1
|
Isidro J, Brackemeyer D, Sáez C, Llanos J, Lobato J, Cañizares P, Matthée T, Rodrigo M. Electro-disinfection with BDD-electrodes featuring PEM technology. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117081] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
2
|
Isidro J, Brackemeyer D, Sáez C, Llanos J, Lobato J, Cañizares P, Matthée T, Rodrigo MA. Testing the use of cells equipped with solid polymer electrolytes for electro-disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138379. [PMID: 32278177 DOI: 10.1016/j.scitotenv.2020.138379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
This work focuses on disinfection of water using electrolysis with boron doped diamond (BDD) coatings and faces this challenge by comparing the performance of two different cells manufactured by CONDIAS GmbH (Izehoe, Germany): CONDIACELL® ECWP and CabECO cells. They are both equipped with diamond electrodes, but the mechanical design is completely different, varying not only by geometry but also by the flow conditions. ECWP is a flow-through cell with perforated electrodes while the CabECO cell is a zero-gap cell with a proton exchange membrane as a solid polymer electrolyte (SPE) separating the anode and cathode. At 0.02 Ah dm-3 both cells attain around 3-5 logs pathogen removal, but design and sizing parameters give an advantage to the CabECO: it can minimize the production of chlorates and perchlorates when operating in a single-pass mode, which becomes a really remarkable point. In this paper, we report tests in which we demonstrate this outstanding performance and we also explain the differences observed in the two cells operating with the same water.
Collapse
Affiliation(s)
- J Isidro
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - D Brackemeyer
- CONDIAS GmbH, Fraunhoferstraße 1b, 25524 Itzehoe, Germany
| | - C Sáez
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain.
| | - J Llanos
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - J Lobato
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - P Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - T Matthée
- CONDIAS GmbH, Fraunhoferstraße 1b, 25524 Itzehoe, Germany
| | - M A Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
3
|
Carvalho de Almeida C, Muñoz-Morales M, Sáez C, Cañizares P, Martínez-Huitle CA, Rodrigo MA. Electrolysis with diamond anodes of the effluents of a combined soil washing - ZVI dechlorination process. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:577-583. [PMID: 30818122 DOI: 10.1016/j.jhazmat.2019.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
In this work, a new soil washing process in which Soil-Liquid extraction technology is enhanced by adding iron particles (zero valent iron nanoparticles or granules) was investigated to remove clopyralid from spiked soils. This novel approach can be efficiently used to extract chlorinated hydrocarbons from soil and aims to obtain soil-washing wastes with low content of hazardous chlorinated species. The iron particles used were subsequently removed from the treated soil using magnetic fields. Then, the complete mineralization of the produced soil washing effluents was successfully achieved by applying anodic oxidation with diamond anodes in an electrochemical flow cell. Results demonstrated that, opposite to what it was initially expected, no improvements in the efficiency of the electrochemical process were observed by adding iron particles during the soil washing. This behavior is explained in terms of the lower electrochemical reactivity of the dechlorinated derivatives produced. Although results are not as promising as initially expected, it does not mean a completely negative outcome for the use of ZVI during washing, because the hazardousness of the pollutants is rapidly decreased in the initial stages of the soil-washing, opening the possibility for the combination of this technology with other processes, such as biological treatment.
Collapse
Affiliation(s)
- C Carvalho de Almeida
- Institute of Chemistry, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil
| | - M Muñoz-Morales
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - C Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - P Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - C A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil
| | - M A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain.
| |
Collapse
|
4
|
Llanos J, Moraleda I, Sáez C, Rodrigo MA, Cañizares P. Electrochemical production of perchlorate as an alternative for the valorization of brines. CHEMOSPHERE 2019; 220:637-643. [PMID: 30599321 DOI: 10.1016/j.chemosphere.2018.12.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
In this work, the valorization of brines, with concentrations similar to those produced by reverse osmosis or electrodialysis processes, by electrolysis with diamond anodes is evaluated. To do this, synthetic brines made from solutions of NaCl (with target concentrations ranging from 1.0 to 2.0 M and an additional test at 5.0 M) were used as the raw material for the electrochemical production of perchlorate using commercial electrochemical cells equipped with boron-doped diamond (BDD) anodes. The effect of key parameters on the rate and efficiency of perchlorate production was evaluated. The results show that it is possible to transform more than 80% of the initial chloride concentration into perchlorate, with current efficiencies higher than 70% regardless of the initial concentration of sodium chloride contained in the brine. Moreover, it was observed that both hypochlorite and chlorate were produced almost simultaneously at the beginning of electrolysis, while perchlorate was only produced when a certain value of applied electric charge was passed through the system. The results obtained were essentially independent of the concentration of NaCl, as the high concentrations used in this study avoided mass transfer limitations. Moreover, the specific energy cost of perchlorate production was estimated to range from 26.14 kWh kg-1 (for 2.0 M and 1000 A m-2) to 56.10 kWh kg-1 (for 1.0 M and 2000 A m-2). According to the results obtained, the electrochemical production of perchlorate by BDD electrochemical oxidation stands out as a promising novel technology for the valorization of the brine produced in reverse osmosis or electrodialysis processes.
Collapse
Affiliation(s)
- Javier Llanos
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain.
| | - Inmaculada Moraleda
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Cristina Sáez
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Manuel A Rodrigo
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Pablo Cañizares
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
5
|
Operating the CabECO® membrane electrolytic technology in continuous mode for the direct disinfection of highly fecal-polluted water. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.04.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Zhang C, Xian J, Liu M, Fu D. Formation of brominated oligomers during phenol degradation on boron-doped diamond electrode. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:123-135. [PMID: 29032093 DOI: 10.1016/j.jhazmat.2017.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
In this research, the brominated oligomers formed during phenol degradation with boron-doped diamond (BDD) anode had been initially studied at three different concentrations of bromide (1, 10 and 100mM). The results from LC/MS analysis indicated that, brominated monomer, dimer and trimer of phenols resulting from electrophilic substitution and coupling reactions were the important reaction by-products. Specifically, the trimer by-products were generated only in bromide-rich systems. The reaction mechanisms concerning oligomer formations were proposed in detail accordingly. The above results were in well accordance with those recorded in the degradation experiments. As a whole, bromides and chlorides demonstrated quite different effects toward phenol degradation, which deepened our understanding on the reactions involved in BDD anode cells.
Collapse
Affiliation(s)
- Chunyong Zhang
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiahui Xian
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Liu
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Degang Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Cotillas S, Lacasa E, Sáez C, Cañizares P, Rodrigo MA. Electrolytic and electro-irradiated technologies for the removal of chloramphenicol in synthetic urine with diamond anodes. WATER RESEARCH 2018; 128:383-392. [PMID: 29126034 DOI: 10.1016/j.watres.2017.10.072] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/21/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Hospital effluents are a major source for the occurrence of pharmaceuticals in the environment. In this work, the treatment of synthetic urine polluted with chloramphenicol is studied by using three different conductive-diamond electrochemical oxidation technologies: electrolysis (single electrolysis), photoelectrolysis and high-frequency ultrasound sonoelectrolysis. These technologies were evaluated at 10 and 100 mA cm-2. Results shows that not only chloramphenicol but also other organics contained in urine are completely mineralized by electrolysis. Ammonium is the main inorganic nitrogen species formed and it can react with the electrogenerated hypochlorite, favouring the formation of chloramines. These species prevent the potential formation of perchlorate from chlorides contained in urine at low current densities (10 mA cm-2) and delay its occurrence at high current densities (100 mA cm-2). On the other hand, irradiation of ultraviolet (UV) light or high-frequency ultrasound (US) produce changes in the performance of the electrolytic treatment, but these changes are not as important as in other cases of study shown in the literature. Nonetheless, the effect of electroirradiated technologies seems to be higher and depends on the type of pollutant when working at low current densities (10 mA cm-2). It is positive in the case of the degradation of the antibiotic and the uric acid and negative in the case of urea where there is a clear antagonistic effect. Production of oxidants increases with the current density although in lower ratio than expected. These results are of great importance because clearly point out that electrolytic technologies can be applied to minimize the diffuse pollution associated to pharmaceuticals before discharge into municipal sewers.
Collapse
Affiliation(s)
- Salvador Cotillas
- Department of Chemical Engineering, School of Industrial Engineering, University of Castilla-La Mancha, 02071, Albacete, Spain
| | - Engracia Lacasa
- Department of Chemical Engineering, School of Industrial Engineering, University of Castilla-La Mancha, 02071, Albacete, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13005, Ciudad Real, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13005, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13005, Ciudad Real, Spain.
| |
Collapse
|
8
|
Jager D, Kupka D, Vaclavikova M, Ivanicova L, Gallios G. Degradation of Reactive Black 5 by electrochemical oxidation. CHEMOSPHERE 2018; 190:405-416. [PMID: 29024885 DOI: 10.1016/j.chemosphere.2017.09.126] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Degradation of commercial grade Reactive Black 5 (RB5) azo dye by chemical and electrochemical treatment was examined using a dimensionally stable anode and stainless steel cathodes as electrode materials, with NaCl as supporting electrolyte. The electrochemical treatment was compared to the chemical treatment with hypochlorite generated by electrolysis. The compounds present in the commercial grade RB5 azo dye and the products of its electrochemical degradation were separated using ion-pairing high performance liquid chromatography on reversed phase. The separated species were detected by diode array detector and electrospray ionization mass spectrometry. A suitable ion-pairing reversed phase HPLC-MS method with electrospray ionization for the separation and identification of the components was developed. The accurate mass of the parent and fragment ions were used in the determination of the empirical formulas of the components using the first-order mass spectra. Structural formulas of degradation products were proposed using these information and principles of organic chemistry and electrochemistry.
Collapse
Affiliation(s)
- David Jager
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Kosice, Slovakia
| | - Daniel Kupka
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Kosice, Slovakia
| | - Miroslava Vaclavikova
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Kosice, Slovakia.
| | - Lucia Ivanicova
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Kosice, Slovakia
| | - George Gallios
- Aristotle University of Thessaloniki, School of Chemistry, Lab. Chemical & Environmental Technology, University Campus, 54124, Thessaloniki, Greece
| |
Collapse
|
9
|
Petrucci E, Montanaro D, Orsini M, Sotgiu G. Micro- and nanostructured TiO2 substrate: Influence on the electrocatalytic properties of manganese oxide based electrodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Gomez-Ruiz B, Gómez-Lavín S, Diban N, Boiteux V, Colin A, Dauchy X, Urtiaga A. Boron doped diamond electrooxidation of 6:2 fluorotelomers and perfluorocarboxylic acids. Application to industrial wastewaters treatment. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Mascia M, Monasterio S, Vacca A, Palmas S. Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes. JOURNAL OF HAZARDOUS MATERIALS 2016; 319:111-120. [PMID: 26988900 DOI: 10.1016/j.jhazmat.2016.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
An electrochemical treatment was investigated to remove Microcystis aeruginosa from water. A fixed bed reactor in flow was tested, which was equipped with electrodes constituted by stacks of grids electrically connected in parallel, with the electric field parallel to the fluid flow. Conductive diamond were used as anodes, platinised Ti as cathode. Electrolyses were performed in continuous and in batch recirculated mode with flow rates corresponding to Re from 10 to 160, current densities in the range 10-60Am(-2) and Cl(-) concentrations up to 600gm(-3). The absorbance of chlorophyll-a pigment and the concentration of products and by-products of electrolysis were measured. In continuous experiments without algae in the inlet stream, total oxidants concentrations as equivalent Cl2, of about 0.7gCl2m(-3) were measured; the maximum values were obtained at Re=10 and i=25Am(-2), with values strongly dependent on the concentration of Cl(-). The highest algae inactivation was obtained under the operative conditions of maximum generation of oxidants; in the presence of microalgae the oxidants concentrations were generally below the detection limit. Results indicated that most of the bulk oxidants electrogenerated is constituted by active chlorine. The prevailing mechanism of M. aeruginosa inactivation is the disinfection by bulk oxidants. The experimental data were quantitatively interpreted through a simple plug flow model, in which the axial dispersion accounts for the non-ideal flow behaviour of the system; the model was successfully used to simulate the performances of the reactor in the single-stack configuration used for the experiments and in multi-stack configurations.
Collapse
Affiliation(s)
- Michele Mascia
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 3, 09123 Cagliari, Italy.
| | - Sara Monasterio
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 3, 09123 Cagliari, Italy
| | - Annalisa Vacca
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 3, 09123 Cagliari, Italy
| | - Simonetta Palmas
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 3, 09123 Cagliari, Italy
| |
Collapse
|