1
|
Zhao T, Zhong Q, Sun Z, Yu X, Sun T, An Z. Decoding SFRP2 progenitors in sustaining tooth growth at single-cell resolution. Stem Cell Res Ther 2025; 16:58. [PMID: 39920788 PMCID: PMC11806734 DOI: 10.1186/s13287-025-04190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Single-cell transcriptomics has revolutionized tooth biology by uncovering previously unexplored areas. The mouse is a widely used model for studying human tissues and diseases, including dental pulp tissues. While human and mouse molars share many similarities, mouse incisors differ significantly from human teeth due to their continuous growth throughout their lifespan. The application of findings from mouse teeth to human disease remains insufficiently explored. METHODS Leveraging multiple single-cell datasets, we constructed a comprehensive dental pulp cell landscape to delineate tissue similarities and species-specific differences between humans and mice. RESULTS We identified a distinct cell population, Sfrp2hi fibroblast progenitors, found exclusively in mouse incisors and the developing tooth root of human molars. These cells play a crucial role in sustaining continuous tissue growth. Mechanistically, we found that the transcription factor Twist1, regulated via MAPK phosphorylation, binds to the Sfrp2 promoter and modulates Wnt signaling activation to maintain stem cell identity. CONCLUSIONS Our study reveals a previously unrecognized subset of dental mesenchymal stem cells critical for tooth growth. This distinct subset, evolutionarily conserved between humans and mice, provides valuable insights into translational approaches for dental tissue regeneration and repair.
Collapse
Affiliation(s)
- Tianyuan Zhao
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Qing Zhong
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zewen Sun
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoyi Yu
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Tianmeng Sun
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengwen An
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China.
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
2
|
VARISLI LOKMAN, TOLAN VEYSEL, CEN JIYANH, VLAHOPOULOS SPIROS, CEN OSMAN. Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res 2023; 30:137-155. [PMID: 37305018 PMCID: PMC10208071 DOI: 10.32604/or.2022.026074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is one of the most often diagnosed malignancies in males and its prevalence is rising in both developed and developing countries. Androgen deprivation therapy has been used as a standard treatment approach for advanced prostate cancer for more than 80 years. The primary aim of androgen deprivation therapy is to decrease circulatory androgen and block androgen signaling. Although a partly remediation is accomplished at the beginning of treatment, some cell populations become refractory to androgen deprivation therapy and continue to metastasize. Recent evidences suggest that androgen deprivation therapy may cause cadherin switching, from E-cadherin to N-cadherin, which is the hallmark of epithelial-mesenchymal transition. Diverse direct and indirect mechanisms are involved in this switching and consequently, the cadherin pool changes from E-cadherin to N-cadherin in the epithelial cells. Since E-cadherin represses invasive and migrative behaviors of the tumor cells, the loss of E-cadherin disrupts epithelial tissue structure leading to the release of tumor cells into surrounding tissues and circulation. In this study, we review the androgen deprivation therapy-dependent cadherin switching in advanced prostate cancer with emphasis on its molecular basis especially the transcriptional factors regulated through TFG-β pathway.
Collapse
Affiliation(s)
- LOKMAN VARISLI
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
- Cancer Research Center, Dicle University, Diyarbakir, 21280, Turkey
| | - VEYSEL TOLAN
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
| | - JIYAN H. CEN
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - SPIROS VLAHOPOULOS
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - OSMAN CEN
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, 62305, USA
| |
Collapse
|
3
|
Fan Z, He L, Li M, Cao R, Deng M, Ping F, Liang X, He Y, Wu T, Tao X, Xu J, Cheng B, Xia J. Targeting methyltransferase PRMT5 retards the carcinogenesis and metastasis of HNSCC via epigenetically inhibiting Twist1 transcription. Neoplasia 2020; 22:617-629. [PMID: 33045527 PMCID: PMC7557877 DOI: 10.1016/j.neo.2020.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is an important type II arginine methyltransferase that can play roles in cancers in a highly tissue-specific manner, but its role in the carcinogenesis and metastasis of head and neck squamous cell carcinoma (HNSCC) remains unclear. Here, we detected PRMT5 expression in HNSCC tissues and performed series of in vivo and in vitro assays to investigate the function and mechanism of PRMT5 in HNSCC. We found that PRMT5 was overexpressed in dysplastic and cancer tissues, and associated with lymph node metastasis and worse patient survival. PRMT5 knockdown repressed the malignant phenotype of HNSCC cells in vitro and in vivo. PRMT5 specific inhibitor blocked the formation of precancerous lesion and HNSCC in 4NQO-induced tongue carcinogenesis model, prevented lymph node metastasis in tongue orthotopic xenograft model and inhibited cancer development in subcutaneous xenograft model and Patient-Derived tumor Xenograft (PDX) model. Mechanistically, PRMT5-catalyzed H3R2me2s promotes the enrichment of H3K4me3 in the Twist1 promoter region by recruiting WDR5, and subsequently activates the transcription of Twist1. The rescue experiments indicated that overexpressed Twist1 abrogated the inhibition of cell invasion induced by PRMT5 inhibitor. In summary, this study elucidates that PRMT5 inhibition could reduce H3K4me3-mediated Twist1 transcription and retard the carcinogenesis and metastasis of HNSCC.
Collapse
Affiliation(s)
- Zhaona Fan
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Lihong He
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Mianxiang Li
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Ruoyan Cao
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Miao Deng
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Fan Ping
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Xueyi Liang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Yuan He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Tong Wu
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaoan Tao
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Bin Cheng
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| | - Juan Xia
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
4
|
Zhu ST, Wang X, Wang JY, Xi GH, Liu Y. Downregulation of miR-22 Contributes to Epithelial-Mesenchymal Transition in Osteosarcoma by Targeting Twist1. Front Oncol 2020; 10:406. [PMID: 32391253 PMCID: PMC7193700 DOI: 10.3389/fonc.2020.00406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a vital step in osteosarcoma (OS) progression toward metastasis, but the specific molecular events governing this process are incompletely characterized, with miRNAs having increasingly been found to regulate the EMT. In this study, We assessed levels of miR-22 and its target, Twist1, via real-time PCR (qRT-PCR). We further used functional proliferation assays, measures of cell morphology, and western blotting to assess the functional relevance of miR-22 in OS and confirmed Twist1 as a miR-22 target via luciferase reporter assay. We observed a significant decrease in miR-22 levels in OS tumor samples relative to normal tissue, with such downregulating being significantly associated with tumor histological grade. When overexpressed, miR-22 impaired OS cell proliferation and EMT progression. We found Twist1 to be a direct miR-22 target, with levels of miR-22 and Twist1 mRNA being inversely correlated in patient samples. When overexpressed, miR-22 suppressed Twist1 translation and thereby attenuated the EMT in OS cells. These results clearly demonstrate that miR-22 can regulate the EMT in OS cells via targeting Twist1, thus highlighting a potentially novel pathway that can be therapeutically targeted in order to treat OS.
Collapse
Affiliation(s)
- Shu-Tao Zhu
- Department of Orthopedics, Huaihe Hospital, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xiao Wang
- Department of Orthopedics, Huaihe Hospital, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Jun-Yi Wang
- Department of Orthopedics, Huaihe Hospital, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Guang-Hui Xi
- Department of Orthopedics, Huaihe Hospital, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Yang Liu
- Department of Orthopedics, Huaihe Hospital, The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
5
|
Gou J, Hu T, Li L, Xue L, Zhao X, Yi T, Li Z. Role of epithelial–mesenchymal transition regulated by twist basic helix-loop-helix transcription factor 2 (Twist2) in embryo implantation in mice. Reprod Fertil Dev 2019; 31:932-940. [DOI: 10.1071/rd18314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
In a previous study we found the expression of epithelial–mesenchymal transition (EMT) biomarkers, including E-cadherin and N-cadherin, was significantly altered in uterine endometrium during embryo implantation via regulation by microRNA (miRNA)-429 and protocadherin-8 (Pcdh8). As a natural continuation of the previous study, the aim of the present study was to explore the role of EMT during embryo implantation and the potential activity of twist basic helix-loop-helix transcription factor 2 (Twist2) in regulating embryo implantation. A pregnancy model was established by naturally mating adult female ICR mice with fertile males. A pseudopregnancy model was established by mating fertile female ICR mice with vasectomised males. An invitro model of embryo implantation was established by the coculture of Ishikawa and JAR spheroids. Endometrial tissue during the peri-implantation period was collected, as were Ishikawa cells, JAR cells and cocultured cells. The expression of EMT markers (E-cadherin, N-cadherin, vimentin and cytokeratin) and Twist2 was detected invivo and invitro using the western blot analysis during embryo implantation. The expression of N-cadherin and vimentin (mesenchymal markers) was upregulated in the invitro implantation model, with downregulation of E-cadherin and cytokeratin (epithelial markers) expression. The expression of N-cadherin, vimentin and Twist2 increased significantly at the implantation sites at the time of implantation (Day 5), whereas the expression of E-cadherin and cytokeratin decreased. Location of Twist2 during embryo implantation was detected by immunohistochemistry (IHC), which revealed that it was extensively expressed in endometrial glandular epithelium and luminal epithelium at implantation sites on Day 5. The effect of the expression of Twist2 on embryo implantation was evaluated by suppressing Twist2 using Twist2-short interference (si) RNA in invivo and invitro models. The numbers of implanted embryos and the implantation rate were compared invivo and invitro. Western blot analysis showed that suppression of Twist2 led to upregulation of E-cadherin and cytokeratin, accompanied by downregulation of N-cadherin and vimentin (P<0.05). The number of implanted embryos after Twist2-siRNA interference was lower than in normal pregnancy (mean (±s.d.) 2.4±0.5 vs 6.8±1.3 respectively; P<0.05). These findings suggest the involvement of EMT in embryo implantation. The suppression of Twist2 could suppress embryo implantation by regulating EMT.
Collapse
|
6
|
何 昀, 方 姝, 毕 杨, 何 通, 王 佚, 洪 思. [Twist regulates proliferation, migration and invasion of osteosarcoma cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:554-560. [PMID: 29891451 PMCID: PMC6743895 DOI: 10.3969/j.issn.1673-4254.2018.05.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the role of Twist in regulating the proliferation, migration, and invasion of osteosarcoma cells with different levels of malignancy. METHODS The baseline expressions of Twist in 3 different osteosarcoma cell lines (143B, MG63 and TE85) were detected using real-time PCR and Western blotting. The cells were infected with the recombinant adenoviruses Ad-Twist or Ad-siTwist for Twist overexpression or knockdown, respectively, and the cell growth curves were drawn to assess the cell proliferation. The migration abilities and invasiveness of the cells were evaluated using wound healing assay and Transwell assay. Luc-labeled 143B cells infected with Ad-Twist or Ad-siTwist were intrathecally injected to establish nude mouse models bearing osteosarcoma xenografts, in which the tumor formation was monitored using living body imaging technique. RESULTS The baseline expressions of Twist in the 3 osteosarcoma cells were significantly higher than that in C3H10 cells (P<0.05). Twist expression was the highest in 143B cells followed by MG63 cells, and was the lowest in TE85 cells, indicating its positive correlation with the level of malignancy of the osteosarcoma cells. Ad-Twist or Ad-siTwist infection efficiently enhanced or lowered Twist expressions at both mRNA and protein levels in osteosarcoma cells (P<0.05). Twist overexpression resulted in enhanced proliferation, migration and invasion abilities of osteosarcoma cells, and Twist knockdown obviously inhibited the cell proliferation, migration and invasion. In nude mice, 143B cells with Twist overexpression showed accelerated tumor formation compared with the control cells, while Twist knockdown significantly inhibited the tumor formation ability of the cells. CONCLUSION Twist overexpression can promote the proliferation, migration, invasion and tumorigenicity of osteosarcoma cells.
Collapse
Affiliation(s)
- 昀 何
- 重庆医科大学附属儿童医院 小儿外科, 重庆 400014Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 重庆医科大学附属儿童医院 儿童发育疾病研究教育部重点实验室//儿科学重点实验室, 重庆 400014Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders/Key Laboratory of Pediatrics of Chongqing, Chongqing 400014, China
| | - 姝煜 方
- 重庆医科大学附属儿童医院 小儿外科, 重庆 400014Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 重庆医科大学附属儿童医院 儿童发育疾病研究教育部重点实验室//儿科学重点实验室, 重庆 400014Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders/Key Laboratory of Pediatrics of Chongqing, Chongqing 400014, China
| | - 杨 毕
- 重庆医科大学附属儿童医院 小儿外科, 重庆 400014Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 重庆医科大学附属儿童医院 儿童发育疾病研究教育部重点实验室//儿科学重点实验室, 重庆 400014Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders/Key Laboratory of Pediatrics of Chongqing, Chongqing 400014, China
| | - 通川 何
- 重庆医科大学附属儿童医院 小儿外科, 重庆 400014Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 重庆医科大学附属儿童医院 儿童发育疾病研究教育部重点实验室//儿科学重点实验室, 重庆 400014Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders/Key Laboratory of Pediatrics of Chongqing, Chongqing 400014, China
| | - 佚 王
- 重庆医科大学附属儿童医院 小儿外科, 重庆 400014Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 重庆医科大学附属儿童医院 儿童发育疾病研究教育部重点实验室//儿科学重点实验室, 重庆 400014Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders/Key Laboratory of Pediatrics of Chongqing, Chongqing 400014, China
| | - 思琦 洪
- 重庆医科大学附属儿童医院 神经内科, 重庆 400014Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 重庆医科大学附属儿童医院 儿童发育疾病研究教育部重点实验室//儿科学重点实验室, 重庆 400014Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders/Key Laboratory of Pediatrics of Chongqing, Chongqing 400014, China
| |
Collapse
|
7
|
Jin C, Feng Y, Ni Y, Shan Z. MicroRNA-610 suppresses osteosarcoma oncogenicity via targeting TWIST1 expression. Oncotarget 2017; 8:56174-56184. [PMID: 28915582 PMCID: PMC5593553 DOI: 10.18632/oncotarget.17045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma is the most frequent primary bone tumor affects adolescents and young adults. Recently, microRNAs (miRNAs) are short, non-coding and endogenous RNAs that played as important roles in the initiation and progression of tumors. In this study, we try to explore the biological function and expression of miR-610 in the osteosarcoma. We showed that miR-610 expression was downregulated in the osteosarcoma tissues and cell lines. Elevated expression of miR-610 suppressed the osteosarcoma cell proliferation, cell cycle, invasion and EMT program. Moreover, overexpression of miR-610 increased sensitivity of MG-63 and U2OS cells to cisplatin. Twist1 was identified as a direct target gene of miR-610 in the osteosarcoma cell. Furthermore, we demonstrated that Twist1 was upregulated in the osteosarcoma tissues and cell lines. The expression of Twist1 was negatively associated with the expression of miR-610 expression in the osteosarcoma tissues. Ectopic expression of Twist1 inhibited the sensitivity of miR-610-overexpressing MG-63 cells to cisplatin. We also showed that overexpression of Twist1 increased the proliferation and invasion of miR-610-overexpressing MG-63 cells. These data indicated that ectopic expression of miR-610 suppressed the osteosarcoma cell proliferation, cell cylce, invasion and increased the sensitivity of osteosarcoma cells to cisplatin through targeting the Twist1 expression.
Collapse
Affiliation(s)
- Chi Jin
- The Third Department of Orthopaedics, Central Hospital of Cangzhou City, Cangzhou, Hebei, China
| | - Yongjian Feng
- The Fourth Department of Orthopaedics, Central Hospital of Cangzhou City, Cangzhou, Hebei, China
| | - Yongjian Ni
- The Third Department of Orthopaedics, Central Hospital of Cangzhou City, Cangzhou, Hebei, China
| | - Zhonglin Shan
- The Third Department of Orthopaedics, Central Hospital of Cangzhou City, Cangzhou, Hebei, China
| |
Collapse
|