injured sensory and motor nerves. Hence, in our study, the protein expression and secretion of Sema3A in sensory and motor SCs and the expression of its receptor Neuropilin-1 (Nrp1) in dorsal root ganglia (DRG) sensory neurons (SNs) and spinal cord motor neurons (MNs) were detected by Western blot and ELISA. The effect of Sema3A at different concentrations on neurite growth of sensory and motor neurons was observed by immunostaining. Also, by blocking the Nrp1 receptor on neurons, the effect of Sema3A on neurite growth was observed. Finally, we observed the neurite growth of sensory and motor neurons cocultured with Sema3A siRNA transfected SCs by immunostaining. The results suggested that the expression and secretion of Sema3A in sensory SCs are more significant than that in motor SCs, and the expression of its receptor Nrp1 in SNs is higher than in MNs. Sema3A could inhibit the neurite growth of sensory and motor neurons via Nrp1, and Sema3A has a more substantial effect on the neurite growth of SNs. These data provide evidence that SC-secreted Sema3A might play a role in selective regeneration by a preferential effect on SNs.
Collapse
|
6
|
Eiza N, Kessler O, Sabag A, Neufeld G, Jones EY, Vadasz Z. Truncated-semaphorin3A is a potential regulatory molecule to restore immune homeostasis in immune-mediated diseases. Front Pharmacol 2023; 13:1085892. [PMID: 36703747 PMCID: PMC9871560 DOI: 10.3389/fphar.2022.1085892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Regulatory molecules have recently been recognized for their beneficial effects in the treatment of immune-mediated diseases, rather than using cytotoxic immune-suppressing drugs, which are associated with many unwanted side effects. Semaphorin3A (sema3A), a unique regulatory master of the immune system, was shown to be decreased in the serum of systemic lupus erythematosus (SLE) patients, in association with disease severity. Later, we were able to show its extremely beneficial effect in treating lupus nephritis in the NZB/W mice model. The mechanisms by which sema3A maintains its regulatory effect is by binding the regulatory receptor CD72 on B cells, thereby reducing the threshold of BCR signaling on B cells and reducing the production of pro-inflammatory cytokines. The aim of this study was to generate a stable sema3A molecule, easy to produce with a higher binding capacity to CD72 receptor rather than to Neuropilin-1 (NRP-1) receptor, which is expressed in many cell types. Using the crystallographic structure of parental sema3A, we synthesized a new secreted (shorter) sema3A derivative, which we called truncated sema3A (T-sema3A). The new molecule lacked the NRP-1 binding domain (the C-terminal site) and has an artificial dimerization site at position 257 (serine residue was exchanged with a cysteine residue). To facilitate the purification of this molecule we added Histidine epitope tag in frame upstream to a stop codon. This construct was transfected using a viral vector to 293HEK cells to generate cells stably expressing T-sema3A. T-sema3A is shown to be with a higher binding ability to CD72 than to NRP-1 as demonstrated by a homemade ELISA. In addition, T-sema3A was shown to be a regulatory agent which can induce the expression of IL-10 and TGF-β and reduce the secretion of pro-inflammatory cytokines such as IL-6, IFN-γ, and IL-17A from human T and B-lymphocytes. Keeping this in mind, T-sema3A is highly effective in maintaining immune homeostasis, therefore, becoming a potential agent in restoring the regulatory status of the immune system in immune-mediated diseases.
Collapse
Affiliation(s)
- Nasren Eiza
- The Proteomic Unit, Bnai Zion Medical Center, Haifa, Israel
- Cancer research center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer research center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Adi Sabag
- The Proteomic Unit, Bnai Zion Medical Center, Haifa, Israel
| | - Gera Neufeld
- Cancer research center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - E. Yvonne Jones
- The Division of Structural Biology (STRUBI), Nuffield Department of Clinical Medicine, Oxford, United Kingdom
| | - Zahava Vadasz
- The Proteomic Unit, Bnai Zion Medical Center, Haifa, Israel
| |
Collapse
|
7
|
Sema3A Drives Alternative Macrophage Activation in the Resolution of Periodontitis via PI3K/AKT/mTOR Signaling. Inflammation 2023; 46:876-891. [PMID: 36598593 DOI: 10.1007/s10753-022-01777-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Macrophages actively participate in immunomodulatory processes throughout periodontal inflammation. Regulation of M1/M2 polarization affects macrophage chemokine and cytokine secretion, resulting in a distinct immunological status that influences prognosis. Semaphorin 3A (Sema3A), a neurite growth factor, exerts anti-inflammatory effects. In this study, we investigated the immunomodulation of Sema3A on macrophage-related immune responses in vivo and in vitro. Topical medications of Sema3A in mice with periodontitis alleviated inflammatory cell infiltration into gingival tissue and reduced areas with positive IL-6 and TNFα expression. We observed that the positive area with the M2 macrophage marker CD206 increased and that of the M1 macrophage marker iNOS decreased in Sema3A-treated mice. It has been postulated that Sema3A alleviates periodontitis by regulating alternative macrophage activation. To understand the mechanism underlying Sema3A modulation of macrophage polarization, an in vitro macrophage research model was established with RAW264.7 cells, and we demonstrated that Sema3A promotes LPS/IFNγ-induced M1 macrophages to polarize into M2 macrophages and activates the PI3K/AKT/mTOR signaling pathways. Inhibition of the PI3K signaling pathway activation might reduce anti-inflammatory activity and boost the expression of the inflammatory cytokines, iNOS, IL-12, TNFα, and IL-6. This study indicated that Sema3A might be a feasible drug to regulate alternative macrophage activation in the inflammatory response and thus alleviate periodontitis.
Collapse
|
8
|
Ferretti G, Romano A, Sirabella R, Serafini S, Maier TJ, Matrone C. An increase in Semaphorin 3A biases the axonal direction and induces an aberrant dendritic arborization in an in vitro model of human neural progenitor differentiation. Cell Biosci 2022; 12:182. [DOI: 10.1186/s13578-022-00916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Semaphorins (Sema) belong to a large family of repellent guidance cues instrumental in guiding axons during development. In particular, Class 3 Sema (Sema 3) is among the best characterized Sema family members and the only produced as secreted proteins in mammals, thereby exerting both autocrine and paracrine functions. Intriguingly, an increasing number of studies supports the crucial role of the Sema 3A in hippocampal and cortical neurodevelopment. This means that alterations in Sema 3A signaling might compromise hippocampal and cortical circuits and predispose to disorders such as autism and schizophrenia. Consistently, increased Sema 3A levels have been detected in brain of patients with schizophrenia and many polymorphisms in Sema 3A or in the Sema 3A receptors, Neuropilins (Npn 1 and 2) and Plexin As (Plxn As), have been associated to autism.
Results
Here we present data indicating that when overexpressed, Sema 3A causes human neural progenitors (NP) axonal retraction and an aberrant dendritic arborization. Similarly, Sema 3A, when overexpressed in human microglia, triggers proinflammatory processes that are highly detrimental to themselves as well as NP. Indeed, NP incubated in microglia overexpressing Sema 3A media retract axons within an hour and then start suffering and finally die. Sema 3A mediated retraction appears to be related to its binding to Npn 1 and Plxn A2 receptors, thus activating the downstream Fyn tyrosine kinase pathway that promotes the threonine-serine kinase cyclin-dependent kinase 5, CDK5, phosphorylation at the Tyr15 residue and the CDK5 processing to generate the active fragment p35.
Conclusions
All together this study identifies Sema 3A as a critical regulator of human NP differentiation. This may imply that an insult due to Sema 3A overexpression during the early phases of neuronal development might compromise neuronal organization and connectivity and make neurons perhaps more vulnerable to other insults across their lifespan.
Collapse
|
9
|
Wong LS, Lee CH, Yen YT. Increased Epidermal Nerve Growth Factor without Small-Fiber Neuropathy in Dermatomyositis. Int J Mol Sci 2022; 23:ijms23169030. [PMID: 36012289 PMCID: PMC9408946 DOI: 10.3390/ijms23169030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Small-fiber neuropathy (SFN) is suggested to be involved in the pathogenesis of some types of autoimmune connective tissue diseases. SFN with a reduction in epidermal nerve fibers might affect sensory fibers and cause neuropathic symptoms, such as pruritus and pain, which are common in both dermatomyositis (DM) and cutaneous lupus erythematosus (CLE). Nerve growth factor (NGF) has been recognized as important in nociception by regulating epidermal nerve fiber density and sensitizing the peripheral nervous system. The present study aimed to investigate whether SFN was associated with the cutaneous manifestations of DM and CLE. We also investigated the relationship between SFN and axon guidance molecules, such as NGF, amphiregulin (AREG), and semaphorin (Sema3A) in DM and CLE. To explore the molecular signaling, interleukin (IL)-18 and IL-31, which have been implicated in the cutaneous manifestation and neuropathic symptoms in DM, were examined in keratinocytes. Our results revealed that intraepidermal nerve fiber density (IENFD) was unchanged in patients with DM, but significantly reduced in IENFD in patients with CLE compared with healthy control. Increased epidermal expression of NGF and decreased expression of Sema3A were demonstrated in patients with DM. Furthermore, IL-18 and IL-31 both induced the production of NGF from keratinocytes. Taken together, IL-18 and IL-31 mediated epidermal NGF expression might contribute to the cutaneous neuropathic symptoms in DM, while SFN might be important for CLE.
Collapse
Affiliation(s)
- Lai-San Wong
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yu-Ta Yen
- Department of Dermatology, Fooyin University Hospital, Pingtung 928, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: ; Tel.: +886-8-8323146; Fax: +886-7-7337612
| |
Collapse
|
10
|
Ceylan M, Erbak Yilmaz H, Narin F, Tatakis DN, Saglam M. Gingival crevicular fluid lipocalin-2 and semaphorin3A in stage III periodontitis: Non-surgical periodontal treatment effects. J Periodontal Res 2022; 57:724-732. [PMID: 35468224 DOI: 10.1111/jre.12995] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Identification of biomarkers to assess individual risk and monitor periodontal health status is important. Research on lipocalin-2 (LCN2) and semaphorin3A (Sema3A) is lacking. This study aimed to evaluate gingival crevicular fluid (GCF) LCN2, Sema3A, and tumor necrosis factor-α (TNF-α) levels in periodontally healthy (H), gingivitis (G), and periodontitis (P) patients, and their changes following non-surgical periodontal therapy. METHODS Sixty systemically healthy and non-smoker participants, diagnosed as periodontally healthy, gingivitis, and stage III grade C periodontitis, were recruited (n = 20/group). Clinical periodontal parameters were recorded and GCF samples were obtained at baseline from all groups; for group P, these were repeated one and three months following non-surgical periodontal treatment. GCF LCN2, Sema3A, and TNF-α levels were evaluated with enzyme-linked immunosorbent assay. RESULTS GCF LCN2, Sema3A, and TNF-α total amounts were significantly higher in disease groups than group H (p < .001). Between P and G groups, only TNF-α levels were significantly different (p < .001). Non-surgical periodontal therapy resulted in significant improvement of all clinical parameters and significant decreases of GCF LCN2 and TNF-α levels, at both time points, compared with baseline (p < .001). Sema3A levels remained unchanged following treatment (p > .05). LCN2 and TNF-α levels were significantly positively correlated with clinical parameters. LCN2 (AUC [area under the curve] = 0.94) and TNF-α (AUC = 0.98) levels were similarly accurate in differentiating between periodontal disease (whether G or P) and healthy controls. CONCLUSIONS LCN2 and TNF-α levels in GCF are correlated with clinical parameters and could prove useful as non-invasive screening tools for periodontitis.
Collapse
Affiliation(s)
- Merve Ceylan
- Department of Periodontology, Faculty of Dentistry, Izmir Katip Celebi University, Izmir, Turkey
| | - Huriye Erbak Yilmaz
- Department of Medical Biochemistry, School of Medicine, Izmir Katip Celebi University, Izmir, Turkey.,Izmir Biomedicine Genome Center, Dokuz Eylul University, Izmir, Turkey
| | - Figen Narin
- Department of Medical Biochemistry, School of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Mehmet Saglam
- Department of Periodontology, Faculty of Dentistry, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
11
|
The possible involvement of sema3A and sema4A in the pathogenesis of multiple sclerosis. Clin Immunol 2022; 238:109017. [PMID: 35460904 DOI: 10.1016/j.clim.2022.109017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Immune semaphorins are widely accepted to have functional impact on autoimmune diseases. OBJECTIVES To assess the status of sema3A and sema4A in the pathogenesis of Multiple Sclerosis (MS). RESULTS Sema3A expression on (T regulatory cells)Tregs was decreased in MS patients, compared to healthy controls (35.85 ± 16.7% vs 88.27 ± 3.8%; p ≤ 0.001). Serum levels of sema3A were decreased in MS patients 2.95 ± 0.43 vs 18.67 ± 5.7 ng/ml in healthy individuals; p ≤ 0.001. Sema4A serum levels were increased in MS patients compared to healthy individuals (12.99 ± 8.6 vs 5.83 ± 3.91 ng/ml; p ≤ 0.001). Sema3A and sema4A serum levels were found to be in negative/positive correlation with MS disease severity (rs = 0.62, rs = -0.49, respectively). CONCLUSION We show that sema3A is a regulatory molecule in MS, whereas sema4A is a stimulatory one. Targeting sema3A and sema4A could become a potential therapeutic approach in MS.
Collapse
|
12
|
Fu Y, Liu JW, Wu J, Wu ZX, Li J, Ji HF, Liang NP, Zhang HJ, Lai ZQ, Dong YF. Inhibition of semaphorin-3a alleviates lipopolysaccharide-induced vascular injury. Microvasc Res 2022; 142:104346. [DOI: 10.1016/j.mvr.2022.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
13
|
Lotfi R, Zamanimehr N. Semaphorin-3A: a promising therapeutic tool in allergic rhinitis. Immunol Res 2022; 70:135-142. [PMID: 35031951 DOI: 10.1007/s12026-022-09264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Abstract
Semaphorin-3A (Sema-3A), a secreted member of the semaphorin family, is well known for playing regulatory functions at all stages of the immune response. Sema-3A transduces signals by binding to its cognate receptors, namely, class A plexins (Plxns A1 to A4) and neuropilin-1 (Nrp-1). The downstream diverse signaling pathways induced by connecting Sema-3A to its receptors were found to be involved in the pathogenesis of different immunological disorders, ranging from cancer to autoimmunity and allergies. Recent studies have demonstrated that Sema-3A expression is diminished in the murine models and patients with allergic rhinitis (AR; a chronic inflammatory disorder of the nasal mucosa), suggesting the involvement of Sema-3A in AR pathogenesis. Investigations also revealed that treatment of these mice with exogenous Sema-3A protein alleviates the clinical symptom scores of AR, thereby compensating for the reduced expression of Sema-3A in AR. Indeed, Sema-3A treatment could suppress allergic responses in AR via inhibiting Th2/Th17 responses and boosting Th1/Treg responses. Also, Sema-3A could diminish dendritic cell (DC) maturation and T cell proliferation. Since it is implicated in the pathogenesis of AR; thus, Sema-3A turns to be a promising tool of therapy to be studied and utilized in this disease. This review intends to highlight the recent evidence on the role of Sema-3A in AR pathogenesis and summarizes the recent findings regarding the expression status of Sema-3A, as well as its therapeutic potential for treating this disease. HIGHLIGHTS: Sema-3A plays regulatory functions at all stages of the immune response. Sema-3A receptors are the class A plexins (A1-A4) and neuropilin-1 (Nrp-1). Sema-3A expression is reduced in murine models and patients with allergic rhinitis. Connecting Sema-3A to Nrp-1 increases Foxp3 expression in Treg cells. Injecting Sema-3A protein exerts therapeutic effects in mouse models of allergic diseases. Sema-3A shows promise as a therapeutic tool for the treatment of allergic rhinitis.
Collapse
Affiliation(s)
- Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran. .,Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, 6617713446, Sanandaj, Iran.
| | - Nahid Zamanimehr
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Emergency Medicine, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
14
|
Li M, Gao X, Liu K, Bao N, Jiang Z. MiR-379-5p aggravates experimental autoimmune uveitis in mice via the regulation of SEMA3A. Autoimmunity 2021; 54:275-283. [PMID: 34060391 DOI: 10.1080/08916934.2021.1931841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Uveitis is a disease resulting in the inflammation of uveal tracts, but the factors resulting in uveitis is still obscure. Previous studies have shown that miR-379-5p was involved in the pathogenesis of several diseases, however, the role and regulatory mechanism of miR-379-5p in uveitis were unclear. In our study, we established experimental autoimmune uveitis (EAU) mouse models to explore the role of miR-379-5p in uveitis. RT-qPCR identified that miR-379-5p level was increased in serum of EAU mice. In mechanism, SEMA3A 3'UTR was proven to be directly targeted by miR-379-5p and SEMA3A expression was negatively regulated by miR-379-5p in CD4+ T cells. Moreover, ELISA analysis revealed that knockdown of miR-379-5p suppressed the production of inflammation cytokines including IL-17, TNF-α and IL-β in vitro. These results were reversed by SEMA3A overexpression. In addition, the reduction of Th17 cells under miR-379-5p inhibitor was neutralised by SEMA3A knockdown in vitro. Furthermore, we demonstrated that knockdown of miR-379-5p significantly reversed the increased clinical scores and inflammatory response resulting from EAU treatment and this effect was further countervailed by SEMA3A silencing. Our study suggested that miR-379-5p aggravated uveitis in EAU mice via the regulation of SEMA3A, which may provide a novel insight for uveitis treatment.
Collapse
Affiliation(s)
- Mohan Li
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiang Gao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Kou Liu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ning Bao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Semaphorin3A increases M1-like microglia and retinal ganglion cell apoptosis after optic nerve injury. Cell Biosci 2021; 11:97. [PMID: 34039431 PMCID: PMC8157735 DOI: 10.1186/s13578-021-00603-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background The mechanisms leading to retinal ganglion cell (RGC) death after optic nerve injury have not been fully elucidated. Current evidence indicates that microglial activation and M1- and M2-like dynamics may be an important factor in RGC apoptosis after optic nerve crush (ONC). Semaphorin3A (Sema3A) is a classic axonal guidance protein,which has been found to have a role in neuroinflammation processes. In this study, we investigated the contribution of microglial-derived Sema3A to progressive RGC apoptosis through regulating paradigm of M1- and M2-like microglia after ONC. Method
A mouse ONC model and a primary microglial-RGC co-culture system were used in the present study. The expression of M1- and M2-like microglial activation markers were assessed by real-time polymerase chain reaction (RT-qPCR). Histological and Western blot (WB) analyses were used to investigate the polarization patterns of microglia transitions and the levels of Sema3A. RGC apoptosis was investigated by TUNEL staining and caspase-3 detection. Results Levels of Sema3A in the mouse retina increased after ONC. Treatment of mice with the stimulating factor 1 receptor antagonist PLX3397 resulted in a decrease of retinal microglia. The levels of CD16/32 (M1) were up-regulated at days 3 and 7 post-ONC. However, CD206 (M2) declined on day 7 after ONC. Exposure to anti-Sema3A antibodies (anti-Sema3A) resulted in a decrease in the number of M1-like microglia, an increase in the number of M2-like microglia, and the amelioration of RGC apoptosis. Conclusions An increase in microglia-derived Sema3A in the retina after ONC partially leads to a continuous increase of M1-like microglia and plays an important role in RGC apoptosis. Inhibition of Sema3A activity may be a novel approach to the prevention of RGC apoptosis after optic nerve injury. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00603-7.
Collapse
|
16
|
Kanth SM, Gairhe S, Torabi-Parizi P. The Role of Semaphorins and Their Receptors in Innate Immune Responses and Clinical Diseases of Acute Inflammation. Front Immunol 2021; 12:672441. [PMID: 34012455 PMCID: PMC8126651 DOI: 10.3389/fimmu.2021.672441] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Semaphorins are a group of proteins that have been studied extensively for their critical function in neuronal development. They have been shown to regulate airway development, tumorigenesis, autoimmune diseases, and the adaptive immune response. Notably, emerging literature describes the role of immunoregulatory semaphorins and their receptors, plexins and neuropilins, as modulators of innate immunity and diseases defined by acute injury to the kidneys, abdomen, heart and lungs. In this review we discuss the pathogenic functions of semaphorins in clinical conditions of acute inflammation, including sepsis and acute lung injury, with a focus on regulation of the innate immune response as well as potential future therapeutic targeting.
Collapse
Affiliation(s)
- Shreya M Kanth
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Salina Gairhe
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Gao Y, Wang C, Wang Z, Li W, Liu Y, Shou S, Chai Y. Semaphorin 3A contributes to sepsis‑induced immunosuppression by impairing CD4 + T cell anergy. Mol Med Rep 2021; 23:302. [PMID: 33649856 PMCID: PMC7930987 DOI: 10.3892/mmr.2021.11941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Semaphorin 3A (Sema3A), a member of the Sema family of proteins, appears to serve an important role in sepsis and sepsis‑induced immunosuppression and has been regarded as a crucial regulator involved in cellular immune response. However, the role of Sema3A in CD4+ T cell anergy during sepsis remains to be elucidated. In the present study, the cecal ligation and perforation model and lipopolysaccharide (LPS) were used to simulate sepsis and the role of Sema3A in sepsis‑induced CD4+ T cell anergy was investigated in vivo and in vitro. In vivo, the serum concentration of Sema3A was enhanced and exacerbated sepsis‑induced T cell immunosuppression and multiple organ dysfunction syndromes (MODS). Administration of (‑)‑epigallocatechin‑3‑gallate, an inhibitor of Sema3A, markedly improved sepsis‑induced T cell immunosuppression and MODS. In vitro, both lymphoid and myeloid lineages secreted high concentration of Sema3A in LPS‑induced sepsis, especially in the lymphoid lineage. Inhibition of Sema3A alleviated T cell anergy. The NF‑κB signaling pathway was involved in Sema3A‑mediated autocrine loop aggravating T cell immune dysfunction during LPS‑induced sepsis. Inhibiting Sema3A exerted significant improvement of sepsis‑induced immunosuppression and MODS, which was associated with improvement of CD4+ T cells anergy via regulation of the NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Yulei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunxue Wang
- Department of Emergency Medicine, Airport Hospital, Tianjin Medical University General Hospital, Tianjin 300047, P.R. China
| | - Ziyi Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wenjie Li
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
18
|
The role of immune semaphorins in the pathogenesis of multiple sclerosis: Potential therapeutic targets. Int Immunopharmacol 2021; 95:107556. [PMID: 33756227 DOI: 10.1016/j.intimp.2021.107556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
The immune and nervous systems possess a highly intricate network of synaptic connections, shared messenger molecules, and exquisite communication ways, allowing intercellular signal transduction. The semaphorins (Semas) were initially identified as axonal guidance molecules in the development of the nervous system but later were found to be implicated also in regulating the immune system, known in this case as the "immune Semas" or "immunoregulatory Semas". Increasingly, these molecules are involved in multiple aspects of both physiological and pathological immune responses and were recently indicated to take part in various immunological disorders, encompassing allergy, cancer, and autoimmunity. Semas transduce signals by connecting to their cognate receptors, namely, plexins and neuropilins. Some of them, like Sema-3F, have been found to function as the inducer of the remyelination process whereas some others, like Sema-3A and Sema-4D, act to inhibit this process, either directly or indirectly. Besides, Sema-4A is crucial to the differentiation of T helper type 1 (Th1) and Th17 cells that are potentially involved in the pathogenesis of multiple sclerosis (MS), an autoimmune disease of the central nervous system. This review aims to reveal the role of immune Semas in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis, focusing on the therapeutic usages of these molecules to treat this neurodegenerative disease.
Collapse
|
19
|
Knockdown of RMST Impedes Neuronal Apoptosis and Oxidative Stress in OGD/R-Induced Ischemic Stroke Via Depending on the miR-377/SEMA3A Signal Network. Neurochem Res 2021; 46:584-594. [PMID: 33409855 DOI: 10.1007/s11064-020-03194-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/20/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Long non-coding RNAs (lncRNAs) have pivotal roles in regulating ischemic stroke (IS), including lncRNA rhabdomyosarcoma 2-associated transcript (RMST). The purpose of this report is to discover the functional mechanism of RMST. The expression detection of RMST, microRNA-377 (miR-377) and Semaphorin 3A (SEMA3A) was performed by quantitative real-time polymerase chain reaction (qRT-PCR). Oxygen and glucose deprivation/reperfusion (OGD/R) in N2a cells was used to mimic IS environment in vitro. Cell Counting Kit-8 (CCK-8) and flow cytometry were implemented to assess cell viability and apoptosis. Oxidative stress was analyzed via assaying the associated indicators. Dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation (RIP) assays were jointly administrated for binding analysis between targets. SEMA3A protein level was measured using western blot. We found in IS serum samples, RMST was upregulated while miR-377 was downregulated. After the establishment of OGD/R-induced IS model, we found that the decreased RMST abrogated the OGD/R-triggered apoptosis and oxidative stress. Through the target analysis, miR-377 was shown to be sponged by RMST and the effects of RMST knockdown on OGD/R-induced cell injuries were related to miR-377 upregulation. Besides, SEMA3A served as a target gene of miR-377 and the mitigation of miR-377 for ischemic brain damages was achieved by downregulating SEMA3A. What's more, RMST could regulate SEMA3A by playing the sponge action on miR-377. Collectively, all these findings clarified that RMST repression retarded IS progression in vitro via SEMA3A downregulation by targeting miR-377, which represented a different perspective in the pathological development of IS.
Collapse
|
20
|
Hoseini-Aghdam M, Sheikh V, Eftekharian MM, Rezaeepoor M, Behzad M. Enhanced expression of TIGIT but not neuropilin-1 in patients with type 2 diabetes mellitus. Immunol Lett 2020; 225:1-8. [PMID: 32540486 DOI: 10.1016/j.imlet.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The aggressive T helper cell responses and regulatory T (Treg) cells dysfunction exist in type 2 diabetes mellitus (T2DM). The co-inhibitory T cell immunoglobulin and ITIM-domain (TIGIT), neuropilin-1 (Nrp-1), and the co-stimulatory CD226 play a critical role in the inhibition or activation of immune responses. In this project, the expression of TIGIT, CD226, Nrp-1, and their ligands, CD155 and semaphorin 3A (Sema-3A) were investigated in T2DM. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from 30 patients with T2DM, and 30 healthy controls (HCs). The frequencies of TIGIT and Nrp-1 on CD4+CD25hi Treg cells, CD4+CD25- responder T cells, total CD4+ T cells, and non-CD4+ cells were assessed using flow cytometry. The mRNA levels of TIGIT, CD226, Nrp-1, CD155, and Sema-3A were assessed by real-time PCR. RESULTS The percentage and MFI of TIGIT on CD4+CD25hi T cells, CD4+CD25- T cells, total CD4+ T cells, and non-CD4+ cells were higher in patients versus HCs (p < 0.05 for all). The mRNA level of TIGIT was increased in patients compared with HCs (p = 0.003). No differences were observed in the expression of CD226, CD155, Nrp-1, and Sema-3A between the groups. CONCLUSIONS The expression of TIGIT was enhanced in T2DM and the TIGIT axis could be considered as a new therapeutic purpose for the T2DM.
Collapse
Affiliation(s)
- Mirhamed Hoseini-Aghdam
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vida Sheikh
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mahsa Rezaeepoor
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Behzad
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
21
|
Iragavarapu-Charyulu V, Wojcikiewicz E, Urdaneta A. Semaphorins in Angiogenesis and Autoimmune Diseases: Therapeutic Targets? Front Immunol 2020; 11:346. [PMID: 32210960 PMCID: PMC7066498 DOI: 10.3389/fimmu.2020.00346] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
The axonal guidance molecules, semaphorins, have been described to function both physiologically and pathologically outside of the nervous system. In this review, we focus on the vertebrate semaphorins found in classes 3 through 7 and their roles in vascular development and autoimmune diseases. Recent studies indicate that while some of these vertebrate semaphorins promote angiogenesis, others have an angiostatic function. Since some semaphorins are also expressed by different immune cells and are known to modulate immune responses, they have been implicated in autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. We conclude this review by addressing strategies targeting semaphorins as potential therapeutic agents for angiogenesis and autoimmune diseases.
Collapse
Affiliation(s)
| | - Ewa Wojcikiewicz
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Alexandra Urdaneta
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
22
|
Liu LN, Wang P, Zou YF, Xu Z, Cheng J, Zhang Y, Hu W, Pan HF. Semaphorin-3A, semaphorin-7A gene single nucleotide polymorphisms, and systemic lupus erythematosus susceptibility. Autoimmunity 2019; 52:161-167. [DOI: 10.1080/08916934.2019.1642333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Li-Na Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, PR China
| | - Peng Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, PR China
| | - Yan-Feng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, PR China
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Zhiwei Xu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Jian Cheng
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Yuzhou Zhang
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Wenbiao Hu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, PR China
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
23
|
Zouali M, La Cava A. Editorial: Innate Immunity Pathways in Autoimmune Diseases. Front Immunol 2019; 10:1245. [PMID: 31214194 PMCID: PMC6557999 DOI: 10.3389/fimmu.2019.01245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/16/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
| | - Antonio La Cava
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|