1
|
Zhou Y, Zhang H, Yan H, Han P, Zhang J, Liu Y. Deciphering the Role of Oxidative Stress in Male Infertility: Insights from Reactive Oxygen Species to Antioxidant Therapeutics. FRONT BIOSCI-LANDMRK 2025; 30:27046. [PMID: 40302329 DOI: 10.31083/fbl27046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 05/02/2025]
Abstract
Male infertility represents a major health concern, accounting for approximately 50% of all infertility cases in couples. This condition arises from multiple etiologies, with oxidative stress gaining increasing attention in recent studies. During the final stages of sperm maturation, the majority of the cytoplasm is discarded, leaving sperm with a diminished antioxidant defense system, which makes them highly susceptible to the detrimental effects of reactive oxygen species (ROS). ROS can be generated from both intrinsic and extrinsic sources. Intrinsically, ROS are primarily produced by mitochondrial activity, while extrinsic factors include alcohol consumption, smoking, circadian rhythm disruption, gut microbiota imbalance, and leukocyte infiltration. Excessive ROS production leads to DNA damage, apoptosis, and epigenetic modifications in sperm, ultimately impairing sperm motility and contributing to infertility. This review provides a comprehensive examination of ROS sources and examines the mechanisms by which ROS induce sperm damage. Furthermore, it explores the therapeutic potential of antioxidants in mitigating oxidative stress and improving sperm quality.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Reproductive Medicine, Zhaotong Hospital of Traditional Chinese Medicine, 657000 Zhaotong, Yunnan, China
| | - Hengyan Zhang
- Department of Dermatology, Zhaotong Hospital of Traditional Chinese Medicine, 657000 Zhaotong, Yunnan, China
| | - Heguo Yan
- Department of Clinical Medicine, Yunnan University of Chinese Medicine, 650500 Kunming, Yunnan, China
- Department of Endocrinology, Zhaotong Hospital of Traditional Chinese Medicine, 657000 Zhaotong, Yunnan, China
| | - Pingxing Han
- Department of Reproductive Medicine, Zhaotong Hospital of Traditional Chinese Medicine, 657000 Zhaotong, Yunnan, China
| | - Jing Zhang
- Department of Reproductive Medicine, Zhaotong Hospital of Traditional Chinese Medicine, 657000 Zhaotong, Yunnan, China
| | - Yangwen Liu
- Department of Endocrinology, Zhaotong Hospital of Traditional Chinese Medicine, 657000 Zhaotong, Yunnan, China
| |
Collapse
|
2
|
Zhang Y, Song JY, Sun ZG. Exploring the impact of environmental factors on male reproductive health through epigenetics. Reprod Toxicol 2025; 132:108832. [PMID: 39778664 DOI: 10.1016/j.reprotox.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Male infertility has become an increasingly severe global health issue, with its incidence significantly rising over the past few decades. This paper delves into the crucial role of epigenetics in male reproductive health, focusing particularly on the effects of DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs regulation on spermatogenesis. Exposure to various environmental factors can cause sperm DNA damage, leading to epigenetic abnormalities. Among these factors, we have discussed heavy metals (including Zinc, Cadmium, Arsenic, Copper), phthalates, electromagnetic radiation, and temperature in detail. Notably, aberrations in DNA methylation are closely associated with various symptoms of male infertility, and histone modifications and chromatin remodeling are essential for sperm maturation and function. By synthesizing existing literature and experimental data, this narrative review investigates how environmental factors influence male reproductive health through epigenetic mechanisms, thus providing new theoretical foundations and practical guidelines for the early diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Yi Zhang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing-Yan Song
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Zhen-Gao Sun
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Naderi N, Tavalaee M, Nasr-Esfahani MH. The epigenetic approach of varicocele: a focus on sperm DNA and m6A-RNA methylation. Hum Reprod Update 2025; 31:81-101. [PMID: 39673728 DOI: 10.1093/humupd/dmae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/21/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Varicocele is an abnormal dilation and torsion of the pampiniform venous plexus in the scrotum due to venous reflux, primarily affecting the left side. It affects 15% of men and is a prevalent contributor to male infertility. Varicocele is a complex disorder influenced by genetic, epigenetic, and environmental factors. Epigenetic modifications, which regulate genome activity independently of DNA or RNA sequences, may contribute to the development and severity of varicocele. These include DNA methylation, histone modifications, and RNA modifications like N6-methyladenosine (m6A). Irregularities in DNA and m6A-RNA methylation during spermatogenesis can cause gene expression abnormalities, DNA damage, and decreased fertility in varicocele patients. OBJECTIVE AND RATIONALE The review aims to comprehensively understand the underlying mechanisms of varicocele, a condition that can significantly impact male fertility. By exploring the role of methylation modifications, specifically DNA and m6A-RNA methylation, the review aims to synthesize evidence from basic, preclinical, and clinical research to expand the existing knowledge on this subject. The ultimate goal is to identify potential avenues for developing targeted treatments that can effectively improve varicocele and ultimately increase sperm quality in affected individuals. SEARCH METHODS A thorough investigation of the scientific literature was conducted through searches in PubMed, Google Scholar, and Science Direct databases until May 2024. All studies investigating the relationship between DNA and m6A-RNA methylation and male infertility, particularly varicocele were reviewed, and the most pertinent reports were included. Keywords such as varicocele, epigenetics, DNA methylation, m6A-RNA methylation, hypermethylation, hypomethylation, spermatozoa, semen parameters, spermatogenesis, and male infertility were used during the literature search, either individually or in combination. OUTCOMES The sperm has a specialized morphology essential for successful fertilization, and its epigenome is unique, potentially playing a key role in embryogenesis. Sperm DNA and RNA methylation, major epigenetic marks, regulate the expression of testicular genes crucial for normal spermatogenesis. This review explores the role of DNA and m6A-RNA methylation, in responding to oxidative stress and how various nutrients influence their function in varicocele condition. Evidence suggests a potential link between varicocele and aberrant DNA/m6A-RNA methylation patterns, especially hypomethylation, but the body of evidence is still limited. Further studies are needed to understand how abnormal expression of DNA/m6A-RNA methylation regulators affects testicular gene expression. Thus, analyzing sperm DNA 5mC/5hmC levels and m6A-RNA methylation regulators may reveal spermatogenesis defects and predict reproductive outcomes. WIDER IMPLICATIONS Nutri-epigenomics is an emerging field that could enhance the knowledge and management of diseases with unpredictable risks and consequences, even among individuals with similar lifestyles, by elucidating the influence of nutrition on DNA/m6A-RNA methylation through one-carbon metabolism. However, the importance of one-carbon metabolism to varicocele is not well-recognized. Health status and diet influence one-carbon metabolism and its associated DNA/m6A-RNA methylation modification. Future research should identify optimal methylation patterns that promote health and investigate modulating one-carbon metabolism to achieve this. Furthermore, additional studies are necessary to develop personalized dietary strategies through clinical and longitudinal research. However, a research gap exists on dietary interventions utilizing epigenetics as a therapeutic method for treating varicocele. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Nushin Naderi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Pooyesh & Rooyesh Fertility Center, Isfahan, Iran
| |
Collapse
|
4
|
Alipour-Jenaghard P, Daghigh-Kia H, Masoudi R, Hatefi A. MitoQ Preserves Epigenetic Modifications and Quality Parameters of Rooster Sperm During Cryopreservation Process. Reprod Domest Anim 2025; 60:e70012. [PMID: 39963986 DOI: 10.1111/rda.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
Cryopreservation in rooster semen is a helpful procedure to spread qualified semen samples for reproductive goals. Nevertheless, some post-thawed qualified semen samples showed a considerably poor fertility rate that might be related to epigenetic modifications during the cryopreservation process. This study aims to investigate the effect of the cryopreservation process in the presence of MitoQ as a mitochondrial-targeted antioxidant on epigenetic changes and other quality parameters (motility, morphology, mitochondrial activity, acrosome integrity, lipid peroxidation, DNA fragmentation, apoptosis status, and ROS concentration) of rooster sperm. The collected semen samples were divided into four groups of fresh samples and three groups that were supplemented by MitoQ 0, 10, and 100 nM and cryopreserved. The cryopreservation process reduced (p ≤ 0.05) DNA methylation, H3K9 acetylation, H3K4 methylation, motility parameters, membrane integrity, mitochondrial activity, acrosome integrity, viability, and increased (p ≤ 0.05) lipid peroxidation, DNA fragmentation, ROS concentration, and apoptotic-like changes compared to the fresh semen group. However, in frozen sperm groups, MitoQ 10 and 100 nM resulted in significant improvements (p ≤ 0.05) in the epigenetic modifications and other mentioned quality parameters compared to the control group (MitoQ 0). Generally, although the cryopreservation process reduced semen quality, using MitoQ could be useful in cryopreserved rooster semen quality.
Collapse
Affiliation(s)
| | - Hossein Daghigh-Kia
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Hatefi
- Department of Animal Science, University of Tehran, Karaj, Iran
| |
Collapse
|
5
|
Kaltsas A, Markou E, Kyrgiafini MA, Zikopoulos A, Symeonidis EN, Dimitriadis F, Zachariou A, Sofikitis N, Chrisofos M. Oxidative-Stress-Mediated Epigenetic Dysregulation in Spermatogenesis: Implications for Male Infertility and Offspring Health. Genes (Basel) 2025; 16:93. [PMID: 39858640 PMCID: PMC11765119 DOI: 10.3390/genes16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility. This disruption extends to epigenetic modifications, resulting in abnormal gene expression and chromatin remodeling that compromise genomic integrity and fertilization potential. Importantly, oxidative-stress-induced epigenetic alterations can be inherited, affecting the health and fertility of offspring and future generations. This review investigates how oxidative stress influences epigenetic regulation in male reproduction by modifying DNA methylation, histone modifications, and non-coding RNAs, ultimately compromising spermatogenesis. Additionally, it discusses the transgenerational implications of these epigenetic disruptions and their potential role in hereditary infertility and disease predisposition. Understanding these mechanisms is vital for developing therapeutic strategies that mitigate oxidative damage and restore epigenetic homeostasis in the male germline. By integrating insights from molecular, clinical, and transgenerational research, this work emphasizes the need for targeted interventions to enhance male reproductive health and prevent adverse outcomes in progeny. Furthermore, elucidating the dose-response relationships between oxidative stress and epigenetic changes remains a critical research priority, informing personalized diagnostics and therapeutic interventions. In this context, future studies should adopt standardized markers of oxidative damage, robust clinical trials, and multi-omic approaches to capture the complexity of epigenetic regulation in spermatogenesis. Such rigorous investigations will ultimately reduce the risk of transgenerational disorders and optimize reproductive health outcomes.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece;
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital, Barrack Rd, Exeter EX2 5DW, UK;
| | | | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
6
|
Dutta S, Sengupta P, Mottola F, Das S, Hussain A, Ashour A, Rocco L, Govindasamy K, Rosas IM, Roychoudhury S. Crosstalk Between Oxidative Stress and Epigenetics: Unveiling New Biomarkers in Human Infertility. Cells 2024; 13:1846. [PMID: 39594595 PMCID: PMC11593296 DOI: 10.3390/cells13221846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The correlation between epigenetic alterations and the pathophysiology of human infertility is progressively being elucidated with the discovery of an increasing number of target genes that exhibit altered expression patterns linked to reproductive abnormalities. Several genes and molecules are emerging as important for the future management of human infertility. In men, microRNAs (miRNAs) like miR-34c, miR-34b, and miR-122 regulate apoptosis, sperm production, and germ cell survival, while other factors, such as miR-449 and sirtuin 1 (SIRT1), influence testicular health, oxidative stress, and mitochondrial function. In women, miR-100-5p, miR-483-5p, and miR-486-5p are linked to ovarian reserve, PCOS, and conditions like endometriosis. Mechanisms such as DNA methylation, histone modification, chromatin restructuring, and the influence of these non-coding RNA (ncRNA) molecules have been identified as potential perturbators of normal spermatogenesis and oogenesis processes. In fact, alteration of these key regulators of epigenetic processes can lead to reproductive disorders such as defective spermatogenesis, failure of oocyte maturation and embryonic development alteration. One of the primary factors contributing to changes in the key epigenetic regulators appear to be oxidative stress, which arises from environmental exposure to toxic substances or unhealthy lifestyle choices. This evidence-based study, retracing the major epigenetic processes, aims to identify and discuss the main epigenetic biomarkers of male and female fertility associated with an oxidative imbalance, providing future perspectives in the diagnosis and management of infertile couples.
Collapse
Affiliation(s)
- Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman 346, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Sandipan Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Ahmed Ashour
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Kadirvel Govindasamy
- ICAR-Agricultural Technology Application Research Institute, Guwahati 781017, India
| | | | | |
Collapse
|
7
|
Fouladvandi R, Masoudi AA, Totonchi M, Hezavehei M, Sharafi M. Effects of different extenders on epigenetic patterns and functional parameters of bull sperm during cryopreservation process. Reprod Domest Anim 2024; 59:e14570. [PMID: 38700367 DOI: 10.1111/rda.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
The cryopreservation process induces alterations in cellular parameters and epigenetic patterns in bull sperm, which can be prevented by adding cryoprotectants in the freezing extenders. The purpose of this study was to compare the protective effects of two extenders based on soybean lecithin (SLE) and egg yolk (EYE) on epigenetic patterns and quality parameters of sperm such as motility parameters, mitochondrial membrane integrity, DNA fragmentation, viability, and apoptotic-like changes of bull sperm after cryopreservation. Results demonstrated that cryopreservation significantly (p < .05) reduced the level of DNA global methylation, H3K9 histone acetylation, and H3K4 histone methylation in both frozen groups compared to the fresh sperm. Also, the level of H3K9 acetylation was lower in the frozen SLE group (21.2 ± 1.86) compared to EYE group (15.2 ± 1.86). In addition, the SLE frozen group had a higher percentage of viability, progressive motility, and linearity (LIN) in SLE frozen group compared to EYE frozen group. However, no difference was observed in mitochondrial membrane integrity and DNA fragmentation between SLE and EYE frozen groups. While soybean-lecithin-based extender showed some initial positive impacts of epigenetics and semen parameters, further investigations can provide useful information for better freezing.
Collapse
Affiliation(s)
- Razieh Fouladvandi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Research Center for Reproduction and Fertility, Faculty of Veterinary Medicine, Montreal University, Quebec, Canada
| | - Mohsen Sharafi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Semex Alliance, Guelph, Ontario, Canada
| |
Collapse
|
8
|
van den Berg JS, Molina NM, Altmäe S, Arends B, Steba GS. A systematic review identifying seminal plasma biomarkers and their predictive ability on IVF and ICSI outcomes. Reprod Biomed Online 2024; 48:103622. [PMID: 38128376 DOI: 10.1016/j.rbmo.2023.103622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/30/2023] [Accepted: 10/12/2023] [Indexed: 12/23/2023]
Abstract
The diverse nature and high molecule concentration of seminal plasma (SP) makes this fluid a good potential source for a potential biomarker that could predict assisted reproductive technology (ART) outcomes. Currently, semen quality parameters cannot accurately predict ART outcomes. A systematic literature search was conducted to identify human SP biomarkers with potential predictive ability for the outcomes of IVF and intracytoplasmic sperm injection. Observational cohort and case-control studies describing the association between biomarkers in human SP and the outcome of infertile men attending for ART were included. Forty-three studies were selected, reporting on 89 potential SP biomarkers (grouped as oxidative stress, proteins glycoproteins, metabolites, immune system components, metals and trace elements and nucleic acids). The present review supports 32 molecules in SP as potentially relevant biomarkers for predicting ART outcomes; 23 molecules were reported once and nine molecules were reported in more than one study; IL-18 and TGF-β1-IL-18 ratio were confirmed in distinct studies. This review presents the most comprehensive overview of relevant SP biomarkers to predict ART outcomes to date, which is of clinical interest for infertility investigations and assisted reproduction; nevertheless, its potential is under-exploited. This review could serve as starting point for designing an all-encompassing study for biomarkers in SP and their predictive ability for ART outcomes, and for developing a non-invasive diagnostic tool.
Collapse
Affiliation(s)
- Jonna S van den Berg
- Department of Reproductive Medicine and Gynaecology, Division Female and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Nerea M Molina
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Brigitte Arends
- Department of Reproductive Medicine and Gynaecology, Division Female and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Gaby Sarina Steba
- Department of Reproductive Medicine and Gynaecology, Division Female and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
9
|
Lira Neto FT, Roque M, Esteves SC. Effect of varicocele and varicocelectomy on sperm deoxyribonucleic acid fragmentation rates in infertile men with clinical varicocele. Minerva Obstet Gynecol 2024; 76:49-69. [PMID: 36222786 DOI: 10.23736/s2724-606x.22.05169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Varicocele is the leading cause of male infertility. It can affect sperm quantity and quality through various non-mutually exclusive pathophysiological mechanisms, mainly oxidative stress. Excessive production of reactive oxygen species may overwhelm the sperm's defenses against oxidative stress and harm the sperm's DNA. Excessive sperm DNA breaks, so-called sperm DNA fragmentation, result from the oxidative stress cascade and are commonly found in the ejaculates of men with varicocele and fertility-related issues. Measuring sperm DNA fragmentation can provide valuable information on the extent of harm and might help select candidates for surgical treatment. Varicocelectomy is beneficial for alleviating oxidative stress-associated infertility and improving sperm DNA integrity. However, reproductive outcomes of infertile men with elevated sperm DNA fragmentation rates and surgically treated varicoceles remain poorly studied, and there is a need for well-designed trials to determine the impact of sperm DNA fragmentation reduction on natural and medically assisted reproduction.
Collapse
Affiliation(s)
- Filipe T Lira Neto
- AndrosRecife, Andrology Clinic, Recife, Brazil
- Department of Urology, Prof. Fernando Figueira Institute of Integrative Medicine, Recife, Brazil
| | - Matheus Roque
- Department of Reproductive Medicine, Mater Prime, São Paulo, Brazil
| | - Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Referral Center for Male Reproduction, Campinas, Brazil -
- Division of Urology, Department of Surgery, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Masoudi R, Hatami M, Esmaeilkhanian S, Zarei F, Sharafi M, Hatefi A. Preservation of rooster post-thawed sperm epigenetic modifications, fertility potential and other quality parameters in different extenders using reduced glutathione. Theriogenology 2024; 215:24-30. [PMID: 38000126 DOI: 10.1016/j.theriogenology.2023.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Although rooster semen cryopreservation is an efficient procedure to spread qualified semen samples for reproductive goals, some post-thawed qualified semen samples resulted in poor fertility rate that could be related to epigenetic modifications during the cryopreservation process. This research was conducted to investigate the effect of reduced glutathione (GSH) in different cryopreservation extenders (Lake and Beltsville) on preservation of epigenetic modifications, fertility potential and other quality parameters of rooster sperm after thawing. Semen samples were collected and diluted in Lake and Beltsville extenders as follows: L-0: Lake without GSH, L-G: Lake with GSH, B-0: Beltsville without GSH, and B-G: Beltsville with GSH. After freeze-thawing process, sperm motility, membrane functionality, mitochondrial activity, acrosome integrity, viability, apoptosis status, lipid peroxidation, DNA fragmentation, ROS concentration, epigenetic modifications and fertility potential were evaluated. In results, the type of extender had no effect (P > 0.05) of post-thawed sperm quality. The treatments containing GSH presented higher (P ≤ 0.05) total motility, progressive motility, membrane functionality, mitochondrial activity, acrosome integrity, viability, DNA methylation, fertility as well as lower (P ≤ 0.05) lipid peroxidation, apoptosis, DNA fragmentation and ROS concentration than other treatments. Extender supplementation with GSH had no effect (P > 0.05) on histone methylation, histone acetylation and hatching rate. In conclusion, supplementation of rooster sperm cryopreservation extender with GSH could be an effective strategy to preserve post-thawed sperm DNA methylation, fertility and other quality parameters during reproductive programs.
Collapse
Affiliation(s)
- R Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - M Hatami
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - S Esmaeilkhanian
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - F Zarei
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - M Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran; Semex Alliance, Saint-Hyacinthe, Canada.
| | - A Hatefi
- Department of Animal Science, University of Tehran, Karaj, Iran
| |
Collapse
|
11
|
Pouriayevali F, Tavalaee M, Kazeminasab F, Dattilo M, Nasr-Esfahani MH. Effects of Streptozotocin Induced Diabetes on One-Carbon Cycle and Sperm Function. CELL JOURNAL 2024; 26:81-90. [PMID: 38351732 PMCID: PMC10864770 DOI: 10.22074/cellj.2023.2010652.1399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/25/2023] [Accepted: 12/23/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Diabetic men suffer an increased risk of infertility associated with signs of oxidative damage and decreased methylation in sperm pointing to a deficit of the one-carbon cycle (1CC). We aimed to investigate this deficit using mice models (type 1 and 2) of streptozotocin-induced diabetes. MATERIALS AND METHODS In this experimental study, 50 male mice, aged eight weeks, were divided randomly into four groups: sham, control, type 1 diabetes mellitus (DM1), and DM2. The DM1 group was fed a normal diet (ND) for eight weeks, followed by five consecutive days of intraperitoneal administration of Streptozotocin (STZ, 50 mg/kg body weight). The DM2 group was fed a high-fat diet (HFD) for eight weeks, followed by a single intraperitoneal injection of STZ (100 mg/kg). After twelve weeks, all the mice were euthanized, and study parameters assessed. In the sham group, citrate buffer as an STZ solvent was injected. RESULTS Both types of diabetic animals had serious impairment of spermatogenesis backed by increased DNA damage (P=0.000) and decreased chromatin methylation (percent: P=0.019; intensity: P=0.001) and maturation (P=0.000). The 1CC was deeply disturbed with increased homocysteine (P=0.000) and decreased availability of carbon units [methionine (P=0.000), serine (P=0.088), folate (P=0.016), B12 (P=0.025)] to feed methylations. CONCLUSION We have observed a distinct impairment of 1CC within the testes of individuals with diabetes. We speculate that this impairment may be linked to inadequate intracellular glucose and diminished carbon unit supply associated with diabetes. As a result, interventions focusing on enhancing glucose uptake into sperm cells and providing supplementary methyl donors have the potential to improve fertility issues in diabetic patients. However, additional clinical testing is required to validate these hypotheses.
Collapse
Affiliation(s)
- Farnaz Pouriayevali
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Isfahan, Iran.
| | - Fatemeh Kazeminasab
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
| | | | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Isfahan, Iran. mh.nasresfahani@ royaninstitute.org
| |
Collapse
|
12
|
Beiraghdar M, Beiraghdar M, Khosravi S. The methylation status of GATA3 potentially predicts the outcomes of assisted reproductive technologies. HUM FERTIL 2023; 26:1279-1285. [PMID: 36625441 DOI: 10.1080/14647273.2023.2164871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/30/2022] [Indexed: 01/11/2023]
Abstract
Evaluation of methylation status of genes in sperm samples has been suggested for diagnosis of male infertility as well as prognosis of assisted reproductive technologies (ART) outcomes. In this study, we compared the methylation pattern of the GATA3 gene in infertile and fertile men as well as in infertile men with positive and negative ART outcome based on clinical pregnancy. Ejaculates were obtained from 42 infertile men with a negative ART outcome (group 1), 30 infertile men with a positive ART outcome (group 2), and 21 fertile men (control). Then, samples were subjected to genomic DNA isolation and subsequent TUNEL assay and methylation-specific PCR. The number of infertile men with at least one methylated allele of GATA3 was significantly higher compared to the control group (p = 0.022). Also, the number of patients with at least one methylated allele was significantly higher in group 1 compared to group 2 (p = 0.013). Moreover, the TUNEL assay revealed that the amount of sperm DNA fragmentation is higher in group 1 compared to group 2 (p = 0.008). The findings of our study demonstrated that the degree of GATA3 methylation can potentially differentiate between infertile and fertile men and more importantly can potentially predict the outcome of ART.
Collapse
Affiliation(s)
- Mina Beiraghdar
- Department of Biology, Faculty of Basic Science, Islamic Azad University of Center Tehran Branch, Tehran, Iran
| | - Mozhdeh Beiraghdar
- Department of pathology, specialist of anatomical and clinical pathology, University of Isfahan, Isfahan, Iran
| | - Sharifeh Khosravi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Science, Isfahan, Iran
- Genetic Lab in Majesty of Maryam Infertility Center, Martyr Beheshti Hospital, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
13
|
Najafi A, Asadi E, Benson JD. Ovarian tissue cryopreservation and transplantation: a review on reactive oxygen species generation and antioxidant therapy. Cell Tissue Res 2023; 393:401-423. [PMID: 37328708 DOI: 10.1007/s00441-023-03794-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Cancer is the leading cause of death worldwide. Fortunately, the survival rate of cancer continues to rise, owing to advances in cancer treatments. However, these treatments are gonadotoxic and cause infertility. Ovarian tissue cryopreservation and transplantation (OTCT) is the most flexible option to preserve fertility in women and children with cancer. However, OTCT is associated with significant follicle loss and an accompanying short lifespan of the grafts. There has been a decade of research in cryopreservation-induced oxidative stress in single cells with significant successes in mitigating this major source of loss of viability. However, despite its success elsewhere and beyond a few promising experiments, little attention has been paid to this key aspect of OTCT-induced damage. As more and more clinical practices adopt OTCT for fertility preservation, it is a critical time to review oxidative stress as a cause of damage and to outline potential ameliorative interventions. Here we give an overview of the application of OTCT for female fertility preservation and existing challenges; clarify the potential contribution of oxidative stress in ovarian follicle loss; and highlight potential ability of antioxidant treatments to mitigate the OTCT-induced injuries that might be of interest to cryobiologists and reproductive clinicians.
Collapse
Affiliation(s)
- Atefeh Najafi
- Department of Biology, University of Saskatchewan, S7N 5E2, Saskatoon, SK, Canada
| | - Ebrahim Asadi
- Department of Biology, University of Saskatchewan, S7N 5E2, Saskatoon, SK, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, S7N 5E2, Saskatoon, SK, Canada.
| |
Collapse
|
14
|
Clement A, Amar E, Clement P, Sedbon É, Brami C, Alvarez S, Menezo Y. Hyperhomocysteinemia in hypofertile male patients can be alleviated by supplementation with 5MTHF associated with one carbon cycle support. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1229997. [PMID: 37705678 PMCID: PMC10495983 DOI: 10.3389/frph.2023.1229997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction Homocysteine (Hcy) is a cellular poison, side product of the hydrolysis of S-Adenosyl Homocysteine, produced after the universal methylation effector S -Adenosylmethionine liberates a methyl group to recipient targets. It inhibits the methylation processes and its rising is associated with multiple disease states and ultimately is both a cause and a consequence of oxidative stress, affecting male gametogenesis. We have determined hyper homocysteinhemia (HHcy) levels can be reliably reduced in hypofertile patients in order to decrease/avoid associated epigenetic problems and protect the health of future children, in consideration of the fact that treatment with high doses of folic acid is inappropriate. Methods Homocysteine levels were screened in male patients consulting for long-standing infertility associated with at least three failed Assisted Reproductive Technology (ART) attempts and/or repeat miscarriages. Seventy-seven patients with Hcy levels > 15 µM were treated for three months with a combination of micronutrients including 5- MethylTetraHydroFolate (5-MTHF), the compound downstream to the MTHFR enzyme, to support the one carbon cycle; re-testing was performed at the end of a 3 months treatment period. Genetic status for Methylenetetrahydrofolate Reductase (MTHFR) Single nucleotide polymorphisms (SNPs) 677CT (c.6777C > T) and 1298AC (c.1298A > C) was determined. Results Micronutrients/5-MTHF were highly efficient in decreasing circulating Hcy, from averages 27.4 to 10.7 µM, with a mean observed decrease of 16.7 µM. The MTHFR SNP 677TT (homozygous form) and combined heterozygous 677CT/1298AC status represent 77.9% of the patients with elevated Hcy. Discussion Estimation HHcy should not be overlooked in men suffering infertility of long duration. MTHFR SNPs, especially 677TT, are a major cause of high homocysteinhemia (HHcy). In these hypofertile patients, treatment with micronutrients including 5-MTHF reduces Hcy and even allows spontaneous pregnancies post treatment. This type of therapy should be considered in order to ensure these patients' quality of life and avoid future epigenetic problems in their descendants.
Collapse
Affiliation(s)
- Arthur Clement
- Laboratoire Clément, Genetics and IVF, Avenue d'Eylau, Paris, France
| | - Edouard Amar
- Cabinet Médical Urology, Andrology, Avenue Victor Hugo, Paris, France
| | - Patrice Clement
- Laboratoire Clément, Genetics and IVF, Avenue d'Eylau, Paris, France
| | - Éric Sedbon
- Cabinet Médical, Gyn Obst, 17 rue Pétrarque, Paris, France
| | - Charles Brami
- Cabinet Médical, Gyn Obst, 16 Avenue Paul Doumer, Paris, France
| | - Silvia Alvarez
- Cabinet Médical, Gyn Obst, 15 Avenue Pointcarré, Paris, France
| | - Yves Menezo
- Laboratoire Clément, Genetics and IVF, Avenue d'Eylau, Paris, France
| |
Collapse
|
15
|
Tamaddon AM, Bashiri R, Najafi H, Mousavi K, Jafari M, Borandeh S, Aghdaie MH, Shafiee M, Abolmaali SS, Azarpira N. Biocompatibility of graphene oxide nanosheets functionalized with various amino acids towards mesenchymal stem cells. Heliyon 2023; 9:e19153. [PMID: 37664696 PMCID: PMC10469575 DOI: 10.1016/j.heliyon.2023.e19153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Graphene and its derivatives have gained popularity due to their numerous applications in various fields, such as biomedicine. Recent reports have revealed the severe toxic effects of these nanomaterials on cells and organs. In general, the chemical composition and surface chemistry of nanomaterials affect their biocompatibility. Therefore, the purpose of the present study was to evaluate the cytotoxicity and genotoxicity of graphene oxide (GO) synthesized by Hummer's method and functionalized by different amino acids such as lysine, methionine, aspartate, and tyrosine. The obtained nanosheets were identified by FT-IR, EDX, RAMAN, FE-SEM, and DLS techniques. In addition, trypan blue and Alamar blue methods were used to assess the cytotoxicity of mesenchymal stem cells extracted from human embryonic umbilical cord Wharton jelly (WJ-MSCs). The annexin V staining procedure was used to determine apoptotic and necrotic death. In addition, COMET and karyotyping techniques were used to assess the extent of DNA and chromosome damage. The results of the cytotoxicity assay showed that amino acid modifications significantly reduced the concentration-dependent cytotoxicity of GO to varying degrees. The GO modified with aspartic acid had the lowest cytotoxicity. There was no evidence of chromosomal damage in the karyotyping method, but in the comet assay, the samples modified with tyrosine and lysine showed the greatest DNA damage and rate of apoptosis. Overall, the aspartic acid-modified GO caused the least cellular and genetic damage to WJ-MSCs, implying its superior biomedical applications such as cell therapy and tissue engineering over GO.
Collapse
Affiliation(s)
- Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Rahman Bashiri
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Khadijeh Mousavi
- Food and Drug Administration, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Mahdokht H. Aghdaie
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-Allah Research Tower, Shiraz, PO Box 7193711351, Iran
| | - Mina Shafiee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-Allah Research Tower, Shiraz, PO Box 7193711351, Iran
| |
Collapse
|
16
|
Mao Z, Yuan R, Wang X, Xie K, Xu B. Serum Concentrations of Benzaldehyde, Isopentanaldehyde and Sex Hormones: Evidence from the National Health and Nutrition Examination Survey. TOXICS 2023; 11:573. [PMID: 37505538 PMCID: PMC10383974 DOI: 10.3390/toxics11070573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Exposure to environmental chemicals could disturb the balance of sex hormones. However, the studies on Benzaldehyde, Isopentanaldehyde exposure and sex hormones are still limited. Based on the data of 1064 participants in the National Health and Nutrition Examination Survey (NHANES), we used the linear regression model and restricted cubic spline (RCS) model to evaluate the associations of Benzaldehyde/Isopentanaldehyde exposure with testosterone (TT), estradiol (E2), sex hormone binding globulin (SHBG), free androgen index (FAI) and the ratio of TT to E2 (TT/E2). A ln-unit increase in Benzaldehyde was associated with lower TT (β = -0.048, P = 0.030) and E2 (β = -0.094, P = 0.046) in all participants. After further adjustment for menopausal status, Benzaldehyde was negatively associated with E2 (β = -0.174, P = 0.045) in females. The interaction between Benzaldehyde and gender was significant (Pinter = 0.031). However, Isopentanaldehyde showed a positive association with SHBG and TT/E2 in all participants (all P < 0.05). The positive associations of Isopentanaldehyde with TT, SHBG and TT/E2 were found in males but not in females. RCS plots illustrated the linear associations of Benzaldehyde with E2 (Pnon-linear = 0.05) in females and Isopentanaldehyde with TT (Pnon-linear = 0.07) and TT/E2 (Pnon-linear = 0.350) in males. The non-linear relationships were identified between Isopentanaldehyde and SHBG in males (Pnon-linear = 0.035). Our findings indicated the effects of Benzaldehyde and Isopentanaldehyde exposure on sex hormones, and the effects had the gender specificity. Cohort studies and high-quality in vitro and in vivo experiments are needed to confirm the specific effects and uncover the underlying mechanisms.
Collapse
Affiliation(s)
- Zhilei Mao
- Changzhou Maternal and Child Healthcare Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Rui Yuan
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xu Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Kaipeng Xie
- Department of Public Health, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
17
|
Zhou J, Zhang K, Gao J, Xu J, Wu C, He M, Zhang S, Zhang D, Dai J, Sun L. Effect of Poria cocos Mushroom Polysaccharides (PCPs) on the Quality and DNA Methylation of Cryopreserved Shanghai White Pig Spermatozoa. Cells 2023; 12:1456. [PMID: 37296577 PMCID: PMC10253127 DOI: 10.3390/cells12111456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, we explore the effects of Poria cocos mushroom polysaccharides (PCPs) on the quality and DNA methylation of the cryopreserved spermatozoa of Shanghai white pigs. A total of 24 ejaculates (three ejaculate samples per boar) from eight Shanghai white pigs were manually collected. The pooled semen was diluted with a based extender supplemented with different concentrations of PCPs (0, 300, 600, 900, 1200, and 1500 μg/mL). Once thawed, the quality of the spermatozoa and their antioxidant function were assessed. In the meantime, the effect of spermatozoa DNA methylation was also analyzed. The results show that compared with the control group, 600 μg/mL of PCPs significantly improves the spermatozoa viability (p < 0.05). The motility and plasma membrane integrity of the frozen-thawed spermatozoa are significantly higher after treatment with 600, 900, and 1200 μg/mL of PCPs compared with the control group (p < 0.05). In comparison with the control group, the percentages of acrosome integrity and mitochondrial activity are significantly enhanced after the application of 600 and 900 μg/mL PCPs (p < 0.05). The reactive oxygen species (ROS), the malondialdehyde (MDA) levels, and the glutathione peroxidase (GSH-Px) activity, in comparison with the control group, are significantly decreased in all groups with PCPs (all p < 0.05). The enzymatic activity of superoxide dismutase (SOD) in spermatozoa is significantly higher in the treatment with 600 μg/mL of PCPs than in the other groups (p < 0.05). As compared with the control group, a significant increase in the catalase (CAT) level is found in the groups with PCPs at 300, 600, 900, and 1200 μg/mL (all p < 0.05). In comparison with the control group, the 5-methylcytosine (5-mC) levels are significantly decreased in all groups with PCPs (all p < 0.05). As a result of these findings, a certain amount of PCPs (600-900 μg/mL) added to the cryodiluent can significantly improve the quality of Shanghai white pig spermatozoa and can also reduce the methylation of spermatozoa DNA caused by cryopreservation. This treatment strategy may establish a foundation for the cryopreservation of semen from pigs.
Collapse
Affiliation(s)
- Jinyong Zhou
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- College of Animal Sciences, Guizhou University, Guiyang 550025, China
| | - Keqin Zhang
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Jun Gao
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- College of Animal Sciences, Guizhou University, Guiyang 550025, China
| | - Jiehuan Xu
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
| | - Caifeng Wu
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
| | - Mengqian He
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
| | - Shushan Zhang
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
| | - Defu Zhang
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Jianjun Dai
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lingwei Sun
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| |
Collapse
|
18
|
Sharma P, Kaushal N, Saleth LR, Ghavami S, Dhingra S, Kaur P. Oxidative stress-induced apoptosis and autophagy: Balancing the contrary forces in spermatogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166742. [PMID: 37146914 DOI: 10.1016/j.bbadis.2023.166742] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Spermatogenesis is a complex process in the testis and is a cornerstone of male infertility. The abundance of unsaturated fatty acid and high cell division rate make male germs cells prone to DNA deterioration. ROS-mediated oxidative stress triggers DNA damage, autophagy, and apoptosis in male germ cells, which are critical causative factors that lead to male infertility. The complex connection and molecular crosstalk between apoptosis and autophagy is seen at multifaceted levels that interconnect the signaling pathways of these two processes. Multilevel interaction between apoptosis and autophagy is a seamless state of survival and death in response to various stressors. Interaction between multiple genes and proteins such as the mTor signaling pathway, Atg12 proteins, and the death adapter proteins, such as Beclin 1, p53, and Bcl-2 family proteins, validates such a link between these two phenomena. Testicular cells being epigenetically different from somatic cells, undergo numerous significant epigenetic transitions, and ROS modulates the epigenetic framework of mature sperm. Epigenetic deregulation of apoptosis and autophagy under oxidative stress conditions can cause sperm cell damage. The current review recapitulates the current role of prevailing stressors that generate oxidative stress leading to the induction of apoptosis and autophagy in the male reproductive system. Considering the pathophysiological consequences of ROS-mediated apoptosis and autophagy, a combinatorial approach, including apoptosis inhibition and autophagy activation, a therapeutic strategy to treat male idiopathic infertility. Understanding the crosslink between apoptosis and autophagy under stress conditions in male germ cells may play an essential role in developing therapeutic strategies to treat infertility.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Parminder Kaur
- Department of Biotechnology, University Institute of Engineering & Technology, Panjab University, Chandigarh 160024, India.
| |
Collapse
|
19
|
Heidari M, Qasemi-Panahi B, Moghaddam G, Daghigh-Kia H, Masoudi R. L-carnitine improves quality parameters and epigenetic patterns of buck’s frozen-thawed semen. Anim Reprod Sci 2022; 247:107092. [DOI: 10.1016/j.anireprosci.2022.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/01/2022]
|
20
|
Bisht S, Chawla B, Kumar A, Vijayan V, Kumar M, Sharma P, Dada R. Identification of novel genes by targeted exome sequencing in Retinoblastoma. Ophthalmic Genet 2022; 43:771-788. [PMID: 35930312 DOI: 10.1080/13816810.2022.2106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Retinoblastoma (RB) is initiated by mutation in both alleles of RB1 gene. However, few cases may occur even in the absence of RB1 mutation suggesting the role of genes other than RB1. METHODOLOGY The current study was planned to utilize targeted exome sequencing in Indian RB patients affected with unilateral non-familial RB. 75 unilateral RB patients below 5 years of age were enrolled. Genomic DNA was extracted from blood and tumor tissue. From peripheral blood DNA, all coding and exon/intron regions were amplified using PCR and direct sequencing. Cases which did not harbor pathogenic variants in peripheral blood DNA were further screened for mutations in their tumor tissue DNA using targeted exome sequencing. Three pathogenicity prediction tools (Mutation Taster, SIFT, and PolyPhen-2) were used to determine the pathogenicity of non-synonymous variations. An in-house bioinformatics pipeline was devised for the mutation screening by targeted exome sequencing. Protein modeling studies were also done to predict the effect of the mutations on the protein structure and function. RESULTS Using the mentioned approach, we found two novel variants (g.69673_69674insT and g.48373314C>A) in RB1 gene in peripheral blood DNA. We also found novel variants in eight genes (RB1, ACAD11, GPR151, KCNA1, OTOR, SOX30, ARL11, and MYCT1) that may be associated with RB pathogenesis. CONCLUSION The present study expands our current knowledge regarding the genomic landscape of RB and also highlights the importance of NGS technologies to detect genes and novel variants that may play an important role in cancer initiation, progression, and prognosis.
Collapse
Affiliation(s)
- Shilpa Bisht
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Bhavna Chawla
- Ocular Oncology Service, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Kumar
- Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India
| | - Viswanathan Vijayan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
21
|
Sharafi M, Borghei-Rad SM, Hezavehei M, Shahverdi A, Benson JD. Cryopreservation of Semen in Domestic Animals: A Review of Current Challenges, Applications, and Prospective Strategies. Animals (Basel) 2022; 12:3271. [PMID: 36496792 PMCID: PMC9739224 DOI: 10.3390/ani12233271] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Cryopreservation is a way to preserve germplasm with applications in agriculture, biotechnology, and conservation of endangered animals. Cryopreservation has been available for over a century, yet, using current methods, only around 50% of spermatozoa retain their viability after cryopreservation. This loss is associated with damage to different sperm components including the plasma membrane, nucleus, mitochondria, proteins, mRNAs, and microRNAs. To mitigate this damage, conventional strategies use chemical additives that include classical cryoprotectants such as glycerol, as well as antioxidants, fatty acids, sugars, amino acids, and membrane stabilizers. However, clearly current protocols do not prevent all damage. This may be due to the imperfect function of antioxidants and the probable conversion of media components to more toxic forms during cryopreservation.
Collapse
Affiliation(s)
- Mohsen Sharafi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Semex Alliance, Guelph, ON N1H 6J2, Canada
| | - Seyyed Mohsen Borghei-Rad
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran 16635-148, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran 16635-148, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran 16635-148, Iran
| | - James D. Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
22
|
Song B, Chen Y, Wang C, Li G, Wei Z, He X, Cao Y. Poor semen parameters are associated with abnormal methylation of imprinted genes in sperm DNA. Reprod Biol Endocrinol 2022; 20:155. [PMID: 36357889 PMCID: PMC9647922 DOI: 10.1186/s12958-022-01028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/26/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Altered sperm DNA methylation patterns of imprinted genes as well as certain spermatogenesis-related genes has been proposed as a possible mechanism of male subfertility. Some reports suggest that there is an elevated risk of congenital diseases, associated with imprinted genes, in children conceived via intra-cytoplasmic sperm injection, due to the involvement of spermatozoa with aberrant imprinted genes obtained from infertile men. METHODS In this study, the DNA methylation status of the promoter regions of six imprinted genes, namely potassium voltage-gated channel subfamily Q member 1 (KCNQ1), maternally expressed gene 3 (MEG3), insulin-like growth factor 2 (IGF-2), KCNQ1 overlapping transcript 1 (KCNQ1OT1), mesoderm specific transcript (MEST), and paternally expressed gene 3 (PEG3), were detected by a next generation sequencing-based multiple methylation-specific polymerase chain reaction analysis of sperm samples obtained from 166 men who sought fertility evaluation in our Reproductive Medicine Center. Thereafter, the semen samples were classified into subgroups according to sperm motility and DNA integrity status. RESULTS As compared to the normozoospermic group, the samples of the asthenospermic group exhibited significant hypermethylation in two CpG sites of IGF-2 and significant hypomethylation in one CpG site of KCNQ1 as well as three CpG sites of MEST (P < 0.05). However, we did not observe any significant differences in the overall methylation levels of these six imprinted genes (P > 0.05). Additionally, we found that 111 of 323 CpG sites were hypomethylated in the group with DNA fragmentation index (DFI) ≥ 30% as compared to the group with DFI < 30% (P < 0.05). In this case, there were significant differences in the overall methylation levels of MEG3, IGF-2, MEST, and PEG3 (P < 0.05), but not in that of KCNQ1OT1 and KCNQ1 (P > 0.05). Hence, aberrant methylation patterns of imprinted genes were more prevalent in males with poor sperm quality, especially in those with severe sperm DNA damage. CONCLUSION In conclusion, abnormal DNA methylation of some CpG sites of imprinted genes are associated with poor sperm quality, including asthenospermia and severe sperm DNA impairment.
Collapse
Affiliation(s)
- Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, 230032, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, 230032, Hefei, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, 230032, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, 230032, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, 230032, Hefei, China
| | - Yujie Chen
- Department of Gynecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, 214000, Wuxi, China
| | - Chao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, 230032, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, 230032, Hefei, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, 230032, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, 230032, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, 230032, Hefei, China
| | - Guanjian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, 230032, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, 230032, Hefei, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, 230032, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, 230032, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, 230032, Hefei, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, 230032, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, 230032, Hefei, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, 230032, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, 230032, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, 230032, Hefei, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, 230032, Hefei, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, 230032, Hefei, China.
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, 230032, Hefei, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, 230032, Hefei, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, 230032, Hefei, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, 230032, Hefei, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, 230032, Hefei, China.
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, 230032, Hefei, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, 230032, Hefei, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
23
|
Yahaya TO, Bashar DM, Oladele EO, Umar J, Anyebe D, Izuafa A. Epigenetics in the etiology and management of infertility. World J Med Genet 2022; 10:7-21. [DOI: 10.5496/wjmg.v10.i2.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/28/2022] [Accepted: 10/12/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epigenetic disruptions have been implicated in some cases of infertility and can serve as therapeutic targets. However, the involvement of epigenetics in infertility has not received adequate attention.
AIM This study aimed to determine the epigenetic basis of infertility in order to enhance public knowledge.
METHODS Relevant articles on the subject were collected from PubMed, RCA, Google Scholar, SpringerLink, and Scopus. The articles were pooled together and duplicates were removed using Endnote software.
RESULTS Available information shows that epigenetic mechanisms, mainly DNA methylation, histone modification, and microRNA interference are necessary for normal gametogenesis and embryogenesis. As a result, epigenetic disruptions in genes that control gametogenesis and embryogenesis, such as DDX3X, ADH4, AZF, PLAG1, D1RAS3, CYGB, MEST, JMJD1A, KCNQ1, IGF2, H19, and MTHFR may result in infertility. Aberrant DNA methylation during genomic imprinting and parental epigenetic mark erasures, in particular, may affect the DNA epigenomes of sperm and oocytes, resulting in reproductive abnormalities. Histone epigenetic dysregulation during oocyte development and histone-protamine replacement in the sperm may also cause reproductive abnormalities. Furthermore, overexpression or repression of certain microRNAs embedded in the ovary, testis, embryo, as well as granulosa cells and oocytes may impair reproduction. Male infertility is characterized by spermatogenesis failure, which includes oligozoospermia, asthenozoospermia, and teratozoospermia, while female infertility is characterized by polycystic ovary syndrome. Some epigenetic modifications can be reversed by deactivating the regulatory enzymes, implying that epigenetic reprogramming could help treat infertility in some cases. For some disorders, epigenetic drugs are available, but none have been formulated for infertility.
CONCLUSION Some cases of infertility have an epigenetic etiology and can be treated by reversing the same epigenetic mechanism that caused it. As a result, medical practitioners are urged to come up with epigenetic treatments for infertility that have an epigenetic cause.
Collapse
Affiliation(s)
| | - Danlami M Bashar
- Department of Microbiology, Federal University Birnin Kebbi, Kebbi State 23401, Nigeria
| | - Esther O Oladele
- Biology Unit, Distance Learning Institute, University of Lagos, Lagos State 23401, Nigeria
| | - Ja'afar Umar
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State 23401, Nigeria
| | - Daniel Anyebe
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Kebbi State 23401, Nigeria
| | - Abdulrazaq Izuafa
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State 23401, Nigeria
| |
Collapse
|
24
|
Cho IK, Easley CA, Chan AWS. Suppression of trinucleotide repeat expansion in spermatogenic cells in Huntington's disease. J Assist Reprod Genet 2022; 39:2413-2430. [PMID: 36066723 PMCID: PMC9596677 DOI: 10.1007/s10815-022-02594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Trinucleotide repeats (TNRs) are dispersed throughout the human genome. About 20 loci are related to human diseases, such as Huntington's disease (HD). A larger TNR instability is predominantly observed in the paternal germ cells in some TNR disorders. Suppressing the expansion during spermatogenesis can provide a unique opportunity to end the vicious cycle of genetic anticipation. Here, using an in vitro differentiation method to derive advanced spermatogenic cells, we investigated the efficacy of two therapeutic agents, araC (cytarabine) and aspirin, on stabilizing TNRs in spermatogenic cells. Two WT patient-derived induced pluripotent stem cell (iPSC) lines and two HD hiPSC lines, with 44 Q and 180 Q, were differentiated into spermatogonial stem cell-like cells (SSCLCs). Both HD cell lines showed CAG tract expansion in SSCLC. When treated with araC and aspirin, HD1 showed moderate but not statistically significant stabilization of TNR. In HD2, 10 nM of aspirin and araC showed significant stabilization of TNR. All cell lines showed increased DNA damage response (DDR) gene expression in SSCLCs while more genes were significantly induced in HD SSCLC. In HD1, araC and aspirin treatment showed general suppression of DNA damage response genes. In HD2, only FAN1, OGG1, and PCNA showed significant suppression. When the methylation profile of HD cells was analyzed, FAN1 and OGG1 showed significant hypermethylation after the aspirin and araC treatment in SSCLC compared to the control. This study underscores the utility of our in vitro spermatogenesis model to study and develop therapies for TNR disorders such as HD.
Collapse
Affiliation(s)
- In K Cho
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Environmental Health Sciences, College of Public Health, University of Georgia, Athens, GA, USA.
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Environmental Health Science and Regenerative Bioscience Center, College of Public Health, University of Georgia, Edgar L. Rhodes Center for Animal and Dairy Science RM 432, 425 River Rd, Athens, GA, 30602, USA.
| | - Charles A Easley
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Environmental Health Sciences, College of Public Health, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Anthony W S Chan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Center of Scientific Review (CSR), National Institutes of Health, Bethesda, USA
| |
Collapse
|
25
|
Pouriayevali F, Tavalaee M, Taktaz-Hafshejani T, Dattilio M, Nasr-Esfahani MH. Overlapping sperm damages from vitamin B or D deficiency in mice: Insights into the role of clinical supplementations. Andrologia 2022; 54:e14592. [PMID: 36123798 DOI: 10.1111/and.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, the effect of 14 weeks of standard diet (controls) or folate and vitamin B12-free diet (VBD group) or vitamin D-free diet (VDD group) were assessed on mice testicular function, and sperm function. Vitamin D deprivation caused increased body weight with no effect from VBD confirming the calcium-independent role of vitamin D on body weight homeostasis. The two deprivations caused convergent damages including decreased testosterone, worsened Johnson scores, tubular differentiation index and spermatogenesis index, and serious worsening of sperm parameters and of sperm functional tests (DNA methylation, protamination, DNA damage and lipid peroxidation). From a metabolic point of view, the damage from both models converged on the one carbon cycle (methylations) and the transsulfuration pathway (GSH and antioxidant defences) and increased circulating homocysteine, although with different mechanisms: VBD appeared to hamper methylations due to lower ability to regenerate homocysteine to methionine whereas VDD appeared to interfere with homocysteine transsulfuration to cysteine and, thereafter, GSH. VDD also caused a huge paradox increase of vitamin B12, which was likely in a non-functional form and warrants further investigation. These findings strongly endorse the potential benefit of combined folate/B12 and vitamin D supplementation in infertile patients.
Collapse
Affiliation(s)
- Farnaz Pouriayevali
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.,Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Isfahan, Iran
| | - Taghi Taktaz-Hafshejani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad H Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Isfahan, Iran
| |
Collapse
|
26
|
Batra V, Norman E, Morgan HL, Watkins AJ. Parental Programming of Offspring Health: The Intricate Interplay between Diet, Environment, Reproduction and Development. Biomolecules 2022; 12:biom12091289. [PMID: 36139133 PMCID: PMC9496505 DOI: 10.3390/biom12091289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
As adults, our health can be influenced by a range of lifestyle and environmental factors, increasing the risk for developing a series of non-communicable diseases such as type 2 diabetes, heart disease and obesity. Over the past few decades, our understanding of how our adult health can be shaped by events occurring before birth has developed into a well-supported concept, the Developmental Origins of Health and Disease (DOHaD). Supported by epidemiological data and experimental studies, specific mechanisms have been defined linking environmental perturbations, disrupted fetal and neonatal development and adult ill-health. Originally, such studies focused on the significance of poor maternal health during pregnancy. However, the role of the father in directing the development and well-being of his offspring has come into recent focus. Whereas these studies identify the individual role of each parent in shaping the long-term health of their offspring, few studies have explored the combined influences of both parents on offspring well-being. Such understanding is necessary as parental influences on offspring development extend beyond the direct genetic contributions from the sperm and oocyte. This article reviews our current understanding of the parental contribution to offspring health, exploring some of the mechanisms linking parental well-being with gamete quality, embryo development and offspring health.
Collapse
|
27
|
Epigenetic Alterations under Oxidative Stress in Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6439097. [PMID: 36071870 PMCID: PMC9444469 DOI: 10.1155/2022/6439097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
Epigenetic regulation of gene expression, including DNA methylation and histone modifications, provides finely tuned responses for cells that undergo cellular environment changes. Abundant evidences have demonstrated the detrimental role of oxidative stress in various human pathogenesis since oxidative stress results from the imbalance between reactive oxygen species (ROS) accumulation and antioxidant defense system. Stem cells can self-renew themselves and meanwhile have the potential to differentiate into many other cell types. As some studies have described the effects of oxidative stress on homeostasis and cell fate decision of stem cells, epigenetic alterations have emerged crucial for mediating the stem cell behaviours under oxidative stress. Here, we review recent findings on the oxidative effects on DNA and histone modifications in stem cells. We propose that epigenetic alterations and oxidative stress may influence each other in stem cells.
Collapse
|
28
|
MTHFR SNPs (Methyl Tetrahydrofolate Reductase, Single Nucleotide Polymorphisms) C677T and A1298C Prevalence and Serum Homocysteine Levels in >2100 Hypofertile Caucasian Male Patients. Biomolecules 2022; 12:biom12081086. [PMID: 36008980 PMCID: PMC9405832 DOI: 10.3390/biom12081086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Methylation is a crucially important ubiquitous biochemical process, which covalently adds methyl groups to a variety of molecular targets. It is the key regulatory process that determines the acquisition of imprinting and epigenetic marks during gametogenesis. Methylation processes are dependent upon two metabolic cycles, the folates and the one-carbon cycles. The activity of these two cycles is compromised by single nucleotide polymorphisms (SNPs) in the gene encoding the Methylenetetrahydrofolate reductase (MTHFR) enzyme. These SNPs affect spermatogenesis and oocyte maturation, creating cytologic/chromosomal anomalies. The two main MTHFR SNP variants C677T (c.6777C>T) and A1298C (c.1298A>C) together with serum homocysteine levels were tested in men with >3 years’ duration of infertility who had failed several ART attempts with the same partner. These patients are often classified as having “idiopathic infertility”. We observed that the genetic status with highest prevalence in this group is the heterozygous C677T, followed by the combined heterozygous C677T/A1298C, and then A1298C; these three variants represent 65% of our population. Only 13.1% of the patients tested are wild type (WT), C677C/A1298A). The homozygous 677TT and the combined heterozygote 677CT/1298AC groups have the highest percentage of patients with an elevated circulating homocysteine level of >15 µMolar (57.8% and 18.8%, respectively, which is highly significant for both). Elevated homocysteine is known to be detrimental to spermatogenesis, and the population with this parameter is not marginal. In conclusion, determination of these two SNPs and serum homocysteine should not be overlooked for patients with severe infertility of long duration, including those with repeated miscarriages. Patients must also be informed about pleiotropic medical implications relevant to their own health, as well as to the health of future children.
Collapse
|
29
|
Khosravizadeh Z, Khodamoradi K, Rashidi Z, Jahromi M, Shiri E, Salehi E, Talebi A. Sperm cryopreservation and DNA methylation: possible implications for ART success and the health of offspring. J Assist Reprod Genet 2022; 39:1815-1824. [PMID: 35713751 PMCID: PMC9428082 DOI: 10.1007/s10815-022-02545-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/09/2022] [Indexed: 01/19/2023] Open
Abstract
Despite the beneficial effects of sperm cryopreservation, increased reactive oxygen species (ROS) production during this process can affect spermatozoon structure and function. Moreover, ROS production is associated with elevated DNA damage and alterations in DNA methylation. There is little information about the effects of cryopreservation on epigenetic modulation in sperm and the health of children born with frozen spermatozoa. Considering the potential consequences of cryopreservation in ART-conceived children, it is necessary to assure that cryopreservation does not modify sperm DNA methylation status. This review summarizes reports on epigenetic modifications of spermatozoa during cryopreservation and the probable effects of this process on offspring health. Contradictory results have reported the influence of sperm cryopreservation on DNA methylation in imprinted genes. Multiclinical studies with larger sample sizes under the same conditions of cryopreservation and DNA methylation analysis are needed to make any definitive conclusion about the effect of the cryopreservation process on sperm DNA methylation.
Collapse
Affiliation(s)
- Zahra Khosravizadeh
- grid.468130.80000 0001 1218 604XClinical Research Development Unit, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Kajal Khodamoradi
- grid.26790.3a0000 0004 1936 8606Department of Urology, University of Miami, Miller School of Medicine, Miami, FL USA
| | - Zahra Rashidi
- grid.412112.50000 0001 2012 5829Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran ,grid.412112.50000 0001 2012 5829Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Malihe Jahromi
- grid.411757.10000 0004 1755 5416Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Elham Shiri
- grid.411950.80000 0004 0611 9280Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ensieh Salehi
- grid.412237.10000 0004 0385 452XFertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Talebi
- grid.444858.10000 0004 0384 8816School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran ,grid.444858.10000 0004 0384 8816Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
30
|
Vašíček J, Baláži A, Svoradová A, Vozaf J, Dujíčková L, Makarevich AV, Bauer M, Chrenek P. Comprehensive Flow-Cytometric Quality Assessment of Ram Sperm Intended for Gene Banking Using Standard and Novel Fertility Biomarkers. Int J Mol Sci 2022; 23:ijms23115920. [PMID: 35682598 PMCID: PMC9180808 DOI: 10.3390/ijms23115920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Flow cytometry becomes a common method for analysis of spermatozoa quality. Standard sperm characteristics such as viability, acrosome and chromatin integrity, oxidative damage (ROS) etc. can be easily assess in any animal semen samples. Moreover, several fertility-related markers were observed in humans and some other mammals. However, these fertility biomarkers have not been previously studied in ram. The aim of this study was to optimize the flow-cytometric analysis of these standard and novel markers in ram semen. Ram semen samples from Slovak native sheep breeds were analyzed using CASA system for motility and concentration and were subsequently stained with several fluorescent dyes or specific antibodies to evaluate sperm viability (SYBR-14), apoptosis (Annexin V, YO-PRO-1, FLICA, Caspases 3/7), acrosome status (PNA, LCA, GAPDHS), capacitation (merocyanine 540, FLUO-4 AM), mitochondrial activity (MitoTracker Green, rhodamine 123, JC-1), ROS (CM-H2DCFDA, DHE, MitoSOX Red, BODIPY), chromatin (acridine orange), leukocyte content, ubiquitination and aggresome formation, and overexpression of negative biomarkers (MKRN1, SPTRX-3, PAWP, H3K4me2). Analyzed semen samples were divided into two groups according to viability as indicators of semen quality: Group 1 (viability over 60%) and Group 2 (viability under 60%). Significant (p < 0.05) differences were found between these groups in sperm motility and concentration, apoptosis, acrosome integrity (only PNA), mitochondrial activity, ROS production (except for DHE), leukocyte and aggresome content, and high PAWP expression. In conclusion, several standard and novel fluorescent probes have been confirmed to be suitable for multiplex ram semen analysis by flow cytometry as well as several antibodies have been validated for the specific detection of ubiquitin, PAWP and H3K4me2 in ram spermatozoa.
Collapse
Affiliation(s)
- Jaromír Vašíček
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
- Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Correspondence: (J.V.); (P.C.); Tel.: +421-37-654-6600 (J.V.); +421-37-641-4274 (P.C.)
| | - Andrej Baláži
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
| | - Andrea Svoradová
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
- Department of Morphology, Physiology and Animal Genetics, Faculty of Agri Sciences, Mendel University in Brno, Zemědělská 1/1665, 613 00 Brno, Czech Republic
| | - Jakub Vozaf
- Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Linda Dujíčková
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nábrežie Mládeže 91, 949 74 Nitra, Slovakia
| | - Alexander V. Makarevich
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
| | - Miroslav Bauer
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nábrežie Mládeže 91, 949 74 Nitra, Slovakia
| | - Peter Chrenek
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
- Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Correspondence: (J.V.); (P.C.); Tel.: +421-37-654-6600 (J.V.); +421-37-641-4274 (P.C.)
| |
Collapse
|
31
|
Abstract
Summary
High rates of infertility in type 2 diabetic (T2DM) men have led to attempts to understand the mechanisms involved in this process. This condition can be investigated from at least two aspects, namely sperm quality indices and epigenetic alterations. Epigenetics science encompasses the phenomena that can lead to inherited changes independently of the genetics. This study has been performed to test the hypothesis of the relationship between T2DM and the epigenetic profile of the sperm, as well as sperm quality indices. This research included 42 individuals referred to the infertility clinic of Royan Institute, Iran in 2019–2021. The study subjects were assigned to three groups: normozoospermic non-diabetic (control), normozoospermic diabetic (DN) and non-normozoospermic diabetic (D.Non-N). Sperm DNA fragmentation was evaluated using the sperm chromatin structure assay technique. The global methylation level was examined using 5-methyl cytosine antibody and the methylation status in differentially methylated regions of H19, MEST, and SNRPN was assessed using the methylation-sensitive high-resolution melting technique. The results showed that the sperm global methylation in spermatozoa of D.Non-N group was significantly reduced compared with the other two groups (P < 0.05). The MEST and H19 genes were hypomethylated in the spermatozoa of D.Non-N individuals, but the difference level was not significant for MEST. The SNRPN gene was significantly hypermethylated in these individuals (P < 0.05). The results of this study suggest that T2DM alters the methylation profile and epigenetic programming in spermatozoa of humans and that these methylation changes may ultimately influence the fertility status of men with diabetes.
Collapse
|
32
|
Zhu W, Jiang L, Li Y, Sun J, Lin C, Huang X, Ni W. DNA comethylation analysis reveals a functional association between BRCA1 and sperm DNA fragmentation. Fertil Steril 2022; 117:963-973. [PMID: 35256191 DOI: 10.1016/j.fertnstert.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To identify the DNA comethylation patterns associated with sperm DNA fragmentation (SDF) and to explore the potential associations of hub genes with SDF. DESIGN Prospective study. SETTING University-affiliated reproductive medicine center. PATIENT(S) A total of 300 male patients consulting for couple infertility were recruited from the First Affiliated Hospital of Wenzhou Medical University. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Comethylation network analysis based on the genome-wide methylation profile of spermatozoal DNA from 20 men was performed to identify hub modules and genes involved in SDF. Human spermatozoa were used for targeted bisulfite amplicon sequencing (267 men) or droplet digital polymerase chain reaction (45 men). The potential role of Brca1 in DNA damage was explored in mouse GC2 spermatocyte cells. Oxidative damage to spermatocytes was modeled by incubating GC2 cells with H2O2 (25 mM) for 90 minutes. RESULT(S) BRCA1 was identified as a hub gene in SDF. Promoter hypermethylation of BRCA1 was observed in those samples with a high DNA fragmentation index (DFI) compared to those with a low DFI. Concomitantly, BRCA1 mRNA expression was lower in samples with a high DFI than with a low DFI. In the GC2 cell model, Brca1 knockdown reduced cell proliferation and increased sensitivity to oxidative stress. Moreover, it increased double-strand breaks and decreased the protein levels of the DNA repair genes MRE11 and RAD51. CONCLUSION(S) A prominent cluster of comethylated patterns associated with SDF was identified. BRCA1 may be the hub gene involved in sperm DNA damage.
Collapse
Affiliation(s)
- Weijian Zhu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lei Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yan Li
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Junhui Sun
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chunchun Lin
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xuefeng Huang
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wuhua Ni
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
33
|
Olszewska M, Kordyl O, Kamieniczna M, Fraczek M, Jędrzejczak P, Kurpisz M. Global 5mC and 5hmC DNA Levels in Human Sperm Subpopulations with Differentially Protaminated Chromatin in Normo- and Oligoasthenozoospermic Males. Int J Mol Sci 2022; 23:ijms23094516. [PMID: 35562907 PMCID: PMC9099774 DOI: 10.3390/ijms23094516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetic modifications play a special role in the male infertility aetiology. Published data indicate the link between sperm quality and sperm chromatin protamination. This study aimed to determine the relationship between methylation (5mC) and hydroxymethylation (5hmC) in sperm DNA, with respect to sperm chromatin protamination in three subpopulations of fertile normozoospermic controls and infertile patients with oligo-/oligoasthenozoospermia. For the first time, a sequential staining protocol was applied, which allowed researchers to analyse 5mC/5hmC levels by immunofluorescence staining, with a previously determined chromatin protamination status (aniline blue staining), using the same spermatozoa. TUNEL assay determined the sperm DNA fragmentation level. The 5mC/5hmC levels were diversified with respect to chromatin protamination status in both studied groups of males, with the highest values observed in protaminated spermatozoa. The linkage between chromatin protamination and 5mC/5hmC levels in control males disappeared in patients with deteriorated semen parameters. A relationship between 5mC/5hmC and sperm motility/morphology was identified in the patient group. Measuring the 5mC/5hmC status of sperm DNA according to sperm chromatin integrity provides evidence of correct spermatogenesis, and its disruption may represent a prognostic marker for reproductive failure.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
- Correspondence: (M.O.); (M.K.)
| | - Oliwia Kordyl
- Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland;
| | - Marzena Kamieniczna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
| | - Piotr Jędrzejczak
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
- Correspondence: (M.O.); (M.K.)
| |
Collapse
|
34
|
Chen H, Scott-Boyer MP, Droit A, Robert C, Belleannée C. Sperm Heterogeneity Accounts for Sperm DNA Methylation Variations Observed in the Caput Epididymis, Independently From DNMT/TET Activities. Front Cell Dev Biol 2022; 10:834519. [PMID: 35392175 PMCID: PMC8981467 DOI: 10.3389/fcell.2022.834519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
Following their production in the testis, spermatozoa enter the epididymis where they gain their motility and fertilizing abilities. This post-testicular maturation coincides with sperm epigenetic profile changes that influence progeny outcome. While recent studies highlighted the dynamics of small non-coding RNAs in maturing spermatozoa, little is known regarding sperm methylation changes and their impact at the post-fertilization level. Fluorescence-activated cell sorting (FACS) was used to purify spermatozoa from the testis and different epididymal segments (i.e., caput, corpus and cauda) of CAG/su9-DsRed2; Acr3-EGFP transgenic mice in order to map out sperm methylome dynamics. Reduced representation bisulfite sequencing (RRBS-Seq) performed on DNA from these respective sperm populations indicated that high methylation changes were observed between spermatozoa from the caput vs. testis with 5,546 entries meeting our threshold values (q value <0.01, methylation difference above 25%). Most of these changes were transitory during epididymal sperm maturation according to the low number of entries identified between spermatozoa from cauda vs. testis. According to enzymatic and sperm/epididymal fluid co-incubation assays, (de)methylases were not found responsible for these sperm methylation changes. Instead, we identified that a subpopulation of caput spermatozoa displayed distinct methylation marks that were susceptible to sperm DNAse treatment and accounted for the DNA methylation profile changes observed in the proximal epididymis. Our results support the paradigm that a fraction of caput spermatozoa has a higher propensity to bind extracellular DNA, a phenomenon responsible for the sperm methylome variations observed at the post-testicular level. Further investigating the degree of conservation of this sperm heterogeneity in human will eventually provide new considerations regarding sperm selection procedures used in fertility clinics.
Collapse
Affiliation(s)
- Hong Chen
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Center for Research in Reproduction, Development and Intergenerational Health, Quebec, QC, Canada
| | | | - Arnaud Droit
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Claude Robert
- Center for Research in Reproduction, Development and Intergenerational Health, Quebec, QC, Canada
- Faculty of Animal Sciences, Université Laval, Quebec, QC, Canada
| | - Clémence Belleannée
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Center for Research in Reproduction, Development and Intergenerational Health, Quebec, QC, Canada
- *Correspondence: Clémence Belleannée,
| |
Collapse
|
35
|
Menezo Y, Clement P, Elder K. Are UMFA (un-metabolized folic acid) and endocrine disruptor chemicals (EDCs) co-responsible for sperm degradation? An epigenetic/methylation perspective. Andrologia 2022; 54:e14400. [PMID: 35274767 PMCID: PMC9541233 DOI: 10.1111/and.14400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 01/26/2023] Open
|
36
|
Association between placental global DNA methylation and blood pressure during human pregnancy. J Hypertens 2022; 40:1002-1009. [DOI: 10.1097/hjh.0000000000003103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Castleton PE, Deluao JC, Sharkey DJ, McPherson NO. Measuring Reactive Oxygen Species in Semen for Male Preconception Care: A Scientist Perspective. Antioxidants (Basel) 2022; 11:antiox11020264. [PMID: 35204147 PMCID: PMC8868448 DOI: 10.3390/antiox11020264] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress and elevated levels of seminal and sperm reactive oxygen species (ROS) may contribute to up to 80% of male infertility diagnosis, with sperm ROS concentrations at fertilization important in the development of a healthy fetus and child. The evaluation of ROS in semen seems promising as a potential diagnostic tool for male infertility and male preconception care with a number of clinically available tests on the market (MiOXSYS, luminol chemiluminescence and OxiSperm). While some of these tests show promise for clinical use, discrepancies in documented decision limits and lack of cohort studies/clinical trials assessing their benefits on fertilization rates, embryo development, pregnancy and live birth rates limit their current clinical utility. In this review, we provide an update on the current techniques used for analyzing semen ROS concentrations clinically, the potential to use of ROS research tools for improving clinical ROS detection in sperm and describe why we believe we are likely still a long way away before semen ROS concentrations might become a mainstream preconception diagnostic test in men.
Collapse
Affiliation(s)
- Patience E. Castleton
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide 5005, Australia; (P.E.C.); (J.C.D.)
- Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia;
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide 5005, Australia
| | - Joshua C. Deluao
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide 5005, Australia; (P.E.C.); (J.C.D.)
- Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia;
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide 5005, Australia
| | - David J. Sharkey
- Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia;
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide 5005, Australia
| | - Nicole O. McPherson
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide 5005, Australia; (P.E.C.); (J.C.D.)
- Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia;
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide 5005, Australia
- Repromed, 180 Fullarton Rd., Dulwich 5065, Australia
- Correspondence: ; Tel.: +61-8-8313-8201
| |
Collapse
|
38
|
Jazayeri M, Alizadeh A, Sadighi Gilani MA, Eftekhari-Yazdi P, Sharafi M, Shahverdi A. Underestimated Aspects in Male Infertility: Epigenetics is A New Approach in Men with Obesity or Diabetes: A Review. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2022; 16:132-139. [PMID: 36029047 PMCID: PMC9396004 DOI: 10.22074/ijfs.2021.534003.1158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/25/2022]
Abstract
Infertility is a complex multifactorial problem that affects about 7% of men and 15% of couples worldwide. Many molecular mechanisms involved in male infertility. Destructive effects of infertility on the next generations are not well understood. Approximately 60-75% of male infertility cases have idiopathic causes, and there is a need for additional investigations other than routine examinations. Molecular factors that surround DNA, which are mitotically stable and independently regulate genome activity of DNA sequences, are known as epigenetics. The known epigenetic mechanisms are DNA methylation, histone modifications and non-coding RNAs. Prevalence of metabolic diseases has been increased dramatically because of changes in lifestyle and the current levels of inactivity. Metabolic disorders, such<br />as obesity and diabetes, are prevalent reasons for male infertility; despite the association between metabolic diseases and male infertility, few studies have been conducted on the effects of epigenetic alterations associated with these diseases and sperm abnormalities. Diabetes can affect the reproductive system and testicular function at multiple levels;<br />however, there are very few molecular and epigenetic studies related to sperm from males with diabetes. On the other hand, obesity has similar conditions, while male obesity is linked to notable alterations in the sperm molecular architecture affecting both function and embryo quality. Therefore, in this review article, we presented new and developed technologies to study different patterns of epigenetic changes, and explained the exact mechanisms of epigenetic changes linked to metabolic diseases and their relationship with male infertility.
Collapse
Affiliation(s)
- Maryam Jazayeri
- Department of Reproductive Biology, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - AliReza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,Department of Poultry Sciences, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,P.O. Box: 16635-148Department of EmbryologyReproductive Biomedicine Research CenterRoyan Institute for Reproductive BiomedicineACECRTehranIran
| |
Collapse
|
39
|
Mortimer R, James K, Bormann CL, Harris AL, Yeh J, Toth TL, Souter I, Roberts DJ, Sacha CR. Male factor infertility and placental pathology in singleton live births conceived with in vitro fertilization. J Assist Reprod Genet 2021; 38:3223-3232. [PMID: 34704166 PMCID: PMC8666390 DOI: 10.1007/s10815-021-02344-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE We sought to determine whether pregnancies conceived in those with male factor infertility have unique placental pathology profiles compared to those undergoing infertility treatments for other indications. METHODS This was a retrospective cohort study of placental pathology from 464 live births conceived from autologous fresh IVF cycles at an academic fertility center from 2004 to 2017. Placental pathology was compared between live births arising from patients with male factor infertility alone and those with another infertility diagnosis. Placental outcomes were compared with parametric or non-parametric tests; logistic regression was performed to account for potential confounders. RESULTS Compared to cycles performed for a non-male factor diagnosis, male factor infertility cycles had a higher mean paternal age (38.2 years vs. 36.5 years, p < 0.001), a higher female mean BMI (24.3 vs. 23.3 kg/m2, p = 0.01), and a lower day 3 follicle stimulating hormone (FSH) level (6.8 vs. 7.3 IU/mL, p = 0.02). The mean numbers of embryos transferred, and day of transfer were similar between groups, and more cycles used ICSI in the male factor infertility group (90.6% vs. 22.5%, p < 0.001). Placental pathology in our adjusted model was similar between the male factor and non-male factor groups. In our unadjusted subgroup analysis, cycles for male factor using ICSI appeared to lead to more small placentas by weight compared to cycles performed with conventional insemination (45.8% < 10th percentile vs. 18.8%, p = 0.04). CONCLUSION Male factor infertility is not associated with significantly different placental pathology compared to other infertility diagnoses.
Collapse
Affiliation(s)
- Roisin Mortimer
- Department of OB/GYN, Massachusetts General Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - K James
- Center for Outcomes Research, Department of OB/GYN, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - C L Bormann
- Massachusetts General Hospital Fertility Center and Harvard Medical School, Boston, MA, USA
| | - A L Harris
- Department of Women's Health, Wright Patterson Air Force Base, Wright Patterson AFB, Dayton, OH, USA
- Department of OB/GYN, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - J Yeh
- Division of Reprod Endo & Infertil, UMass Medical, Worcester, MA, USA
| | - T L Toth
- Boston IVF, Department of OB/GYN, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - I Souter
- Massachusetts General Hospital Fertility Center and Harvard Medical School, Boston, MA, USA
| | - D J Roberts
- Department of Pathology, Harvard Medical School and Massachusetts General, Boston Hospital, Boston, MA, USA
| | - C R Sacha
- Massachusetts General Hospital Fertility Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Romero-Haro AÁ, Pérez-Rodríguez L, Tschirren B. Intergenerational Costs of Oxidative Stress: Reduced Fitness in Daughters of Mothers That Experienced High Levels of Oxidative Damage during Reproduction. Physiol Biochem Zool 2021; 95:1-14. [PMID: 34812695 DOI: 10.1086/717614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractParental condition transfer effects occur when the parents' physiological state during reproduction affects offspring performance. Oxidative damage may mediate such effects, yet evidence that oxidative damage experienced by parents during reproduction negatively affects offspring fitness is scarce and limited to early life stages. We show in Japanese quail (Coturnix japonica) that maternal levels of oxidative damage, measured during reproduction, negatively predict the number of offspring produced by daughters. This maternal effect on daughters' reproductive success was mediated by an effect on hatching success rather than on the number of eggs laid by daughters. We also observed a negative association between fathers' oxidative damage levels and the number of eggs laid by daughters but a positive association between fathers' oxidative damage levels and the hatching success of those eggs. These opposing paternal effects canceled each other out, resulting in no overall effect on the number of offspring produced by daughters. No significant association between a female's own level of oxidative damage during reproduction and her reproductive success was observed. Our results suggest that oxidative damage experienced by parents is a better predictor of an individual's reproductive performance than oxidative damage experienced by the individual itself. Although the mechanisms underlying these parental condition transfer effects are currently unknown, changes in egg composition or (epi)genetic alterations of gametes may play a role. These findings highlight the importance of an intergenerational perspective when quantifying costs of physiological stress.
Collapse
|
41
|
Ghai M, Kader F. A Review on Epigenetic Inheritance of Experiences in Humans. Biochem Genet 2021; 60:1107-1140. [PMID: 34792705 DOI: 10.1007/s10528-021-10155-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
If genetics defines the inheritance of DNA, epigenetics aims to regulate and make it adaptable. Epigenetic alterations include DNA methylation, chromatin remodelling, post-translational modifications of histone proteins and activity of non-coding RNAs. Several studies, especially in animal models, have reported transgenerational inheritance of epigenetic marks. However, evidence of transgenerational inheritance in humans via germline in the absence of any direct exposure to the driving external stimulus remains controversial. Most of the epimutations exist in relation with genetic variants. The present review looks at intergenerational and transgenerational inheritance in humans, (both father and mother) in response to diet, exposure to chemicals, stress, exercise, and disease status. If not transgenerational, at least intergenerational human studies could help to understand early processes of inheritance. In humans, female and male germline development follow separate paths of epigenetic events and both oocyte and sperm possess their own unique epigenomes. While DNA methylation alterations are reset during epigenetic reprogramming, non-coding RNAs via human sperm provide evidence of being reliable carriers for transgenerational inheritance. Human studies reveal that one mechanism of epigenetic inheritance cannot be applied to the complete human genome. Multiple factors including time, type, and tissue of exposure determine if the modified epigenetic mark could be transmissible and till which generation. Population-specific differences should also be taken into consideration while associating inheritance to an environmental exposure. A longitudinal study targeting one environmental factor, but different population groups should be conducted at a specific geographical location to pinpoint heritable epigenetic changes.
Collapse
Affiliation(s)
- Meenu Ghai
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa.
| | - Farzeen Kader
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
42
|
Kontsevaya GV, Gerlinskaya LA, Moshkin YM, Anisimova MV, Stanova AK, Babochkina TI, Moshkin MP. The Effects of Sperm and Seminal Fluid of Immunized Male Mice on In Vitro Fertilization and Surrogate Mother-Embryo Interaction. Int J Mol Sci 2021; 22:ijms221910650. [PMID: 34638989 PMCID: PMC8508670 DOI: 10.3390/ijms221910650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The latest vaccination campaign has actualized the potential impact of antigenic stimuli on reproductive functions. To address this, we mimicked vaccination’s effects by administering keyhole limpet hemocyanin (KLH ) to CD1 male mice and used their sperm for in vitro fertilization (IVF). Two-cell embryos after IVF with spermatozoa from control (C) or KLH-treated (Im) male mice were transferred to surrogate mothers mated with vasectomized control (C) or KLH-treated (Im) male mice, resulting in four experimental groups: C–C, Im–C, C–Im, and Im–Im. The pre-implantation losses were significantly lower in the Im–C group than in the C–Im group. At the same time, the resorption rates reduced markedly in the C–Im compared to the Im–C group. Embryo and placenta weights were significantly higher in the Im–Im group. Although the GM-CSF levels were lower in the amniotic fluid of the gestating surrogate mothers in the Im–Im group, they were strongly correlated with embryo mass. The number–size trade-off was only significant in the Im–Im group. This suggests a positive, cooperative effect of spermatozoa and seminal fluid from immune-primed males on embryo growth and the optimal distribution of surrogate mother maternal resources despite the negative impact of males’ antigenic challenge on the IVF success rate.
Collapse
Affiliation(s)
- Galina Vladimirovna Kontsevaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (G.V.K.); (Y.M.M.); (M.V.A.); (A.K.S.); (M.P.M.)
| | - Ludmila Alekseevna Gerlinskaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (G.V.K.); (Y.M.M.); (M.V.A.); (A.K.S.); (M.P.M.)
- Correspondence: (L.A.G.); (T.I.B.)
| | - Yury Mikhailovich Moshkin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (G.V.K.); (Y.M.M.); (M.V.A.); (A.K.S.); (M.P.M.)
| | - Margarita Vladimirovna Anisimova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (G.V.K.); (Y.M.M.); (M.V.A.); (A.K.S.); (M.P.M.)
| | - Aliya Konstantinovna Stanova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (G.V.K.); (Y.M.M.); (M.V.A.); (A.K.S.); (M.P.M.)
| | - Tatyana Ivanovna Babochkina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (G.V.K.); (Y.M.M.); (M.V.A.); (A.K.S.); (M.P.M.)
- Correspondence: (L.A.G.); (T.I.B.)
| | - Mikhail Pavlovich Moshkin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (G.V.K.); (Y.M.M.); (M.V.A.); (A.K.S.); (M.P.M.)
- Biological Institute at Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
43
|
Güngör BH, Tektemur A, Arkali G, Dayan Cinkara S, Acisu TC, Koca RH, Etem Önalan E, Özer Kaya S, Kizil M, Sönmez M, Gür S, Çambay Z, Yüce A, Türk G. Effect of freeze-thawing process on lipid peroxidation, miRNAs, ion channels, apoptosis and global DNA methylation in ram spermatozoa. Reprod Fertil Dev 2021; 33:747-759. [PMID: 34585662 DOI: 10.1071/rd21091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022] Open
Abstract
This study was carried out to investigate the effect of the semen freeze-thawing process on the functionality and molecular structure of ram spermatozoa. The temperature of pooled and diluted semen at 38°C (group 1, control) was lowered to 5°C (group 2), and it was subjected to glycerolisation-equilibration (group 3), frozen and thawed (group 4). Compared to the control, deterioration in spermatological parameters and significant increases in lipid peroxidation and global DNA methylation levels were observed in groups 3 and 4. When compared with the control, significant downregulation in the levels of miR-485 of group 2, miR-29a of group 3 and let-7a, miR-485 and miR-29a of group 4, and significant upregulation in the levels of miR-107 of group 3 and miR-127 of groups 3 and 4 were detected. In comparison to the control, significant upregulation in the levels of CatSper1, CatSper2, CatSper3, CatSper4, ANO1 and TRPM3 of group 2, CatSper4, ANO1 and TRPM3 of group 3 and KCNJ11 of group 4, and significant downregulation in the CatSper 3 level of group 4 were determined. As a result, the semen freeze-thawing process causes motility and morphological disorders in rams. This may be due to molecular changes associated with lipid peroxidation in spermatozoa.
Collapse
Affiliation(s)
- Brahim Halil Güngör
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Faculty of Medicine, Department of Medical Biology, Firat University, Elazig, Turkey
| | - Gözde Arkali
- Faculty of Veterinary Medicine, Department of Physiology, Firat University, Elazig, Turkey
| | - Serap Dayan Cinkara
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Tutku Can Acisu
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Recep Hakki Koca
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Bingöl University, Bingöl, Turkey
| | - Ebru Etem Önalan
- Faculty of Medicine, Department of Medical Biology, Firat University, Elazig, Turkey
| | - Seyma Özer Kaya
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Meltem Kizil
- Faculty of Veterinary Medicine, Department of Physiology, Firat University, Elazig, Turkey
| | - Mustafa Sönmez
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Seyfettin Gür
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Zafer Çambay
- Department of Medical Services and Technics, Firat University, High School of Medical Services, Elazig, Turkey
| | - Abdurrauf Yüce
- Faculty of Veterinary Medicine, Department of Physiology, Firat University, Elazig, Turkey
| | - Gaffari Türk
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| |
Collapse
|
44
|
Kashyap P, Shikha D, Thakur M, Aneja A. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J Food Biochem 2021; 46:e13950. [PMID: 34569073 DOI: 10.1111/jfbc.13950] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
Numerous diseases such as cancer, diabetes, cardiovascular, neurodegenerative diseases, etc. are linked with overproduction of reactive oxygen species (ROS) and oxidative stress. Apigenin (5,7,4'-trihydroxyflavone) is a widely distributed flavonoid, responsible for antioxidant potential and chelating redox active metals. Being present as glycosides or polymers, the apigenin degrades to variable amount in the digestive tract; during processing, its activity is also reduced due to high temperature or Fe/Cu addition. Although its metabolism remains elusive, enteric absorption occurs sufficiently to reduce plasma indices of oxidant status. Delayed clearance in plasma and slow liver decomposition enhance its systematic bioavailability. Antioxidant mechanism of apigenin includes: oxidant enzymes inhibition, modulation of redox signaling pathways (NF-kB, Nrf2, MAPK, and P13/Akt), reinforcing enzymatic and nonenzymatic antioxidant, metal chelation, and free radical scavenging. DPPH, ORAC, ABTS, and FRAP are the major in vitro methods for determining the antioxidant potential of apigenin, whereas its protective effects in whole and living cells of animals are examined using in vivo studies. Due to limited information on antioxidant potential of apigenin, its in vitro and in vivo antioxidant effects are, therefore, discussed with action mechanism and interaction with the signaling pathways. This paper concludes that apigenin is a potent antioxidant compound to overcome the difficulties related to oxidative stress and other chronic diseases.
Collapse
Affiliation(s)
- Piyush Kashyap
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Deep Shikha
- Department of Food Technology, Bhai Gurdas Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, India
| | - Ashwin Aneja
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
45
|
Liu Q, Li H, Guo L, Chen Q, Gao X, Li PH, Tang N, Guo X, Deng F, Wu S. Effects of short-term personal exposure to air pollution on platelet mitochondrial DNA methylation levels and the potential mitigation by L-arginine supplementation. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125963. [PMID: 33984786 DOI: 10.1016/j.jhazmat.2021.125963] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The potential effect of short-term exposure to air pollution on mitochondrial DNA (mtDNA) methylation remains to be explored. This study adopted an experimental exposure protocol nested with an intervention study on L-arginine (L-Arg) supplementation among 118 participants. Participants walked along a traffic road for 2 hours in the last day of a 14-day intervention to investigate the effects of short-term personal exposure to air pollution on platelet mtDNA methylation and the possible modifying effects of L-Arg supplementation. Results showed that short-term personal exposure to air pollutants was associated with hypomethylation in platelet mtDNA in 110 participants who completed the study protocol. Specifically, 2-h fine particulate matter (PM2.5) exposure during the outdoor walk was significantly associated with hypomethylation in mt12sRNA; 24-h PM2.5 and black carbon (BC) exposures from the start of the walk till next morning were both significantly associated with hypomethylation in the D-loop region; 24-h BC exposure was also significantly associated with hypomethylation in ATP8_P1. Supplementation with L-Arg could mitigate the air pollution effects on platelet mtDNA methylation, especially the D-loop region. These findings suggest that platelet mtDNA methylation may be sensitive effect biomarker for short-term exposure to air pollution and may help deepen the understanding of the epigenetic mechanisms of adverse cardiovascular effects of air pollution.
Collapse
Affiliation(s)
- Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Hongyu Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Liqiong Guo
- Institute of Disaster Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Qiao Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Peng-Hui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| |
Collapse
|
46
|
Kiwitt-Cárdenas J, Adoamnei E, Arense-Gonzalo JJ, Sarabia-Cos L, Vela-Soria F, Fernández MF, Gosálvez J, Mendiola J, Torres-Cantero AM. Associations between urinary concentrations of bisphenol A and sperm DNA fragmentation in young men. ENVIRONMENTAL RESEARCH 2021; 199:111289. [PMID: 34004170 DOI: 10.1016/j.envres.2021.111289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is one of the most common endocrine disruptor compounds in our environment, promoting a xenoestrogenic state. Numerous studies have shown a relationship between exposure to BPA and male infertility problems. Spermatic DNA integrity is a critical factor for the correct transmission of paternal genetic material to the embryo. However, only a very few studies have investigated the association between urinary BPA concentrations and human sperm DNA fragmentation (SDF). METHOD Cross-sectional study conducted with 158 healthy university students (18-23 years), recruited between 2010 and 2011 in the Region of Murcia (Spain). The subjects provided urine and semen samples on a single day. Urinary BPA concentrations were measured by dispersive liquid-liquid microextraction and ultrahigh performance liquid chromatography with tandem mass spectrometry detection, and SDF analysed using the Sperm Chromatin Dispersion test. Statistical analyses were made using linear regression adjusting for potential covariates and confounding factors. RESULTS No association was found between urinary BPA concentrations and SDF index in the total group. However, in the subgroup of men with SDF index> 30%, significant positive associations across quartiles (p-trend=0.02) and as a continuous BPA levels were observed (β = 0.055, 95%, CI: 0.002; 0.108). CONCLUSION Our results show that, within the subgroup of men with relatively high SDF index, the higher the concentration of BPA the greater the SDF index. Nonetheless, more studies are required to confirm these results and draw conclusions in other male populations.
Collapse
Affiliation(s)
- Jonathan Kiwitt-Cárdenas
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, University of Murcia School of Medicine, 30100, Espinardo, Murcia, Spain; Department of Preventive Medicine, "Virgen de La Arrixaca" University Clinical Hospital, 30120, El Palmar, Murcia, Spain.
| | - Evdochia Adoamnei
- Department of Nursing, University of Murcia School of Nursing, Espinardo, Murcia, 30100, Spain; Health Research Methodology Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120, El Palmar, Murcia, Spain.
| | - Julián J Arense-Gonzalo
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, University of Murcia School of Medicine, 30100, Espinardo, Murcia, Spain; Health Research Methodology Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120, El Palmar, Murcia, Spain.
| | - Laura Sarabia-Cos
- Reproductive Medicine Unit, Instituto de Reproducción Asistida Quirónsalud Dexeus Murcia, Grupo Quirónsalud, 30008, Murcia, Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria (ibs. GRANADA), Hospital Universitario San Cecilio, 18010, Granada, Spain; Centro de Investigación Biomédica, Universidad de Granada, 18010, Granada, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria (ibs. GRANADA), Hospital Universitario San Cecilio, 18010, Granada, Spain; Centro de Investigación Biomédica, Universidad de Granada, 18010, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Jaime Gosálvez
- Genetic Unit, Department of Biology, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Jaime Mendiola
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, University of Murcia School of Medicine, 30100, Espinardo, Murcia, Spain; Health Research Methodology Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120, El Palmar, Murcia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Alberto M Torres-Cantero
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, University of Murcia School of Medicine, 30100, Espinardo, Murcia, Spain; Department of Preventive Medicine, "Virgen de La Arrixaca" University Clinical Hospital, 30120, El Palmar, Murcia, Spain; Health Research Methodology Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120, El Palmar, Murcia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
47
|
Relationship of sperm motility with clinical outcome of percutaneous epididymal sperm aspiration-intracytoplasmic sperm injection in infertile males with congenital domestic absence of vas deferens: a retrospective study. ZYGOTE 2021; 30:234-238. [PMID: 34313208 DOI: 10.1017/s0967199421000587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Congenital domestic absence of vas deferens (CBAVD) is a common factor in male infertility, and percutaneous epididymal sperm aspiration (PESA) combined with intracytoplasmic sperm injection (ICSI) is a primary clinical treatment, but the effect of the sperm obtained on pregnancy outcome remains to be explored. This study aimed to investigate the relationship between sperm motility with clinical outcome of PESA-ICSI in infertile males with CBAVD. A cohort of 110 couples was enrolled. In total, 76 infertile males were included in the high motility group, while the remaining 34 males were placed in the low motility group. Clinical pregnancy, embryo implantation rate and live birth rate were included as the primary outcome. After all follow-ups, we found that the high motility group achieved higher normal fertilization rates, cleavage rates, transplantable embryo rates and high-quality embryo rates than those in low motility group (normal fertilization rate, 78.2 ± 11.7% vs. 70.5 ± 10.2%, P = 0.003; cleavage rate, 97.1 ± 2.9% vs. 92.3 ± 3.0%, P = 0.000; transplantable embryo rate, 66.8 ± 14.9% vs. 58.6 ± 12.6%, P = 0.009 and high-quality embryo rate, 49.9 ± 10.5% vs. 40.5 ± 11.2%, P = 0.000). Additionally, compared with the low motility group, the clinical pregnancy rates, embryo implantation rates, and live birth rates in the high motility group were significantly increased (pregnancy rate, 61.8% vs. 26.5%, P = 0.009; embryo implantation rate, 36.5% vs. 18.0%, P = 0.044; live birth rate, 55.3% vs. 17.6%, P = 0.000). We concluded that the motility of sperm obtained by PESA affected the clinical outcome of ICSI in infertile males with CBAVD.
Collapse
|
48
|
Genetic and epigenetic modifications of F1 offspring's sperm cells following in utero and lactational combined exposure to nicotine and ethanol. Sci Rep 2021; 11:12311. [PMID: 34112894 PMCID: PMC8192516 DOI: 10.1038/s41598-021-91739-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
It is well established that maternal lifestyle during pregnancy and lactation affects the intrauterine programming of F1 offspring. However, despite the co-use of alcohol and nicotine is a common habit, the effects of exposure to both substances on the reproductive system of F1 male offspring and the underlying mechanisms of developmental programming have not been investigated. The present study aimed to examine pre- and postnatal concurrent exposure to these substances on genetic and epigenetic alterations of sperm cells as well as testis properties of F1 offspring compared with exposure to each substance alone. Pregnant dams in the F0 generation randomly received normal saline, nicotine, ethanol, and combinations throughout full gestation and lactation periods. Sperm cells and testes of F1 male offspring were collected at postnatal day 90 for further experiments. High levels of sperm DNA fragmentation were observed in all exposed offspring. Regarding epigenetic alterations, there was a significant increase in the relative transcript abundance of histone deacetylase 1 and 2 in all exposed sperm cells. Moreover, despite a decrease in the expression level of DNA methyltransferase (DNMT) 3A, no marked differences were found in the expression levels of DNMT1 and 3B in any of the exposed sperm cells compared to non-exposed ones. Interestingly, combined exposure had less prominent effects relative to exposure to each substance alone. The changes in the testicular and sperm parameters were compatible with genetic and epigenetic alterations. However, MDA level as an oxidative stress indicator increased in all exposed pups, which may be responsible for such outputs. In conclusion, maternal co-exposure to these substances exhibited epigenotoxicity effects on germline cells of F1 male offspring, although these effects were less marked relative to exposure to each substance alone. These counteracting effects may be explained by cross-tolerance and probably less impairment of the antioxidant defense system.
Collapse
|
49
|
Åsenius F, Danson AF, Marzi SJ. DNA methylation in human sperm: a systematic review. Hum Reprod Update 2021; 26:841-873. [PMID: 32790874 DOI: 10.1093/humupd/dmaa025] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies in non-human mammals suggest that environmental factors can influence spermatozoal DNA methylation, and some research suggests that spermatozoal DNA methylation is also implicated in conditions such as subfertility and imprinting disorders in the offspring. Together with an increased availability of cost-effective methods of interrogating DNA methylation, this premise has led to an increasing number of studies investigating the DNA methylation landscape of human spermatozoa. However, how the human spermatozoal DNA methylome is influenced by environmental factors is still unclear, as is the role of human spermatozoal DNA methylation in subfertility and in influencing offspring health. OBJECTIVE AND RATIONALE The aim of this systematic review was to critically appraise the quality of the current body of literature on DNA methylation in human spermatozoa, summarize current knowledge and generate recommendations for future research. SEARCH METHODS A comprehensive literature search of the PubMed, Web of Science and Cochrane Library databases was conducted using the search terms 'semen' OR 'sperm' AND 'DNA methylation'. Publications from 1 January 2003 to 2 March 2020 that studied human sperm and were written in English were included. Studies that used sperm DNA methylation to develop methodologies or forensically identify semen were excluded, as were reviews, commentaries, meta-analyses or editorial texts. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) criteria were used to objectively evaluate quality of evidence in each included publication. OUTCOMES The search identified 446 records, of which 135 were included in the systematic review. These 135 studies were divided into three groups according to area of research; 56 studies investigated the influence of spermatozoal DNA methylation on male fertility and abnormal semen parameters, 20 studies investigated spermatozoal DNA methylation in pregnancy outcomes including offspring health and 59 studies assessed the influence of environmental factors on spermatozoal DNA methylation. Findings from studies that scored as 'high' and 'moderate' quality of evidence according to GRADE criteria were summarized. We found that male subfertility and abnormal semen parameters, in particular oligozoospermia, appear to be associated with abnormal spermatozoal DNA methylation of imprinted regions. However, no specific DNA methylation signature of either subfertility or abnormal semen parameters has been convincingly replicated in genome-scale, unbiased analyses. Furthermore, although findings require independent replication, current evidence suggests that the spermatozoal DNA methylome is influenced by cigarette smoking, advanced age and environmental pollutants. Importantly however, from a clinical point of view, there is no convincing evidence that changes in spermatozoal DNA methylation influence pregnancy outcomes or offspring health. WIDER IMPLICATIONS Although it appears that the human sperm DNA methylome can be influenced by certain environmental and physiological traits, no findings have been robustly replicated between studies. We have generated a set of recommendations that would enhance the reliability and robustness of findings of future analyses of the human sperm methylome. Such studies will likely require multicentre collaborations to reach appropriate sample sizes, and should incorporate phenotype data in more complex statistical models.
Collapse
Affiliation(s)
| | - Amy F Danson
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London W12 0NN, UK.,Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
50
|
Takeda K, Kobayashi E, Ogata K, Imai A, Sato S, Adachi H, Hoshino Y, Nishino K, Inoue M, Kaneda M, Watanabe S. Differentially methylated CpG sites related to fertility in Japanese Black bull spermatozoa: epigenetic biomarker candidates to predict sire conception rate. J Reprod Dev 2021; 67:99-107. [PMID: 33441501 PMCID: PMC8075730 DOI: 10.1262/jrd.2020-137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For semen suppliers, predicting the low fertility of service bull candidates before artificial insemination would help prevent economic loss; however,
predicting bull fertility through in vitro assessment of semen is yet to be established. In the present study, we focused on the methylated CpG
sites of sperm nuclear DNA and examined methylation levels to screen new biomarkers for predicting bull fertility. In frozen-thawed semen samples collected from
Japanese Black bulls, for which the sire conception rate (SCR) was recorded, the methylation level of each CpG site was analyzed using human methylation
microarray. According to regression analysis, 143 CpG sites related to SCR were significantly differentially methylated. Whole genome bisulfite sequence data
were obtained from three semen samples and the differentially methylated regions (DMRs) that included the target CpG sites selected by human methylation
microarray were confirmed. Using combined bisulfite restriction analysis, fertility-related methylation changes were detected in 10 DMRs. With the exception of
one DMR, the methylation levels of these DMRs were significantly different between groups with high fertility (> 50%) and low fertility (< 40%). From
multiple regression analysis of methylation levels and SCR, three DMRs were selected that could effectively predict bull fertility. We suggest that these
fertility-related differences in spermatozoal methylation levels could be new epigenetic biomarkers for predicting bull fertility.
Collapse
Affiliation(s)
- Kumiko Takeda
- Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Eiji Kobayashi
- Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Kazuko Ogata
- Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Akira Imai
- Hiroshima Prefectural Livestock Technology Research Center, Hiroshima 739-0151, Japan
| | - Shinya Sato
- Hiroshima Prefectural Livestock Technology Research Center, Hiroshima 739-0151, Japan
| | - Hiromichi Adachi
- Hida Beef Cattle Research, Gifu Prefectural Livestock Research Institute, Gifu 506-0101, Japan
| | | | - Kagetomo Nishino
- Beef Cattle Institute, Ibaraki Prefectural Livestock Research Center, Ibaraki 319-2224, Japan
| | - Masahiro Inoue
- Tottori Prefectural Livestock Research Institute, Tottori 689-2503, Japan
| | - Masahiro Kaneda
- Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Shinya Watanabe
- Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan.,Western Region Agricultural Research Center, NARO, Shimane 694-0013, Japan
| |
Collapse
|