1
|
Sun T, Zhang BW, Wu GF, Liu L, Song HY, Liu PW, Xiong R, Liu X. Comparative analysis of the therapeutic efficacy of low-temperature plasma ablation in treating fungal keratitis caused by various strains. Int Ophthalmol 2025; 45:68. [PMID: 39924602 DOI: 10.1007/s10792-025-03440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVE The objective of this study is to assess the therapeutic efficacy of low-temperature plasma ablation (LTP) combined with drug treatment in the treatment of fungal keratitis (FK) caused by various pathogens, thereby establishing a clinical foundation for the use of LTP in treating FK. METHODS A retrospective study was performed, including 76 patients (76 eyes) with FK diagnosed at the Affiliated Eye Hospital of Nanchang University. The patients were categorized into the Fusarium group, Alternaria group, Aspergillus group, and other genus groups based on positive results from biological cultures. Key clinical parameters, including best-corrected visual acuity (BCVA), maximum ulcer lesion diameter, and healing grades, were assessed and compared at baseline (pre-treatment), on postoperative day 3, and at postoperative week 3. RESULTS The study demonstrated that the BCVA (LogMAR) of all patients revealed no significant differences at postoperative day 3 (F = 2.54, p = 0.063) and week 3 (F = 1.86, p = 0.143). Although BCVA improved to varying degrees compared to preoperative levels, the changes were not statistically significant (p > 0.05). After treatment with LTP combined with pharmacotherapy across all four groups, an average of 53 patients (69.74%) achieved grade I healing, with the group effect being nonsignificant (F = 2.85, p = 0.071), while the effect of time post-treatment was significant (F = 67.85, p < 0.001). Additionally, the corneal scar diameter at postoperative week 3 was significantly smaller compared to the preoperative lesion diameter (p < 0.05). Multiple comparisons revealed significant differences in scar diameter among patients with grade I healing at postoperative week 3 (F = 3.48, p = 0.023), with notable differences observed between the Alternaria and Fusarium groups (p = 0.017). The average rate of grade III healing, defined by the occurrence of corneal perforation and/or the need for therapeutic penetrating keratoplasty, was 7.89%. CONCLUSION Low-temperature plasma ablation demonstrates effective therapeutic outcomes for FK caused by various pathogens that are unresponsive to pharmacological treatments, with no significant complications.
Collapse
Affiliation(s)
- Tao Sun
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, No.463 of Bayi Road, Nanchang, 330000, China
| | - Bo-Wen Zhang
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, No.463 of Bayi Road, Nanchang, 330000, China
| | - Guo-Fu Wu
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, No.463 of Bayi Road, Nanchang, 330000, China
| | - Lin Liu
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, No.463 of Bayi Road, Nanchang, 330000, China
| | - Hong-Yan Song
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, No.463 of Bayi Road, Nanchang, 330000, China
| | - Pei-Wei Liu
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, No.463 of Bayi Road, Nanchang, 330000, China
| | - Rui Xiong
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, No.463 of Bayi Road, Nanchang, 330000, China
| | - Xian Liu
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, No.463 of Bayi Road, Nanchang, 330000, China.
| |
Collapse
|
2
|
Khan MS, Murthy A, Ahmed T. Advancements in Ocular Modelling and Simulations: Key Considerations and Case Studies. AAPS PharmSciTech 2024; 26:14. [PMID: 39690355 DOI: 10.1208/s12249-024-03001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
This review paper discusses the key aspects of ocular biopharmaceutics, with emphasis on the crucial role played by ocular compartmental modelling and simulation in deciphering physiological conditions related to various eye diseases. It describes eye's intricate structure and function and the need for precise and targeted drug delivery systems to address prevalent eye conditions. The review categorizes and discusses various formulations employed in ocular drug delivery, delineating their respective advantages and limitations. Additionally, it probes the challenges inherent in diverse routes of drug administration for ocular therapies and provides insights into the complexities of achieving optimal drug concentrations at the target site within the eye. The central theme of this work is the ocular compartmental modelling and simulations. Hence, this works discusses on the nuanced understanding of physiological conditions within the eye, drug distribution, drug release kinetics, and key considerations for ocular compartmental modelling and simulations. By combining information from various sources, this review aims to serve as a comprehensive reference for researchers, clinicians, and pharmaceutical developers. It covers the multifaceted landscape of ocular biopharmaceutics and the transformative impact of modelling and simulation in optimizing ocular drug delivery strategies.
Collapse
Affiliation(s)
- Mohammed Shareef Khan
- Biopharmaceutics - Biopharmaceutics and Bioequivalence, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad, India.
| | - Aditya Murthy
- Biopharmaceutics - Biopharmaceutics and Bioequivalence, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad, India
| | - Tausif Ahmed
- Biopharmaceutics and Bioanalytical - Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad, India
| |
Collapse
|
3
|
Fu X, Tian X, Lin J, Wang Q, Gu L, Wang Z, Chi M, Yu B, Feng Z, Liu W, Zhang L, Li C, Zhao G. Zeolitic Imidazolate Framework-8 Offers an Anti-Inflammatory and Antifungal Method in the Treatment of Aspergillus Fungal Keratitis in vitro and in vivo. Int J Nanomedicine 2024; 19:11163-11179. [PMID: 39502641 PMCID: PMC11537184 DOI: 10.2147/ijn.s480800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024] Open
Abstract
Background Fungal keratitis is a serious blinding eye disease. Traditional drugs used to treat fungal keratitis commonly have the disadvantages of low bioavailability, poor dispersion, and limited permeability. Purpose To develop a new method for the treatment of fungal keratitis with improved bioavailability, dispersion, and permeability. Methods Zeolitic Imidazolate Framework-8 (ZIF-8) was formed by zinc ions and 2-methylimidazole linked by coordination bonds and characterized by Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Zeta potential. The safety of ZIF-8 on HCECs and RAW 264.7 cells was detected by Cell Counting Kit-8 (CCK-8). Safety evaluation of ZIF-8 on mice corneal epithelium was conducted using the Draize corneal toxicity test. The effects of ZIF-8 on fungal growth, biofilm formation, and hyphae structure were detected by Minimal inhibit concentration (MIC), crystal violet staining, Propidium Iodide (PI) testing, and calcofluor white staining. The anti-inflammatory effects of ZIF-8 on RAW 246.7 cells were evaluated by Quantitative Real-Time PCR Experiments (qPCR) and Enzyme-linked immunosorbent assay (ELISA). Clinical score, Colony-Forming Units (CFU), Hematoxylin-eosin (HE) staining, and immunofluorescence were conducted to verify the therapeutic effect of ZIF-8 on C57BL/6 female mice with fungal keratitis. Results In vitro, ZIF-8 showed outstanding antifungal effects, including inhibiting the growth of Aspergillus fumigatus over 90% at 64 μg/mL, restraining the formation of biofilm, and destroying cell membranes. In vivo, treatment with ZIF-8 reduced corneal fungal load and mitigated neutrophil infiltration in fungal keratitis, which effectively reduced the severity of keratitis in mice and alleviated the infiltration of inflammatory factors in the mouse cornea. In addition, ZIF-8 reduces the inflammatory response by downregulating the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β after Aspergillus fumigatus infection in vivo and in vitro. Conclusion ZIF-8 has a significant anti-inflammatory and antifungal effect, which provides a new solution for the treatment of fungal keratitis.
Collapse
Affiliation(s)
- Xueyun Fu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Ziyi Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zhuhui Feng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Wenyao Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
4
|
Diao W, Yin M, Qi Y, Fu Y, Gu L, Lin J, Zhang L, Jiang N, Wang Q, Wang Y, Yi W, Chi M, Li C, Zhao G. Resveratrol has neuroprotective effects and plays an anti-inflammatory role through Dectin-1/p38 pathway in Aspergillus fumigatus keratitis. Cytokine 2024; 179:156626. [PMID: 38678810 DOI: 10.1016/j.cyto.2024.156626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE To determine the antifungal, anti-inflammatory and neuroprotective effects of resveratrol (RES) in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS Cytotoxicity assay and Draize eye assay were performed to assess the toxicity of RES. The antifungal effect of RES was assessed by minimal inhibitory concentration, scanning or transmission electron microscopy, propidium iodide uptake assay, and Calcofluor white staining. Phosphorylation of p38 MAPK, mRNA and protein levels of Dectin-1 and related inflammatory factors were measured by qRT-PCR, ELISA and Western blot in vitro and in vivo. Clinical score, HE staining, plate count, and myeloperoxidase test were used to observe the progress of fungal keratitis. IF staining, qRT-PCR, and the Von Frey test were selected to assess the neuroprotective effects of RES. RESULTS RES suppressed A. fumigatus hyphae growth and altered hyphae morphology in vitro. RES decreased the expression of Dectin-1, IL-1β and TNF-α, as well as p38 MAPK phosphorylation expression, and also decreased clinical scores, reduced inflammatory cell infiltration and neutrophil activity, and decreased fungal load. RES also protected corneal basal nerve fibers, down-regulated mechanosensitivity thresholds, and increased the mRNA levels of CGRP and TRPV-1.. CONCLUSION These evidences revealed that RES could exert antifungal effects on A. fumigatus and ameliorate FK through suppressing the Dectin-1/p38 MAPK pathway to down-regulate IL-1β, IL-6, etc. expression and play protective effect on corneal nerves.
Collapse
Affiliation(s)
- Weilin Diao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Min Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yinghe Qi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yudong Fu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuwei Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Wendan Yi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
5
|
Cong F, Gu L, Lin J, Liu G, Wang Q, Zhang L, Chi M, Xu Q, Zhao G, Li C. Plumbagin inhibits fungal growth, HMGB1/LOX-1 pathway and inflammatory factors in A. fumigatus keratitis. Front Microbiol 2024; 15:1383509. [PMID: 38655086 PMCID: PMC11035880 DOI: 10.3389/fmicb.2024.1383509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
To investigate the anti-inflammatory and antifungal effects of plumbagin (PL) in Aspergillus fumigatus (A. fumigatus) keratitis, the minimum inhibitory concentration (MIC), time-killing curve, spore adhesion, crystal violet staining, calcium fluoride white staining, and Propidium Iodide (PI) staining were employed to assess the antifungal activity of PL in vitro against A. fumigatus. The cytotoxicity of PL was assessed using the Cell Counting Kit-8 (CCK8). The impact of PL on the expression of HMGB1, LOX-1, TNF-α, IL-1β, IL-6, IL-10 and ROS in A. fumigatus keratitis was investigated using RT-PCR, ELISA, Western blot, and Reactive oxygen species (ROS) assay. The therapeutic efficacy of PL against A. fumigatus keratitis was assessed through clinical scoring, plate counting, Immunofluorescence and Hematoxylin-Eosin (HE) staining. Finally, we found that PL inhibited the growth, spore adhesion, and biofilm formation of A. fumigatus and disrupted the integrity of its cell membrane and cell wall. PL decreased IL-6, TNF-α, and IL-1β levels while increasing IL-10 expression in fungi-infected mice corneas and peritoneal macrophages. Additionally, PL significantly attenuated the HMGB1/LOX-1 pathway while reversing the promoting effect of Boxb (an HMGB1 agonist) on HMGB1/LOX-1. Moreover, PL decreased the level of ROS. In vivo, clinical scores, neutrophil recruitment, and fungal burden were all significantly reduced in infected corneas treated with PL. In summary, the inflammatory process can be inhibited by PL through the regulation of the HMGB-1/LOX-1 pathway. Simultaneously, PL can exert antifungal effects by limiting fungal spore adhesion and biofilm formation, as well as causing destruction of cell membranes and walls.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Liu W, Tian X, Gu L, Yu B, Wang Z, Chi M, Lin J, Wang Q, Liu G, Zhao G, Cui Li. Oxymatrine mitigates Aspergillus fumigatus keratitis by suppressing fungal activity and restricting pyroptosis. Exp Eye Res 2024; 240:109830. [PMID: 38364932 DOI: 10.1016/j.exer.2024.109830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Fungal keratitis (FK) is a refractory keratitis caused by excessive inflammation and fungal damage. Excessive inflammation can lead to tissue damage and corneal opacity, resulting in a poor prognosis for FK. Oxymatrine (OMT) is a natural alkaloid, which has rich pharmacological effects, such as antioxidant and anti-inflammation. However, its antifungal activity and the mechanism of action in FK have not been elucidated. This study confirmed that OMT suppressed Aspergillus fumigatus growth, biofilm formation, the integrity of fungal cell and conidial adherence. OMT not only effectively reduced corneal fungal load but also inflammation responses. OMT lessened the recruitment of neutrophils and macrophages in FK. In addition, OMT up-regulated the expression of Nrf2 and down-regulated the expression of IL-18, IL-1β, caspase-1, NLRP3 and GSDMD. Pre-treatment with Nrf2 inhibitor up-regulated the expression of IL-1β, IL-18, caspase-1, NLRP3 and GSDMD supressed by OMT. In conclusion, OMT has efficient anti-inflammatory and antifungal effects by suppressing fungal activity and restricting pyroptosis via Nrf2 pathway. OMT is considered as a potential option for the treatment of FK.
Collapse
Affiliation(s)
- Weichen Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ziyi Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guibo Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
7
|
Mishra A, Biswas A, Deb Choudhury A, Verma S, Durga Prasad Y, Singh V, Chhatrapati Bisen A, Kumar M, Sankar Bhatta R. Simultaneous determination of amphotericin B, tobramycin and vancomycin in rabbit ocular biofluids and tissues by LC-MS/MS: An antimicrobial therapy for keratitis and its PK-PD application. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1233:123960. [PMID: 38217969 DOI: 10.1016/j.jchromb.2023.123960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 01/15/2024]
Abstract
A rationale poly-microbial keratitis (PMK) therapy requires quick identification of pathogen (bacteria and fungi) and their efficient treatment. However, majority of healthcare providers are still having trouble finding an effective medicine to treat PMK due to constraints such as antimicrobial resistance, dose and dosing schedule. Thus, a broad spectrum anti-fungal and antibacterial having less resistance in community involving combination therapy such as amphotericin B (AmB), tobramycin (TBR) and vancomycin (VCM) is required. Hence, to characterize the pharmacokinetic (PK) and PK-pharmacodynamic (PD) indices, a rapid and sensitive simultaneous LC-MS/MS bioanalytical method was developed and validated for the quantification of AmB, TBR and VCM in rabbit ocular biofluids and tissues. Chromatographic resolution was achieved on a Zorbax C18 column with a mobile phase composed of acetonitrile and 0.4 % formic acid in deionized water using a gradient mode of elution. The calibration curves showed good linearity over the concentration range of 1.95-500 ng/mL for AmB and TBR, 3.9-800 ng/mL for VCM, respectively. The lower limit of quantification (LLOQ) was found to be 1.95 ng/mL for AmB and TBR, and 4.5 ng/mL for VCM. Analyte extraction was performed by simple protein precipitation method with minimal sample volume of 10 µL. Finally, the developed method was validated for selectivity, linearity (r2 > 0.99), precision, accuracy, matrix effects, and stability. The ocular pharmacokinetic profile of commercial AmB, TBR, and VCM formulations was further assessed using the validated method and the PK-PD indices along with dosing frequency was predicted by PK-PD modelling using Phoenix WinNonlin Software.
Collapse
Affiliation(s)
- Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Jawaharlal Nehru University, New Delhi 110067, India
| | - Sarvesh Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Jawaharlal Nehru University, New Delhi 110067, India
| | - Yarra Durga Prasad
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vaishali Singh
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Jawaharlal Nehru University, New Delhi 110067, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
8
|
Awad R, Ghaith AA, Awad K, Mamdouh Saad M, Elmassry AA. Fungal Keratitis: Diagnosis, Management, and Recent Advances. Clin Ophthalmol 2024; 18:85-106. [PMID: 38223815 PMCID: PMC10788054 DOI: 10.2147/opth.s447138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/09/2023] [Indexed: 01/16/2024] Open
Abstract
Fungal keratitis is one of the major causes of microbial keratitis that may lead to corneal blindness. Many problems related to diagnosis and therapy are encountered in fungal keratitis, including difficulty in obtaining laboratory diagnoses and the availability and efficacy of antifungal medications. Intensive and prolonged use of antifungal topical preparations may not be enough. The use of antifungal medications is considered the main treatment for fungal keratitis. It is recommended to start antifungal therapy after confirmation of the clinical diagnosis with a smear or positive cultures. Topical application of antifungal medications is a mainstay for the treatment of fungal keratitis; however, systemic, intra-stromal, or intra-cameral routes may be used. Therapeutic keratoplasty is the main surgical procedure approved for the management of fungal keratitis with good success rate. Intrastromal corneal injection of antifungal medications may result in steady-state drug levels within the corneal tissue and prevent intervals of decreased antifungal drug concentration below its therapeutic level. In cases of severe fungal keratitis with deep stromal infiltration not responding to treatment, intracameral injection of antifungal agents may be effective. Collagen cross-linking has been proposed to be beneficial for cases of fungal keratitis as a stand-alone therapy or as an adjunct to antifungal medications. Although collagen cross-linking has been extensively studied in the past few years, its protocol still needs many modifications to optimize UV fluence levels, irradiation time, and concentration of riboflavin to achieve 100% microbial killing.
Collapse
Affiliation(s)
- Ramy Awad
- Department of Ophthalmology, Alexandria General Ophthalmology Hospital, Alexandria, Egypt
| | - Alaa Atef Ghaith
- Department of Ophthalmology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Khaled Awad
- Department of Ophthalmology, Alexandria General Ophthalmology Hospital, Alexandria, Egypt
| | - Marina Mamdouh Saad
- Department of Ophthalmology, Alexandria General Ophthalmology Hospital, Alexandria, Egypt
| | - Ahmed Ak Elmassry
- Department of Ophthalmology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Gong Y, Zhang L, Liu S, Zhang H, Peng L, Li H, Dai S, Chen B. Continuous voriconazole lavage in managing moderate and severe fungal keratitis: a randomized controlled trial. Graefes Arch Clin Exp Ophthalmol 2023; 261:1639-1649. [PMID: 36642766 DOI: 10.1007/s00417-022-05969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To assess the effectiveness and safety of continuous lavage with 1% voriconazole (CL) for moderate and severe fungal keratitis. METHODS Thirty-one patients were randomized to receive topical eye drops either alone (T) or combined with continuous 1% voriconazole lavage (CL-T). The primary outcome was the cure rate at 3 months. The secondary outcomes were the 6-day efficacy, 3-day infiltration size and depth, hypopyon height, central corneal thickness (CCT), epithelial defect size, and subject feelings and clinical signs assessment scores. RESULTS At 3 months, the cure rate was comparable between the groups in patients with moderate fungal keratitis (66.7% vs. 62.5%, P = 0.60). However, among severe cases, 4 cases (44.4%) in the CL-T group healed successfully, while none in the T group; this difference was not significant (P = 0.08), although it was very close to 0.05. This may be related to the small sample size. After 6 days, the percentage of patients with "worsened" ulcers in the CL-T group was lower than that in the T group (0% vs. 31%, P = 0.043). The infiltration size, infiltration depth, and hypopyon height in the CL-T group were smaller than those in the T group after 3 days (all P < 0.05). There was no difference in CCT, epithelial defect size, subject feelings scores, or clinical signs scores between groups. CONCLUSION These outcomes suggest that CL is an effective and safe adjuvant method for controlling the progression of moderate and severe fungal keratitis. TRIAL REGISTRATION NUMBER ChiCTR2100050565.
Collapse
Affiliation(s)
- Yujia Gong
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, China
| | - Liwei Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, China
| | - Shaohua Liu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, China
| | - Hongyan Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, China
| | - Li Peng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, China
| | - Haoyu Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, China
| | - Shirui Dai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China. .,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, China.
| |
Collapse
|
10
|
Yang J, Liang Z, Lu P, Song F, Zhang Z, Zhou T, Li J, Zhang J. Development of a Luliconazole Nanoemulsion as a Prospective Ophthalmic Delivery System for the Treatment of Fungal Keratitis: In Vitro and In Vivo Evaluation. Pharmaceutics 2022; 14:2052. [PMID: 36297487 PMCID: PMC9608689 DOI: 10.3390/pharmaceutics14102052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Luliconazole (LCZ), a novel imidazole drug, has broad-spectrum and potential antifungal effects, which makes it a possible cure for fungal keratitis; nevertheless, its medical use in ocular infections is hindered by its poor solubility. The purpose of this study was to design and optimize LCZ nanoemulsion (LCZ-NE) formulations using the central composite design-response surface methodology, and to investigate its potential in improving bioavailability following ocular topical administration. The LCZ-NE formulation was composed of Capryol 90, ethoxylated hydrogenated castor oil, Transcutol® P and water. The shape of LCZ-NE was spherical and uniform, with a droplet size of 18.43 ± 0.05 nm and a low polydispersity index (0.070 ± 0.008). The results of an in vitro release of LCZ study demonstrated that the LCZ-NE released more drug than an LCZ suspension (LCZ-Susp). Increases in the inhibition zone indicated that the in vitro antifungal activity of the LCZ-NE was significantly improved. An ocular irritation evaluation in rabbits showed that the LCZ-NE had a good tolerance in rabbit eyes. Ocular pharmacokinetics analysis revealed improved bioavailability in whole eye tissues that were treated with LCZ-NE, compared with those treated with LCZ-Susp. In conclusion, the optimized LCZ-NE formulation exhibited excellent physicochemical properties, good tolerance, enhanced antifungal activity and bioavailability in eyes. This formulation would be safe, and shows promise in effectively treating ocular fungal infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| |
Collapse
|
11
|
The Role of Multilayer Electrospun Poly(Vinyl Alcohol)/Gelatin nanofibers loaded with Fluconazole and Cinnamaldehyde in the Potential Treatment of Fungal Keratitis. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
A sensitive and rapid bioanalytical method for the quantitative determination of luliconazole in rabbit eye tissues using UPLC-MS/MS assay. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1194:123173. [DOI: 10.1016/j.jchromb.2022.123173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
|
13
|
Liang Z, Zhang Z, Yang J, Lu P, Zhou T, Li J, Zhang J. Assessment to the Antifungal Effects in vitro and the Ocular Pharmacokinetics of Solid-Lipid Nanoparticle in Rabbits. Int J Nanomedicine 2021; 16:7847-7857. [PMID: 34876813 PMCID: PMC8643199 DOI: 10.2147/ijn.s340068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 01/17/2023] Open
Abstract
Introduction Fungal keratitis (FK) remains a severe sight-threatening disease, and case management is difficult due to ocular intrinsic barriers and drug shortages. Econazole (ECZ), a broad-spectrum antifungal agent, is limited in ocular applications due to the poor water solubility and strong irritant property. Methods We successfully prepared solid-lipid nanoparticle-based ECZ eye drops (E-SLNs) by microemulsion method, and the physicochemical properties of E-SLNs were investigated. Corneal permeability, antifungal ability against Fusarium spp., irritation and bioavailability compared to ECZ Suspension (E-Susp) were evaluated in vitro and in vivo. Results E-SLNs were a uniform and stable system which had an average particle size of 19 nm and a spherical morphology. E-SLNs also exhibited controlled release, enhanced antifungal activity without irritation. The pharmacokinetic analysis in vivo confirmed that E-SLNs showed an improved ocular bioavailability and the drug concentration in the cornea were above minimum inhibitory concentration (MIC) for 3 h after single administration. Conclusion The E-SLNs colloid system is a promising therapeutic approach for fungal keratitis and could serve as a candidate strategy for other ocular diseases.
Collapse
Affiliation(s)
- Zhen Liang
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhen Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jingjing Yang
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ping Lu
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Tianyang Zhou
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|