1
|
Coticchio G, Ahlström A, Arroyo G, Balaban B, Campbell A, De Los Santos MJ, Ebner T, Gardner DK, Kovačič B, Lundin K, Magli MC, Mcheik S, Morbeck DE, Rienzi L, Sfontouris I, Vermeulen N, Alikani M. The Istanbul Consensus update: a revised ESHRE/ALPHA consensus on oocyte and embryo static and dynamic morphological assessment † ‡. Reprod Biomed Online 2025:104955. [PMID: 40300986 DOI: 10.1016/j.rbmo.2025.104955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 05/01/2025]
Abstract
This European Society of Human Reproduction and Embryology (ESHRE)/Alpha Scientists in Reproductive Medicine (ALPHA) consensus document provides several novel recommendations to assess oocyte and embryo morphology and rank embryos for transfer. A previous ALPHA/ESHRE consensus on oocyte and embryo morphological assessment was published in 2011. After more than a decade, and the integration of time-lapse technology into embryo culture and assessment, a thorough review and update was needed. A working group consisting of ALPHA members and ESHRE Special interest group of Embryology members formulated recommendations on oocyte and embryo assessment. The working group included 17 internationally recognized experts with extensive experience in clinical embryology. Seven members represented ALPHA and eight members represented ESHRE, along with two methodological experts from the ESHRE central office. Based on a systematic literature search and discussion of existing evidence, the recommendations of the Istanbul Consensus (2011) were reassessed and, where appropriate, updated based on consensus within the working group. A stakeholder review was organized after the updated draft was finalized. The final version was approved by the working group, the ALPHA Executive Committee and the ESHRE Executive Committee. This updated consensus paper provides 20 recommendations focused on the timeline of preimplantation developmental events and morphological criteria for oocyte, zygote and embryo assessment. Based on the duration of embryo culture, recommendations are given on the frequency and timing of assessments to ensure consistency and effectiveness. Several criteria relevant to oocyte and embryo morphology have not been well studied, leading to either a recommendation against their use for grading or for their use in ranking rather than grading. Future updates may require further revision of these recommendations. This document provides embryologists with advice on best practices when assessing oocyte and embryo quality based on the most recent evidence.
Collapse
Affiliation(s)
| | | | - Gemma Arroyo
- Institut Universitari Dexeus, Dpt d'Obstetrícia i Ginecologia, Barcelona, Spain
| | - Basak Balaban
- VKF American Hospital of Istanbul, Assisted Reproduction Unit, Istanbul, Turkiye
| | - Alison Campbell
- CARE Fertility Group, Nottingham, UK; University of Kent, Kent, UK
| | - Maria José De Los Santos
- IVIRMA Valencia Global Research Alliance, IVF Laboratory, Valencia, Spain; Fundación IVI Instituto de Investigaciones Sanitarias, Valencia, Spain
| | - Thomas Ebner
- Kepler Universitatsklinikum GmbH, Gynecology Obstetrics and Gynecological Endocrinology, Linz, Austria
| | - David K Gardner
- Melbourne IVF, East Melbourne, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Borut Kovačič
- Department for Reproductive Medicine and Gynecological Endocrinology, University Medical Centre Maribor, Maribor, Slovenia
| | - Kersti Lundin
- Dept of Obstetrics and Gynecology, The Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Dean E Morbeck
- Genea Fertility, Sydney, New South Wales, Australia; Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | | | | | | | - Mina Alikani
- Alpha Scientists in Reproductive Medicine, London, UK.
| |
Collapse
|
2
|
Coticchio G, Ahlström A, Arroyo G, Balaban B, Campbell A, De Los Santos MJ, Ebner T, Gardner DK, Kovačič B, Lundin K, Magli MC, Mcheik S, Morbeck DE, Rienzi L, Sfontouris I, Vermeulen N, Alikani M. The Istanbul consensus update: a revised ESHRE/ALPHA consensus on oocyte and embryo static and dynamic morphological assessment†,‡. Hum Reprod 2025:deaf021. [PMID: 40288770 DOI: 10.1093/humrep/deaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Indexed: 04/29/2025] Open
Abstract
STUDY QUESTION What are the current recommended criteria for morphological assessment of oocytes, zygotes, and embryos? SUMMARY ANSWER The present ESHRE/Alpha Scientists in Reproductive Medicine consensus document provides several novel recommendations to assess oocyte and embryo morphology and rank embryos for transfer. WHAT IS KNOWN ALREADY A previous Alpha Scientists in Reproductive Medicine/ESHRE consensus on oocyte and embryo morphological assessment was published in 2011. After more than a decade, and the integration of time-lapse technology into embryo culture and assessment, a thorough review and update was needed. STUDY DESIGN, SIZE, DURATION A working group consisting of Alpha Scientists in Reproductive Medicine executive committee members and ESHRE Special interest group of Embryology members formulated recommendations on oocyte and embryo assessment. PARTICIPANTS/MATERIALS, SETTING, METHODS The working group included 17 internationally recognized experts with extensive experience in clinical embryology. Seven members represented Alpha Scientists in Reproductive Medicine and eight members represented ESHRE, along with to two methodological experts from the ESHRE central office. Based on a systematic literature search and discussion of existing evidence, the recommendations of the Istanbul Consensus (2011) were reassessed and, where appropriate, updated based on consensus within the working group. A stakeholder review was organized after the updated draft was finalized. The final version was approved by the working group, the Alpha executive committee and the ESHRE Executive Committee. MAIN RESULTS AND THE ROLE OF CHANCE This updated consensus paper provides 20 recommendations focused on the timeline of preimplantation developmental events and morphological criteria for oocyte, zygote, and embryo assessment. Based on duration of embryo culture, recommendations are given on the frequency and timing of assessments to ensure consistency and effectiveness. LIMITATIONS, REASONS FOR CAUTION Several criteria relevant to oocyte and embryo morphology have not been well studied, leading to either a recommendation against their use for grading or for their use in ranking rather than grading. Future updates may require further revision of these recommendations. WIDER IMPLICATIONS OF THE FINDINGS This document provides embryologists with advice on best practices when assessing oocyte and embryo quality based on the most recent evidence. STUDY FUNDING/COMPETING INTEREST(S) The consensus meeting and writing of the paper were supported by funds from ESHRE and Alpha Scientists in Reproductive Medicine. The working group members did not receive any payment. G.C. declared payments or honoraria for lectures from Gedeon Richter and Cooper Surgical. A.C. declared text book royalties (Mastering Clinical Embryology, published 2024), consulting fees from Cooper Surgical, Gedeon Richter and TMRW Life Sciences, honoraria for lectures from Merck, Ferring, and Gedeon Richter, and participation in the HFEA Scientific Advances Committee; she also disclosed being treasurer and vice-president of Alpha Scientists in Reproductive Medicine, a shareholder in Care Fertility Limited and Fertile Mind Limited, and having stock options in TMRW Life Sciences and U-Ploid Biotechnology Ltd. L.R. declared consulting fees from Organon, payments or honoraria for lectures from Merck, Organon, IBSA, Finox, Geden Richter, Origio, Organon, Ferring, Fundation IVI; she also disclosed being a member of the Advisory Scientific Board of IVIRMA (Paid) and a member of the Advisory Scientific Board of Nterilizer (unpaid). I.S. declared payments or honoraria for lectures from Vitrolife and Cooper Surgical, and stock options from Alife Health. M.A. declared payments or honoraria for lectures from Vitrolife and support for attending meetings from Vitrolife and Cooper Surgical (both unrelated to this manuscript). The other authors have no conflicts of interest to declare. DISCLAIMER This Good Practice Recommendations (GPRs) document represents the consensus views of the members of this working group based on the scientific evidence available at the time of the meeting. GPRs should be used for information and educational purposes. They should not be interpreted as setting a standard of care or be deemed inclusive of all proper methods of care or be exclusive of other methods of care reasonably directed to obtaining the same results. They do not replace the need for application of clinical judgement to each individual presentation, or variations based on locality and facility type.
Collapse
Affiliation(s)
| | | | - Gemma Arroyo
- Dpt d'Obstetrícia i Ginecologia, Institut Universitari Dexeus, Barcelona, Spain
| | - Basak Balaban
- Assisted Reproduction Unit, VKF American Hospital of Istanbul, Istanbul, Turkiye
| | - Alison Campbell
- CARE Fertility Group, Nottingham, UK
- University of Kent, Kent, UK
| | - Maria José De Los Santos
- IVIRMA Valencia Global Research Alliance, IVF Laboratory, Valencia, Spain
- Fundación IVI Instituto de Investigaciones Sanitarias, Valencia, Spain
| | - Thomas Ebner
- Gynecology Obstetrics and Gynecological Endocrinology, Kepler Universitatsklinikum GmbH, Linz, Austria
| | - David K Gardner
- Melbourne IVF, East Melbourne, VIC, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Borut Kovačič
- Department for Reproductive Medicine and Gynecological Endocrinology, University Medical Centre Maribor, Maribor, Slovenia
| | - Kersti Lundin
- Dept of Obstetrics and Gynecology, The Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Dean E Morbeck
- Genea Fertility, Sydney, NSW, Australia
- Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC, Australia
| | | | | | | | - Mina Alikani
- Alpha Scientists in Reproductive Medicine, London, UK
| |
Collapse
|
3
|
Liu W, Wang K, Lin Y, Wang L, Jin X, Qiu Y, Sun W, Zhang L, Sun Y, Dou X, Luo S, Su Y, Sun Q, Xiang W, Diao F, Li J. VPS34 Governs Oocyte Developmental Competence by Regulating Mito/Autophagy: A Novel Insight into the Significance of RAB7 Activity and Its Subcellular Location. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308823. [PMID: 39287146 PMCID: PMC11538714 DOI: 10.1002/advs.202308823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/06/2024] [Indexed: 09/19/2024]
Abstract
Asynchronous nuclear and cytoplasmic maturation in human oocytes is believed to cause morphological anomalies after controlled ovarian hyperstimulation. Vacuolar protein sorting 34 (VPS34) is renowned for its pivotal role in regulating autophagy and endocytic trafficking. To investigate its impact on oocyte development, oocyte-specific knockout mice (ZcKO) are generated, and these mice are completely found infertile, with embryonic development halted at 2- to 4-cell stage. This infertility is related with a disruption on autophagic/mitophagic flux in ZcKO oocytes, leading to subsequent failure of zygotic genome activation (ZGA) in derived 2-cell embryos. The findings further elucidated the regulation of VPS34 on the activity and subcellular translocation of RAS-related GTP-binding protein 7 (RAB7), which is critical not only for the maturation of late endosomes and lysosomes, but also for initiating mitophagy via retrograde trafficking. VPS34 binds directly with RAB7 and facilitates its activity conversion through TBC1 domain family member 5 (TBC1D5). Consistent with the cytoplasmic vacuolation observed in ZcKO oocytes, defects in multiple vesicle trafficking systems are also identified in vacuolated human oocytes. Furthermore, activating VPS34 with corynoxin B (CB) treatment improved oocyte quality in aged mice. Hence, VPS34 activation may represent a novel approach to enhance oocyte quality in human artificial reproduction.
Collapse
Affiliation(s)
- Wenwen Liu
- State Key Laboratory of Reproductive Medicine and Offspring HealthWomen's Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing Medical UniversityNanjingJiangsu211166China
| | - Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthCenter of Reproduction and GeneticsAffiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhouJiangsu215002China
| | - Yuting Lin
- The Center for Clinical Reproductive MedicineState Key Laboratory of Reproductive Medicine and Offspring HealthThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu212028China
| | - Lu Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Reproductive MedicineCangzhou Central HospitalCangzhouHebei061012China
| | - Xin Jin
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Center of Reproductive MedicineWuxi Maternity and Child Health Care HospitalNanjing Medical UniversityWuxiJiangsu214200China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Wenya Sun
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Ling Zhang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Yan Sun
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Xiaowei Dou
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsu210011China
| | - Shiming Luo
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouGuangdong513023China
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental BiologySchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Qingyuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouGuangdong513023China
| | - Wenpei Xiang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Feiyang Diao
- The Center for Clinical Reproductive MedicineState Key Laboratory of Reproductive Medicine and Offspring HealthThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu212028China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Innovation Center of Suzhou Nanjing Medical UniversitySuzhou430074China
| |
Collapse
|
4
|
Cheng J, Wang X, Luo C, Mao X, Qin J, Chi Y, He B, Hao Y, Niu X, Huang B, Liu L. Effects of intracellular Ca 2+ on developmental potential and ultrastructure of cryopreserved-warmed oocyte in mouse. Cryobiology 2024; 114:104834. [PMID: 38065230 DOI: 10.1016/j.cryobiol.2023.104834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 12/01/2023] [Indexed: 03/22/2024]
Abstract
Maintaining appropriate intracellular calcium of oocytes is necessary to prevent ultrastructure and organelle damage caused by freezing and cryoprotectants. The present study aimed to investigate whether cryoprotectant-induced changes in the calcium concentrations of oocytes can be regulated to reduce damage to developmental potential and ultrastructure. A total of 33 mice and 1381 oocytes were used to explore the effects of intracellular calcium on the development and ultrastructures of oocytes subjected to 2-aminoethoxydiphenyl borate (2-APB) inhibition or thapsigargin (TG) stimulation. Results suggested that high levels intracellular calcium interfered with TG compromised oocyte survival (84.4 % vs. 93.4 %, p < 0.01) and blastocyst formation in fresh and cryopreservation oocytes (78.1 % vs. 86.4 %, and 60.5 % vs. 72.5 %, p < 0.05) compared with that of 2-APB pretreated oocytes in which Ca2+ was stabilized even though no differences in fertilization and cleavage was detected (p > 0.05). Examination by transmission electron microscopy indicated that the microvilli decreased and shortened, cortical granules considerably decreased in the cortex area, mitochondrial vesicles and vacuoles increased, and the proportion of vacuole mitochondria increased after oocytes were exposed to cryoprotectants. The cryopreservation-warming process deteriorated the negative effects on organelles of survival oocytes. By contrast, a low level of intracellular calcium mediated with 2-APB was supposed to contribute to the protection of organelles. These findings suggested oocyte injuries induced by cryoprotectants and low temperatures can be alleviated. More studies are necessary to confirm the relationship among Ca2+ concentration of the cytoplasm, ultrastructural injuries, and disrupted developmental potential in oocytes subjected to cryopreservation and warming.
Collapse
Affiliation(s)
- Junping Cheng
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China; College of Animal Science and Technology of Guangxi University, Nanning, 530005, China.
| | - Xiaoli Wang
- College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| | - Chan Luo
- College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| | - Xianbao Mao
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Jie Qin
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Yan Chi
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Bing He
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Yanrong Hao
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Xiangli Niu
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Ben Huang
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China; College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| | - Liling Liu
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
5
|
Raad G, Tanios J, Serdarogullari M, Bazzi M, Mourad Y, Azoury J, Yarkiner Z, Liperis G, Fakih F, Fakih C. Mature oocyte dysmorphisms may be associated with progesterone levels, mitochondrial DNA content, and vitality in luteal granulosa cells. J Assist Reprod Genet 2024; 41:795-813. [PMID: 38363455 PMCID: PMC10957819 DOI: 10.1007/s10815-024-03053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
PURPOSE To identify whether follicular environment parameters are associated with mature oocyte quality, embryological and clinical outcomes. METHODS This retrospective study examined 303 mature oocytes from 51 infertile women undergoing ICSI cycles between May 2018 and June 2021. Exclusion criteria consisted of advanced maternal age (> 36 years old), premature ovarian failure, obesity in women, or use of frozen gametes. Luteal granulosa cells (LGCs) were analyzed for mitochondrial DNA/genomic (g) DNA ratio and vitality. The relationships between hormone levels in the follicular fluid and oocyte features were assessed. Quantitative morphometric measurements of mature oocytes were assessed, and the association of LGC parameters and oocyte features on live birth rate after single embryo transfer was examined. RESULTS Results indicated an inverse correlation between the mtDNA/gDNA ratio of LGCs and the size of polar body I (PBI). A 4.0% decrease in PBI size was observed with each one-unit increase in the ratio (p = 0.04). Furthermore, a 1% increase in LGC vitality was linked to a 1.3% decrease in fragmented PBI (p = 0.03), and a 1 ng/mL increase in progesterone levels was associated with a 0.1% rise in oocytes with small inclusions (p = 0.015). Associations were drawn among LGC characteristics, perivitelline space (PVS) debris, cytoplasmic inclusions, PBI integrity, and progesterone levels. Certain dysmorphisms in mature oocytes were associated with embryo morphokinetics; however, live birth rates were not associated with follicular parameters and oocyte quality characteristics. CONCLUSION Follicular markers may be associated with mature oocyte quality features.
Collapse
Affiliation(s)
- Georges Raad
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
| | | | - Munevver Serdarogullari
- Department of Histology and Embryology, Faculty of Medicine, Cyprus International University, Northern Cyprus Via Mersin 10, Mersin, Turkey
| | - Marwa Bazzi
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Youmna Mourad
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Joseph Azoury
- Azoury IVF Clinic, ObGyn and Infertility, Beirut, Lebanon
| | - Zalihe Yarkiner
- Faculty of Arts and Sciences-Department of Basic Sciences and Humanities, Cyprus International University, Northern Cyprus Via Mersin 10, Mersin, Turkey
| | - Georgios Liperis
- Westmead Fertility Centre, Institute of Reproductive Medicine, University of Sydney, Westmead, NSW, Australia.
| | - Fadi Fakih
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Chadi Fakih
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
- Faculty of Medicine, Lebanese University, Beirut, Lebanon
| |
Collapse
|
6
|
Tatíčková M, Trebichalská Z, Kyjovská D, Otevřel P, Kloudová S, Holubcová Z. The ultrastructural nature of human oocytes' cytoplasmic abnormalities and the role of cytoskeleton dysfunction. F&S SCIENCE 2023; 4:267-278. [PMID: 37730013 DOI: 10.1016/j.xfss.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE To investigate the structural bases of human oocytes' cytoplasmic abnormalities and the causative mechanism of their emergence. Knowledge of an abnormal oocyte's intracellular organization is vital to establishing reliable criteria for clinical evaluation of oocyte morphology. DESIGN Laboratory-based study on experimental material provided by a private assisted reproduction clinic. SETTING University laboratory and imaging center. PATIENTS A total of 105 women undergoing hormonal stimulation for in vitro fertilization (IVF) donated their spare oocytes for this study. INTERVENTIONS Transmission electron microscopy (TEM) was used to analyze the fine morphology of 22 dysmorphic IVF oocytes exhibiting different types of cytoplasmic irregularities, namely, refractile bodies; centrally located cytoplasmic granularity (CLCG); smooth endoplasmic reticulum (SER) disc; and vacuoles. A total of 133 immature oocytes were exposed to cytoskeleton-targeting compounds or matured in control conditions, and their morphology was examined using fluorescent and electron microscopy. MAIN OUTCOME MEASURES The ultrastructural morphology of dysmorphic oocytes was analyzed. Drug-treated oocytes had their maturation efficiency, chromosome-microtubule configurations, and fine intracellular morphology examined. RESULTS TEM revealed ultrastructural characteristics of common oocyte aberrations and indicated that excessive organelle clustering was the underlying cause of 2 of the studied morphotypes. Inhibition experiments showed that disruption of actin, not microtubules, allows for inordinate aggregation of subcellular structures, resembling the ultrastructural pattern seen in morphologically abnormal oocytes retrieved in IVF cycles. These results imply that actin serves as a regulator of organelle distribution during human oocyte maturation. CONCLUSION The ultrastructural analogy between dysmorphic oocytes and oocytes, in which actin network integrity was perturbed, suggests that dysfunction of the actin cytoskeleton might be implicated in generating common cytoplasmic aberrations. Knowledge of human oocytes' inner workings and the origin of morphological abnormalities is a step forward to a more objective oocyte quality assessment in IVF practice.
Collapse
Affiliation(s)
- Martina Tatíčková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Trebichalská
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Drahomíra Kyjovská
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Pavel Otevřel
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Soňa Kloudová
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Zuzana Holubcová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic.
| |
Collapse
|
7
|
Santos T, Pires-Luís AS, Alves Â, Oliveira E, Leal C, Fernandes M, Vale-Fernandes E, Barreiro M, Calado AM, Sá R, Sousa M. All that glitters is not gold: a stereological study of human donor oocytes. ZYGOTE 2023; 31:253-265. [PMID: 36938666 DOI: 10.1017/s0967199423000114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Here we report a quantitative analysis of human metaphase II (MII) oocytes from a 22-year-old oocyte donor, retrieved after ovarian-controlled hyperstimulation. Five surplus donor oocytes were processed for transmission electron microscopy (TEM), and a stereological analysis was used to quantify the distribution of organelles, using the point-counting technique with an adequate stereological grid. Comparisons between means of the relative volumes (Vv) occupied by organelles in the three oocyte regions, cortex (C), subcortex (SC) and inner cytoplasm (IC), followed the Kruskal-Wallis test and Mann-Whitney U-test with Bonferroni correction. Life cell imaging and TEM analysis confirmed donor oocyte nuclear maturity. Results showed that the most abundant organelles were smooth endoplasmic reticulum (SER) elements (26.8%) and mitochondria (5.49%). Significant differences between oocyte regions were found for lysosomes (P = 0.003), cortical vesicles (P = 0.002) and large SER vesicles (P = 0.009). These results were quantitatively compared with previous results using prophase I (GV) and metaphase I (MI) immature oocytes. In donor MII oocytes there was a normal presence of cortical vesicles, SER tubules, SER small, medium and large vesicles, lysosomes and mitochondria. However, donor MII oocytes displayed signs of cytoplasmic immaturity, namely the presence of dictyosomes, present in GV oocytes and rare in MI oocytes, of SER very large vesicles, characteristic of GV oocytes, and the rarity of SER tubular aggregates. Results therefore indicate that the criterion of nuclear maturity used for donor oocyte selection does not always correspond to cytoplasmic maturity, which can partially explain implantation failures with the use of donor oocytes.
Collapse
Affiliation(s)
- Tânia Santos
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Department of Veterinarian Science, School of Veterinary and Agricultural Sciences (ECAV), CECAV - Interdisciplinary Research Center in Animal Health, Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana S Pires-Luís
- Department of Pathology, Centro Hospitalar de Vila Nova de Gaia/Espinho, Unidade 1, Rua Conceição Fernandes 1079, 4434-502, Vila Nova de Gaia, Portugal
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto
| | - Ângela Alves
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Elsa Oliveira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Carla Leal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
- Centro de Procriação Medicamente Assistida (CPMA), Centro Materno-Infantil do Norte (CMIN) Albino Aroso, Centro Hospitalar do Porto (CHUPorto), Largo da Maternidade de Júlio Dinis 45, 4050-651 Porto, Portugal
| | - Mónica Fernandes
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
- Centro de Procriação Medicamente Assistida (CPMA), Centro Materno-Infantil do Norte (CMIN) Albino Aroso, Centro Hospitalar do Porto (CHUPorto), Largo da Maternidade de Júlio Dinis 45, 4050-651 Porto, Portugal
| | - Emídio Vale-Fernandes
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
- Centro de Procriação Medicamente Assistida (CPMA), Centro Materno-Infantil do Norte (CMIN) Albino Aroso, Centro Hospitalar do Porto (CHUPorto), Largo da Maternidade de Júlio Dinis 45, 4050-651 Porto, Portugal
| | - Márcia Barreiro
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
- Centro de Procriação Medicamente Assistida (CPMA), Centro Materno-Infantil do Norte (CMIN) Albino Aroso, Centro Hospitalar do Porto (CHUPorto), Largo da Maternidade de Júlio Dinis 45, 4050-651 Porto, Portugal
| | - Ana-Margarida Calado
- Department of Veterinarian Science, School of Veterinary and Agricultural Sciences (ECAV), CECAV - Interdisciplinary Research Center in Animal Health, Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Bartolacci A, Intra G, Coticchio G, dell’Aquila M, Patria G, Borini A. Does morphological assessment predict oocyte developmental competence? A systematic review and proposed score. J Assist Reprod Genet 2022; 39:3-17. [PMID: 34993709 PMCID: PMC8866588 DOI: 10.1007/s10815-021-02370-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Does existing scientific literature suggest an impact of oocyte dysmorphisms on biological or clinical outcomes of assisted reproduction treatments? METHODS Studies of interest were selected from an initial cohort of 6651 potentially relevant records retrieved. PubMed was systematically searched for peer-reviewed original papers and reviews identified by keywords and medical subject heading (MeSH) terms. The most relevant publications were critically evaluated to identify criteria for oocyte morphological evaluation and IVF outcomes. For each morphological abnormality, we generated an oocyte literature score (OLS) through the following procedure: (a) papers showing a negative, absence of, or positive correlation between a given abnormality and IVF outcome were scored 1, 0, and - 1, respectively; (b) the sum of these scores was expressed as a fraction of all analyzed papers; (c) the obtained fraction was multiplied by 10 and converted into decimal number. RESULT We identified eleven different dysmorphisms, of which six were extracytoplasmic (COC, zona pellucida, perivitelline space, polar body 1, shape, giant size) and five intracytoplasmic (vacuoles, refractile bodies, SER clusters, granularity, color). Among the extracytoplasmic dysmorphisms, abnormal morphology of the COC generated an OLS of 8.33, indicating a large prevalence (5/6) of studies associated with a negative outcome. Three intracytoplasmic dysmorphisms (vacuoles, SER clusters, and granularity) produced OLS of 7.14, 7.78, and 6.25, respectively, suggestive of a majority of studies reporting a negative outcome. CONCLUSION COC morphology, vacuoles, SER clusters, and granularity produced OLS suggestive of a prevalence of studies reporting a negative outcome.
Collapse
Affiliation(s)
| | - Giulia Intra
- 9.Baby, Family and Fertility Center, Via Dante 15, Bologna, Italy
| | | | | | - Gilda Patria
- 9.Baby, Family and Fertility Center, Via Dante 15, Bologna, Italy
| | - Andrea Borini
- 9.Baby, Family and Fertility Center, Via Dante 15, Bologna, Italy
| |
Collapse
|
9
|
Chang CW, Sung YW, Hsueh YW, Chen YY, Ho M, Hsu HC, Yang TC, Lin WC, Chang HM. Growth hormone in fertility and infertility: Mechanisms of action and clinical applications. Front Endocrinol (Lausanne) 2022; 13:1040503. [PMID: 36452322 PMCID: PMC9701841 DOI: 10.3389/fendo.2022.1040503] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Secreted by the anterior pituitary gland, growth hormone (GH) is a peptide that plays a critical role in regulating cell growth, development, and metabolism in multiple targeted tissues. Studies have shown that GH and its functional receptor are also expressed in the female reproductive system, including the ovaries and uterus. The experimental data suggest putative roles for GH and insulin-like growth factor 1 (IGF-1, induced by GH activity) signaling in the direct control of multiple reproductive functions, including activation of primordial follicles, folliculogenesis, ovarian steroidogenesis, oocyte maturation, and embryo implantation. In addition, GH enhances granulosa cell responsiveness to gonadotropin by upregulating the expression of gonadotropin receptors (follicle-stimulating hormone receptor and luteinizing hormone receptor), indicating crosstalk between this ovarian regulator and the endocrine signaling system. Notably, natural gene mutation of GH and the age-related decline in GH levels may have a detrimental effect on female reproductive function, leading to several reproductive pathologies, such as diminished ovarian reserve, poor ovarian response during assisted reproductive technology (ART), and implantation failure. Association studies using clinical samples showed that mature GH peptide is present in human follicular fluid, and the concentration of GH in this fluid is positively correlated with oocyte quality and the subsequent embryo morphology and cleavage rate. Furthermore, the results obtained from animal experiments and human samples indicate that supplementation with GH in the in vitro culture system increases steroid hormone production, prevents cell apoptosis, and enhances oocyte maturation and embryo quality. The uterine endometrium is another GH target site, as GH promotes endometrial receptivity and pregnancy by facilitating the implantation process, and the targeted depletion of GH receptors in mice results in fewer uterine implantation sites. Although still controversial, the administration of GH during ovarian stimulation alleviates age-related decreases in ART efficiency, including the number of oocytes retrieved, fertilization rate, embryo quality, implantation rate, pregnancy rate, and live birth rate, especially in patients with poor ovarian response and recurrent implantation failure.
Collapse
|
10
|
Human Oocyte Morphology and Outcomes of Infertility Treatment: a Systematic Review. Reprod Sci 2021; 29:2768-2785. [PMID: 34816375 DOI: 10.1007/s43032-021-00723-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/22/2021] [Indexed: 10/19/2022]
Abstract
Oocyte morphology assessment is easy to implement in any laboratory with possible quality grading prior to fertilization. At present, comprehensive oocyte morphology scoring is not performed as a routine procedure. However, it may augment chances for successful treatment outcomes if a correlation with certain dysmorphisms can be proven. In order to determine a correlation between oocyte morphology and treatment outcome, we performed a systematic search in PubMed and Cochrane Controlled Trials Register following PRISMA guidelines. A total of 52 articles out of 6,755 search results met the inclusion criteria. Dark colour of the cytoplasm (observed with an incidence rate of 7%), homogeneous granularity of the cytoplasm (19%) and ovoid shape of oocytes (7%) appeared to have no influence on treatment outcome. Abnormalities such as refractile bodies (10%), fragmented first polar body (37%), dark zona pellucida (9%), enlarged perivitelline space (18%) and debris in it (21%) are likely to affect the treatment outcome to some extent. Finally, cytoplasmic vacuoles (4%), centrally located cytoplasmic granularity (12%) and clusters of smooth endoplasmic reticulum (4%) negatively impact infertility treatment outcomes. Nonetheless, morphological assessment is informative rather than predictive. Adding oocyte morphology to the artificial intelligence (AI)-driven selection process may improve the precision of the algorithms. Oocyte morphology assessment can be especially useful in oocyte donation cycles, during oocyte freezing for fertility preservation and finally, objective oocyte scoring can be important in cases of very poor treatment outcome as a tool for explanation of results to the patient.
Collapse
|
11
|
Growth hormone replacement improved oocyte quality in a patient with hypopituitarism: a study of follicular fluid. ANNALES D'ENDOCRINOLOGIE 2021; 82:590-596. [PMID: 34186075 DOI: 10.1016/j.ando.2021.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/10/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUNDː Growth hormone (GH) is known to be involved in ovarian folliculogenesis and oocyte maturation. In patients with poor ovarian response without growth hormone deficiency (GHD), adjuvant GH treatment improves in-vitro fertilization (IVF) results. Improvement of oocyte quality in IVF by GH replacement was reported in only a few patients with GHD. We report on another case with study of follicular fluid. METHODSː A 29-year-old patient with hypopituitarism was referred to our infertility center. She was undergoing hormonal replacement for hypogonadotropic hypogonadism and diabetes insipidus, and did not at first want GH replacement. Four IVF procedures were performed between 2011 and 2014. Growth hormone replacement (somatotropin 1.1mg/day) was initiated before the fourth IVF procedure and unmasked central hypothyroidism; levothyroxine (75 mg/day) was introduced. It took 10 months to reach the treatment objectives for insulin-like growth factor 1 (IGF1), free triiodothyronine (fT3) and free thyroxine (fT4). GH, IGF1 and thyroid hormones were measured in the blood and follicular fluid before and after GH and thyroid hormone replacement. Oocyte and embryo quality were also compared. RESULTSː The first 3 IVF procedures were performed without GH replacement. 62% to 100% of mature oocytes presented one or more morphologic abnormalities: diffuse cytoplasmic granularity, large perivitelline space with fragments, fragmentation of the first polar body, ovoid shape, or difficult denudation. Embryo quality was moderate to poor (grade B to D), and no pregnancy was obtained after embryo transfer. After GH replacement, hormones levels increased in follicular fluid: GH [7.68 vs. 1.39 mIU/L], IGF1 [109 vs. <25 ng/mL], fT3 [3.7 vs. 2.5 pmol/L] and fT4 [1.45 vs. 0.84 ng/mL]. Concomitantly, there was dramatic improvement in oocyte quality (no abnormal morphologies) and embryo quality (grade A), allowing an embryo transfer with successful pregnancy. CONCLUSIONSː This is the first report illustrating changes in hormonal levels in follicular fluid and the beneficial effect of GH replacement on oocyte and embryo quality during an IVF procedure in a patient with hypopituitarism. These results suggest that GH replacement is beneficial for oocyte quality in patients with GHD.
Collapse
|
12
|
Scheffler F, Vandecandelaere A, Soyez M, Bosquet D, Lefranc E, Copin H, Devaux A, Benkhalifa M, Cabry R, Desailloud R. Follicular GH and IGF1 Levels Are Associated With Oocyte Cohort Quality: A Pilot Study. Front Endocrinol (Lausanne) 2021; 12:793621. [PMID: 34925246 PMCID: PMC8672194 DOI: 10.3389/fendo.2021.793621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Oocyte quality contributes to the development of an optimal embryo and thus a successful pregnancy. The objective of this study was to analyse the association between oocyte cohort quality and the follicular levels of growth hormone (GH), insulin-like growth factor 1 (IGF1), 25-hydroxy vitamin D (25OHD), thyroid-stimulating hormone (TSH), free triiodothyronine (fT3), free thyroxine (fT4) and antithyroid antibodies, as a function of intracytoplasmic sperm injection (ICSI) outcomes. MATERIAL AND METHODS We conducted a prospective comparative pilot study from January 2013 to December 2017. 59 ICSI cycles constituted an abnormal oocyte cohort (n=34 cycles, in which more than 50% of oocytes presented at least one morphological abnormality) and a normal oocyte cohort (n=25 cycles, in which 50% or less of the oocytes presented at least one morphological abnormality). GH, IGF1, 25OHD, TSH, fT3, fT4 and antithyroid antibodies were measured in follicular fluid. RESULTS The fertilisation rate was lower in the abnormal oocyte cohort (65.5% vs. 80%, respectively, p=0.012). Oocytes' proportion with at least one abnormality was 79.4% in the abnormal oocyte cohort and 29.0% in the normal oocyte cohort. The mean number of morphological abnormalities per oocyte was significantly higher in the abnormal oocyte cohort. The follicular levels of GH (4.98 vs. 2.75 mIU/L, respectively; p <0.01) and IGF1 (72.1 vs. 54.2 ng/mL, respectively; p=0.05) were higher in the normal oocyte cohort. There was no association with follicular levels of TSH, fT3, fT4, antithyroid antibodies, or 25OHD. CONCLUSION Oocyte cohort quality appears to be associated with follicular levels of GH and IGF1.
Collapse
Affiliation(s)
- Florence Scheffler
- Reproductive Medicine and Biology Department and CECOS of Picardy, Amiens University Hospital, Amiens, France
- Peritox UMR_I 01, CURS, Jules Verne University of Picardy, Amiens, France
- *Correspondence: Florence Scheffler,
| | - Albane Vandecandelaere
- Reproductive Medicine and Biology Department and CECOS of Picardy, Amiens University Hospital, Amiens, France
| | - Marion Soyez
- Endocrine and Bone Biology Department, Amiens University Hospital, Amiens, France
| | - Dorian Bosquet
- Reproductive Medicine and Biology Department and CECOS of Picardy, Amiens University Hospital, Amiens, France
- Peritox UMR_I 01, CURS, Jules Verne University of Picardy, Amiens, France
| | - Elodie Lefranc
- Reproductive Medicine and Biology Department and CECOS of Picardy, Amiens University Hospital, Amiens, France
| | - Henri Copin
- Reproductive Medicine and Biology Department and CECOS of Picardy, Amiens University Hospital, Amiens, France
| | - Aviva Devaux
- Reproductive Medicine and Biology Department and CECOS of Picardy, Amiens University Hospital, Amiens, France
- Peritox UMR_I 01, CURS, Jules Verne University of Picardy, Amiens, France
| | - Moncef Benkhalifa
- Reproductive Medicine and Biology Department and CECOS of Picardy, Amiens University Hospital, Amiens, France
- Peritox UMR_I 01, CURS, Jules Verne University of Picardy, Amiens, France
| | - Rosalie Cabry
- Reproductive Medicine and Biology Department and CECOS of Picardy, Amiens University Hospital, Amiens, France
- Peritox UMR_I 01, CURS, Jules Verne University of Picardy, Amiens, France
| | - Rachel Desailloud
- Peritox UMR_I 01, CURS, Jules Verne University of Picardy, Amiens, France
- Endocrinology, Diabetes, and Nutrition Department, Amiens University Hospital, Amiens, France
| |
Collapse
|
13
|
Bercaire LMN, Cavagna M, Donadio NF, Rocha AR, Portela R, Alves VR, Santos TBB, Cavagna F, Dzik A, Gebrim LH, Nahas EAP. The impact of letrozole administration on oocyte morphology in breast cancer patients undergoing fertility preservation. JBRA Assist Reprod 2020; 24:257-264. [PMID: 32293820 PMCID: PMC7365524 DOI: 10.5935/1518-0557.20200002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Objective: Patients submitted to oncological fertility preservation with letrozole and gonadotropins seem to present a higher rate of immature oocytes and lower fertilization rates in comparison to infertile patients submitted to IVF cycles with gonadotropins. The aim of this study was to evaluate the influence of letrozole on oocyte morphology in patients with breast cancer submitted to fertility preservation. Methods: Retrospective analysis performed at a public tertiary hospital in São Paulo, Brazil. The oocytes were retrieved from patients with breast cancer undergoing fertility preservation (n=69), and from infertile women undergoing in vitro fertilization (n=92). We evaluated 750 oocytes obtained from breast cancer patients submitted to ovarian stimulation with letrozole and gonadotropins, and 699 oocytes from patients without breast cancer submitted to ovarian stimulation for in vitro fertilization with gonadotropins only due to male factor infertility. The mature oocytes retrieved were analyzed for the presence of refractile bodies, ooplasm color and regularity, central granulation degree, cortical granules, zona pellucida staining and regularity, perivitelline space, presence of vacuoles or abnormal smooth-surfaced endoplasmic reticle and oocyte retraction. Results: There was a higher incidence of alterations in oocyte morphology in the letrozole group when compared to the control group: increased perivitelline space (p=0.007), irregular zona pellucida (p<0.001), refractile bodies (p<0.001), dark ooplasm (p<0.001), granular ooplasm (p<0.001), irregular ooplasm (p<0.001) and dense central granulation (p<0.001). Conclusion: Letrozole is a risk factor for worse oocyte morphology. However, the clinical impact of ovarian stimulation protocol with combined use of gonadotropins and letrozole for fertility preservation remains unclear in this setting. These data underline the importance of establishing the predictive potential of morphological dimorphisms of human oocytes in IVF outcomes.
Collapse
Affiliation(s)
- Ludmila M N Bercaire
- Human Reproduction Department. Women's Health Reference Center - Pérola Byington Hospital, São Paulo, SP, Brazil.,Gynecology and Obstetrics Department, Botucatu Medical School, UNESP - Universidade Estadual de São Paulo, Botucatu, SP, Brazil
| | - Mario Cavagna
- Human Reproduction Department. Women's Health Reference Center - Pérola Byington Hospital, São Paulo, SP, Brazil
| | - Nilka F Donadio
- Human Reproduction Department. Women's Health Reference Center - Pérola Byington Hospital, São Paulo, SP, Brazil
| | - Andressa R Rocha
- Human Reproduction Department. Women's Health Reference Center - Pérola Byington Hospital, São Paulo, SP, Brazil
| | - Rafael Portela
- Human Reproduction Department. Women's Health Reference Center - Pérola Byington Hospital, São Paulo, SP, Brazil
| | - Vanessa R Alves
- Human Reproduction Department. Women's Health Reference Center - Pérola Byington Hospital, São Paulo, SP, Brazil
| | - Thamara B B Santos
- Human Reproduction Department. Women's Health Reference Center - Pérola Byington Hospital, São Paulo, SP, Brazil
| | - Felipe Cavagna
- Human Reproduction Department. Women's Health Reference Center - Pérola Byington Hospital, São Paulo, SP, Brazil
| | - Artur Dzik
- Human Reproduction Department. Women's Health Reference Center - Pérola Byington Hospital, São Paulo, SP, Brazil
| | - Luiz H Gebrim
- Human Reproduction Department. Women's Health Reference Center - Pérola Byington Hospital, São Paulo, SP, Brazil
| | - Eliana A P Nahas
- Gynecology and Obstetrics Department, Botucatu Medical School, UNESP - Universidade Estadual de São Paulo, Botucatu, SP, Brazil
| |
Collapse
|
14
|
Lin Y, Yang P, Chen Y, Zhu J, Zhang X, Ma C. Factors inducing decreased oocyte maturation rate: a retrospective analysis of 20,939 ICSI cycles. Arch Gynecol Obstet 2019; 299:559-564. [DOI: 10.1007/s00404-018-4958-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/26/2018] [Indexed: 01/24/2023]
|
15
|
Merviel P, Cabry R, Chardon K, Haraux E, Scheffler F, Mansouri NB, Devaux A, Chahine H, Bach V, Copin H, Benkhalifa M. Impact of oocytes with CLCG on ICSI outcomes and their potential relation to pesticide exposure. J Ovarian Res 2017; 10:42. [PMID: 28693528 PMCID: PMC5504732 DOI: 10.1186/s13048-017-0335-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oocyte quality is a key limiting factor in female fertility which is primarily reflected in morphological features. Centrally located cytoplasm granulation (CLCG) is one type of cytoplasmic dimorphism exhibited by oocytes that could be linked to pesticide exposure with a significant risk of decreased ICSI outcomes. METHODS This retrospective study included 633 women who were part of an intracytoplasmic spermatozoa injection (ICSI) program between 2009 and 2011. The participants lived in the Picardy region of France and had been exposed to pesticides. The participants were divided in two groups based on prevalence of oocytes with CLCG (LCLCG [n = 83]: low prevalence of oocytes with CLCG under 25%. HCLCG [n = 68]: high prevalence of CLCG over 75%). The embryological and clinical outcomes were analysed for both groups and were calculated using the difference between the two values. RESULTS Results for couples with HCLCG compared to LCLCG showed a decrease in embryo cleavage, ongoing pregnancy, and live birth rates (82%, 14%, 13% vs 99%, 32%, 30%, respectively).The early miscarriage rate was increased (47% vs 11%), with an OR of 3.1 (95%CI [2.1-4.1]). Due to high pesticide exposure (over 3000 g/ha), there is a higher risk of a resulting disturbed oocyte cohort with a high prevalence of CLCG over 75%. CONCLUSION The high prevalence of oocytes with CLCG over 75% has a negative effect on embryos and the general ICSI clinical outcomes. Furthermore, a putative association between pesticide exposure and risk of CLCG was identified, justifying the need for further research and a potential need to find alternative assisted reproductive technologies for these couples. TRIAL REGISTRATION Tabacfertimasc. ID number: ID2011-A00634-37 ; registered 2011/2/8.
Collapse
Affiliation(s)
- Philippe Merviel
- Ob/Gyn Department, Regional University hospital, Morvan University, 29200, Brest, France
| | - Rosalie Cabry
- ART and Reproductive Biology laboratory, University hospital and school of medicine, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France.,PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Karen Chardon
- PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Elodie Haraux
- PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Florence Scheffler
- ART and Reproductive Biology laboratory, University hospital and school of medicine, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France.,PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Naima-Belhadri Mansouri
- ART and Reproductive Biology laboratory, University hospital and school of medicine, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Aviva Devaux
- ART and Reproductive Biology laboratory, University hospital and school of medicine, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France.,PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Hikmat Chahine
- Forte Bio et Unilabs France, 1 Rue Mozart, 92200, Clichy La Garenne, France
| | - Véronique Bach
- PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Henri Copin
- ART and Reproductive Biology laboratory, University hospital and school of medicine, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Moncef Benkhalifa
- ART and Reproductive Biology laboratory, University hospital and school of medicine, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France. .,PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France.
| |
Collapse
|
16
|
Freeze/thaw stress induces organelle remodeling and membrane recycling in cryopreserved human mature oocytes. J Assist Reprod Genet 2016; 33:1559-1570. [PMID: 27586998 DOI: 10.1007/s10815-016-0798-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Our aim was to evaluate the ultrastructure of human metaphase II oocytes subjected to slow freezing and fixed after thawing at different intervals during post-thaw rehydration. METHODS Samples were studied by light and transmission electron microscopy. RESULTS We found that vacuolization was present in all cryopreserved oocytes, reaching a maximum in the intermediate stage of rehydration. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates decreased following thawing, particularly in the first and intermediate stages of rehydration, whereas mitochondria-vesicle (MV) complexes augmented in the same stages. At the end of rehydration, vacuoles and MV complexes both diminished and M-SER aggregates increased again. Cortical granules (CGs) were scarce in all cryopreserved oocytes, gradually diminishing as rehydration progressed. CONCLUSIONS This study also shows that such a membrane remodeling is mainly represented by a dynamic process of transition between M-SER aggregates and MV complexes, both able of transforming into each other. Vacuoles and CG membranes may take part in the membrane recycling mechanism.
Collapse
|