1
|
Previderè C, Bonin S, Cuttaia C, Argentiero G, Livieri T, Cecchetto G, Oliva A, Fattorini P. Are pre-analytical factors fully considered in forensic FFPE molecular analyses? A systematic review reveals the need for standardised procedures. Int J Legal Med 2025:10.1007/s00414-025-03480-8. [PMID: 40172636 DOI: 10.1007/s00414-025-03480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/19/2025] [Indexed: 04/04/2025]
Abstract
The need for molecular analyses has become increasingly common in the forensic sciences, particularly in forensic pathology, to better shape the causes of death. This approach is called the "molecular autopsy," where conventional medico-legal findings are often enhanced with specific molecular tests to provide reliable clinical and forensic diagnoses. In this context, FFPE (Formalin-Fixed Paraffin-Embedded) tissue samples collected during forensic autopsies are the only available specimens in retrospective studies for molecular DNA and/or RNA analyses. It is well known that pre-analytical parameters such as the agonal time, the PMI (Post-Mortem Interval), the fixation procedures, and the FFPE ageing and storage conditions can deeply impact the quality and quantity of the recovered nucleic acids, thus influencing the reliability of the downstream molecular tests. In the present study, we reviewed the recent forensic literature to establish whether these parameters are reported. Our survey showed that up to 34.9% and 40.5% of the 50 selected studies on DNA and RNA, respectively, reported the pre-analytical parameters mentioned above. Many publications did not report the length of agony (if any), which is an important parameter in RNA-based studies and estimations of the PMI; in addition, even relevant information on formalin tissue fixation procedures was often missing, thus impairing any critical evaluation of the PCR-based results. To address these issues, we propose the use of a simple form we set up to be filled out by Forensic Pathologists, where each pre-analytical step concerning the tissue samples collected during autopsy is accurately described and reported. In our opinion, this standardization will help the forensic community compare and evaluate the results of different molecular tests, thus increasing the reliability of the molecular results in forensics.
Collapse
Affiliation(s)
- Carlo Previderè
- Department of Public Health, Experimental and Forensic Medicine, Section of Legal Medicine and Forensic Sciences, University of Pavia, 27100, Pavia, Italy
| | - Serena Bonin
- Department of Medical Sciences, University of Trieste, 34149, Trieste, Italy
| | - Calogero Cuttaia
- Department of Medical Sciences, University of Trieste, 34149, Trieste, Italy
| | - Gianmarco Argentiero
- Department of Public Health, Experimental and Forensic Medicine, Section of Legal Medicine and Forensic Sciences, University of Pavia, 27100, Pavia, Italy
| | - Tommaso Livieri
- Department of Medical Sciences, University of Trieste, 34149, Trieste, Italy
| | - Giovanni Cecchetto
- Department of Public Health, Experimental and Forensic Medicine, Section of Legal Medicine and Forensic Sciences, University of Pavia, 27100, Pavia, Italy
| | - Antonio Oliva
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Paolo Fattorini
- Department of Medical Sciences, University of Trieste, 34149, Trieste, Italy.
| |
Collapse
|
2
|
González-Cantó E, Monteiro M, Aghababyan C, Ferrero-Micó A, Navarro-Serna S, Mellado-López M, Tomás-Pérez S, Sandoval J, Llueca A, Herreros-Pomares A, Gilabert-Estellés J, Pérez-García V, Marí-Alexandre J. Reduced Levels of miR-145-3p Drive Cell Cycle Progression in Advanced High-Grade Serous Ovarian Cancer. Cells 2024; 13:1904. [PMID: 39594652 PMCID: PMC11592657 DOI: 10.3390/cells13221904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal form of gynecologic cancer, with limited treatment options and a poor prognosis. Epigenetic factors, such as microRNAs (miRNAs) and DNA methylation, play pivotal roles in cancer progression, yet their specific contributions to HGSOC remain insufficiently understood. In this study, we performed comprehensive high-throughput analyses to identify dysregulated miRNAs in HGSOC and investigate their epigenetic regulation. Analysis of tissue samples from advanced-stage HGSOC patients revealed 20 differentially expressed miRNAs, 11 of which were corroborated via RT-qPCR in patient samples and cancer cell lines. Among these, miR-145-3p was consistently downregulated post-neoadjuvant therapy and was able to distinguish tumoural from control tissues. Further investigation confirmed that DNA methylation controls MIR145 expression. Functional assays showed that overexpression of miR-145-3p significantly reduced cell migration and induced G0/G1 cell cycle arrest by modulating the cyclin D1-CDK4/6 pathway. These findings suggest that miR-145-3p downregulation enhances cell proliferation and motility in HGSOC, implicating its restoration as a potential therapeutic target focused on G1/S phase regulation in the treatment of HGSOC.
Collapse
Affiliation(s)
- Eva González-Cantó
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
| | - Mariana Monteiro
- Bioinformatics and Genomics Department, Saphetor SA, 1015 Lausanne, Switzerland;
| | - Cristina Aghababyan
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Ana Ferrero-Micó
- Research Laboratory of Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.F.-M.); (S.N.-S.); (M.M.-L.)
| | - Sergio Navarro-Serna
- Research Laboratory of Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.F.-M.); (S.N.-S.); (M.M.-L.)
| | - Maravillas Mellado-López
- Research Laboratory of Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.F.-M.); (S.N.-S.); (M.M.-L.)
| | - Sarai Tomás-Pérez
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
| | - Juan Sandoval
- Epigenomics Unit, La Fe Health Research Institute, 46026 Valencia, Spain;
- Biomarkers and Precision Medicine Unit (UByMP), La Fe Health Research Institute, 46026 Valencia, Spain
| | - Antoni Llueca
- Department of Obstetrics and Gynecology, General University Hospital of Castellón, 12004 Castellón de la Plana, Spain;
- Multidisciplinary Unit of Abdominal Pelvic Oncology Surgery (MUAPOS), General University Hospital of Castellón, 12004 Castellón de la Plana, Spain
- Department of Medicine, University Jaume I, 12006 Castellón de la Plana, Spain
| | | | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46014 Valencia, Spain
| | - Vicente Pérez-García
- Research Laboratory of Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.F.-M.); (S.N.-S.); (M.M.-L.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| |
Collapse
|
3
|
Ke M, Xu J, Ouyang Y, Chen J, Yuan D, Guo T. SUGT1 regulates the progression of ovarian cancer through the AKT/PI3K/mTOR signaling pathway. Transl Oncol 2024; 49:102088. [PMID: 39167956 PMCID: PMC11379980 DOI: 10.1016/j.tranon.2024.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
This study investigates the expression and functional roles of SUGT1 in ovarian cancer, utilizing data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Our analyses reveal that SUGT1 is significantly upregulated in ovarian cancer tissues compared to normal controls. We further explore the prognostic value of SUGT1, where elevated expression correlates with poorer patient outcomes, particularly in ovarian cancer. The functional implications of SUGT1 in cancer biology were assessed through in vitro and in vivo experiments. Gene Set Enrichment Analysis (GSEA) indicates a significant association between high SUGT1 expression and the activation of glycolytic pathways, suggesting a potential role in metabolic reprogramming. Inhibition of SUGT1 via siRNA in ovarian cancer cell lines results in decreased proliferation and increased apoptosis, along with reduced migration and invasion capabilities. Additionally, our study identifies the transcription factor ELF1 as a significant regulator of SUGT1 expression. Through promoter analysis and chromatin immunoprecipitation, we demonstrate that ELF1 directly binds to the SUGT1 promoter, enhancing its transcription. This regulatory mechanism underscores the importance of transcriptional control in cancer metabolism, providing insights into potential therapeutic targets. Our findings establish SUGT1 as a crucial player in the oncogenic processes of ovarian cancer, influencing both metabolic pathways and transcriptional regulation. This highlights its potential as a biomarker and therapeutic target in managing ovarian cancer.
Collapse
Affiliation(s)
- Miao Ke
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jie Xu
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Ye Ouyang
- Graduate Management Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Junyu Chen
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Donglan Yuan
- Department of Gynecology and Obstetrics, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Ting Guo
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
4
|
James BL, Zaidi SN, Bs N, R VB, Dokhe Y, Shetty V, Pillai V, Kuriakose MA, Suresh A. Reference gene evaluation for normalization of gene expression studies with lymph tissue and node‑derived stromal cells of patients with oral squamous cell carcinoma. Oncol Lett 2024; 28:540. [PMID: 39310029 PMCID: PMC11413728 DOI: 10.3892/ol.2024.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/25/2024] [Indexed: 09/25/2024] Open
Abstract
Profiling studies using reverse transcription quantitative PCR (RT-qPCR) require reliable normalization to reference genes to accurately interpret the results. A stable reference gene panel was established to profile metastatic and non-metastatic lymph nodes in patients with oral squamous cell carcinoma. The stability of 18S ribosomal RNA (18SrRNA), ribosomal Protein Lateral Stalk Subunit P0 (RPLP0), ribosomal Protein L27 (RPL27), TATA-box binding protein (TBP), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), beta-actin (ACTB), glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) and vimentin (VIM) was evaluated, as reference genes for profiling patient-derived lymph node stromal cells (LNSCs; N=8; N0:6, N+:2) and lymph node tissues (Patients:14, Nodes=20; N0:7; N+:13). The genes were initially assessed based on their expression levels, specificity, and stability rankings to identify the best combination of reference genes. VIM was excluded from the final analysis because of its low expression (high quantification cycle >32) and multiple peaks in the melting curve. The stability analysis was performed using Reffinder, which utilizes four tools; geNorm, NormFinder, BestKeeper and Comparative ∆Ct methods, thereby enabling the computing of a comprehensive ranking. Evaluation of the gene profiles indicated that while RPLP0 and 18SrRNA were stable in both lymph node tissues and LNSCs, HPRT1, RPL27 were uniquely stable in these tissues whereas ACTB and TBP were most stable in LNSCs. The present study identified the most stable reference gene panel for the RT-qPCR profiling of lymph node tissues and patient-derived LNSCs. The observation that the gene panel differed between the two model systems further emphasized the need to evaluate the reference gene subset based on the disease and cellular context.
Collapse
Affiliation(s)
- Bonney Lee James
- Integrated Head and Neck Oncology Program (DSRG-5), Mazumdar Shaw Medical Foundation, Narayana Health, Bangalore 560099, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Shaesta Naseem Zaidi
- Department of Pathology, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya Ltd., Narayana Health, Bangalore 560099, India
| | - Naveen Bs
- Department of Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya Ltd., Narayana Health, Bangalore 560099, India
| | - Vidya Bhushan R
- Department of Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya Ltd., Narayana Health, Bangalore 560099, India
| | - Yogesh Dokhe
- Department of Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya Ltd., Narayana Health, Bangalore 560099, India
| | - Vivek Shetty
- Department of Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya Ltd., Narayana Health, Bangalore 560099, India
| | - Vijay Pillai
- Department of Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya Ltd., Narayana Health, Bangalore 560099, India
| | - Moni Abraham Kuriakose
- Integrated Head and Neck Oncology Program (DSRG-5), Mazumdar Shaw Medical Foundation, Narayana Health, Bangalore 560099, India
- Department of Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya Ltd., Narayana Health, Bangalore 560099, India
| | - Amritha Suresh
- Integrated Head and Neck Oncology Program (DSRG-5), Mazumdar Shaw Medical Foundation, Narayana Health, Bangalore 560099, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
- Department of Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya Ltd., Narayana Health, Bangalore 560099, India
| |
Collapse
|
5
|
Vlieghe H, Sousa MJ, Charif D, Amorim CA. Unveiling the Differentiation Potential of Ovarian Theca Interna Cells from Multipotent Stem Cell-like Cells. Cells 2024; 13:1248. [PMID: 39120279 PMCID: PMC11311681 DOI: 10.3390/cells13151248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
RESEARCH QUESTION Theca interna cells (TICs) are an indispensable cell source for ovarian follicle development and steroidogenesis. Recent studies have identified theca stem cells (TSCs) in both humans and animals. Interestingly, TSCs express mesenchymal stem cell (MSC)-related markers and can differentiate into mesenchymal lineages. MSCs are promising for tissue engineering and regenerative medicine due to their self-renewal and differentiation abilities. Therefore, this study investigated the potential origin of TICs from MSCs. DESIGN Whole ovaries from postmenopausal organ donors were obtained, and their cortex was cryopreserved prior to the isolation of stromal cells. These isolated cells were differentiated in vitro to TICs using cell media enriched with various growth factors and hormones. Immunocytochemistry, an enzyme-linked immunosorbent assay, flow cytometry, and reverse transcription-quantitative polymerase chain were employed at different timepoints. Data were analyzed using one-way ANOVA. RESULTS Immunocytochemistry showed an increase in TIC markers from day 0 to day 8 and a significant rise in MSC-like markers on day 2. This corresponds with rising androstenedione levels from day 2 to day 13. Flow cytometry identified a decreasing MSC-like cell population from day 2 onwards. The CD13+ cell population and its gene expression increased significantly over time. NGFR and PDGFRA expression was induced on days 0 and 2, respectively, compared to day 13. CONCLUSIONS This study offers insights into MSC-like cells as the potential origin of TICs. Differentiating TICs from these widely accessible MSCs holds potential significance for toxicity studies and investigating TIC-related disorders like polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
| | | | | | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 54, bte B1.55.03, 1200 Brussels, Belgium; (H.V.); (M.J.S.); (D.C.)
| |
Collapse
|
6
|
Ahmed MM, Shafat Z, Tazyeen S, Ali R, Almashjary MN, Al-Raddadi R, Harakeh S, Alam A, Haque S, Ishrat R. Identification of pathogenic genes associated with CKD: An integrated bioinformatics approach. Front Genet 2022; 13:891055. [PMID: 36035163 PMCID: PMC9403320 DOI: 10.3389/fgene.2022.891055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic kidney disease (CKD) is defined as a persistent abnormality in the structure and function of kidneys and leads to high morbidity and mortality in individuals across the world. Globally, approximately 8%–16% of the population is affected by CKD. Proper screening, staging, diagnosis, and the appropriate management of CKD by primary care clinicians are essential in preventing the adverse outcomes associated with CKD worldwide. In light of this, the identification of biomarkers for the appropriate management of CKD is urgently required. Growing evidence has suggested the role of mRNAs and microRNAs in CKD, however, the gene expression profile of CKD is presently uncertain. The present study aimed to identify diagnostic biomarkers and therapeutic targets for patients with CKD. The human microarray profile datasets, consisting of normal samples and treated samples were analyzed thoroughly to unveil the differentially expressed genes (DEGs). After selection, the interrelationship among DEGs was carried out to identify the overlapping DEGs, which were visualized using the Cytoscape program. Furthermore, the PPI network was constructed from the String database using the selected DEGs. Then, from the PPI network, significant modules and sub-networks were extracted by applying the different centralities methods (closeness, betweenness, stress, etc.) using MCODE, Cytohubba, and Centiserver. After sub-network analysis we identified six overlapped hub genes (RPS5, RPL37A, RPLP0, CXCL8, HLA-A, and ANXA1). Additionally, the enrichment analysis was undertaken on hub genes to determine their significant functions. Furthermore, these six genes were used to find their associated miRNAs and targeted drugs. Finally, two genes CXCL8 and HLA-A were common for Ribavirin drug (the gene-drug interaction), after docking studies HLA-A was selected for further investigation. To conclude our findings, we can say that the identified hub genes and their related miRNAs can serve as potential diagnostic biomarkers and therapeutic targets for CKD treatment strategies.
Collapse
Affiliation(s)
- Mohd Murshad Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Rafat Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rajaa Al-Raddadi
- Community Medicine Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- *Correspondence: Romana Ishrat,
| |
Collapse
|
7
|
Differential MicroRNA Expression in Porcine Endometrium Related to Spontaneous Embryo Loss during Early Pregnancy. Int J Mol Sci 2022; 23:ijms23158157. [PMID: 35897733 PMCID: PMC9331794 DOI: 10.3390/ijms23158157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Litter size is an important indicator to measure the production capacity of commercial pigs. Spontaneous embryo loss is an essential factor in determining sow litter size. In early pregnancy, spontaneous embryo loss in porcine is as high as 20–30% during embryo implantation. However, the specific molecular mechanism underlying spontaneous embryo loss at the end of embryo implantation remains unknown. Therefore, we comprehensively used small RNA sequencing technology, bioinformatics analysis, and molecular experiments to determine the microRNA (miRNA) expression profile in the healthy and arresting embryo implantation site of porcine endometrium on day of gestation (DG) 28. A total of 464 miRNAs were identified in arresting endometrium (AE) and healthy endometrium (HE), and 139 differentially expressed miRNAs (DEMs) were screened. We combined the mRNA sequencing dataset from the SRA database to predict the target genes of these miRNAs. A quantitative real-time PCR assay identified the expression levels of miRNAs and mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed on differentially expressed target genes of DEMs, mainly enriched in epithelial development and amino acids metabolism-related pathways. We performed fluorescence in situ hybridization (FISH) and the dual-luciferase report gene assay to confirm miRNA and predicted target gene binding. miR-205 may inhibit its expression by combining 3′-untranslated regions (3′ UTR) of tubulointerstitial nephritis antigen-like 1 (TINAGL1). The resulting inhibition of angiogenesis in the maternal endometrium ultimately leads to the formation of arresting embryos during the implantation period. This study provides a reference for the effect of miRNA on the successful implantation of pig embryos in early gestation.
Collapse
|
8
|
Salimiaghdam N, Singh L, Singh MK, Chwa M, Atilano SR, Mohtashami Z, Nesburn AB, Kuppermann BD, Lu SY, Kenney MC. Impacts of Bacteriostatic and Bactericidal Antibiotics on the Mitochondria of the Age-Related Macular Degeneration Cybrid Cell Lines. Biomolecules 2022; 12:675. [PMID: 35625603 PMCID: PMC9138285 DOI: 10.3390/biom12050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/07/2022] Open
Abstract
We assessed the potential negative effects of bacteriostatic and bactericidal antibiotics on the AMD cybrid cell lines (K, U and J haplogroups). AMD cybrid cells were created and cultured in 96-well plates and treated with tetracycline (TETRA) and ciprofloxacin (CPFX) for 24 h. Reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔψM), cellular metabolism and ratio of apoptotic cells were measured using H2DCFDA, JC1, MTT and flow cytometry assays, respectively. Expression of genes of antioxidant enzymes, and pro-inflammatory and pro-apoptotic pathways were evaluated by quantitative real-time PCR (qRT-PCR). Higher ROS levels were found in U haplogroup cybrids when treated with CPFX 60 µg/mL concentrations, lower ΔψM of all haplogroups by CPFX 120 µg/mL, diminished cellular metabolism in all cybrids with CPFX 120 µg/mL, and higher ratio of dead cells in K and J cybrids. CPFX 120 µg/mL induced overexpression of IL-33, CASP-3 and CASP-9 in all cybrids, upregulation of TGF-β1 and SOD2 in U and J cybrids, respectively, along with decreased expression of IL-6 in J cybrids. TETRA 120 µg/mL induced decreased ROS levels in U and J cybrids, increased cellular metabolism of treated U cybrids, higher ratio of dead cells in K and J cybrids and declined ΔψM via all TETRA concentrations in all haplogroups. TETRA 120 µg/mL caused upregulation of IL-6 and CASP-3 genes in all cybrids, higher CASP-7 gene expression in K and U cybrids and downregulation of the SOD3 gene in K and U cybrids. Clinically relevant dosages of ciprofloxacin and tetracycline have potential adverse impacts on AMD cybrids possessing K, J and U mtDNA haplogroups in vitro.
Collapse
Affiliation(s)
- Nasim Salimiaghdam
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Lata Singh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Mithalesh K. Singh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Marilyn Chwa
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Shari R. Atilano
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Zahra Mohtashami
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Anthony B. Nesburn
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Baruch D. Kuppermann
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Stephanie Y. Lu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - M. Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Cadenas J, Pors SE, Nikiforov D, Zheng M, Subiran C, Bøtkjær JA, Mamsen LS, Kristensen SG, Andersen CY. Validating Reference Gene Expression Stability in Human Ovarian Follicles, Oocytes, Cumulus Cells, Ovarian Medulla, and Ovarian Cortex Tissue. Int J Mol Sci 2022; 23:ijms23020886. [PMID: 35055072 PMCID: PMC8778884 DOI: 10.3390/ijms23020886] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/30/2022] Open
Abstract
Human ovarian cells are phenotypically very different and are often only available in limited amounts. Despite the fact that reference gene (RG) expression stability has been validated in oocytes and other ovarian cells from several animal species, the suitability of a single universal RG in the different human ovarian cells and tissues has not been determined. The present study aimed to validate the expression stability of five of the most used RGs in human oocytes, cumulus cells, preantral follicles, ovarian medulla, and ovarian cortex tissue. The selected genes were glyceraldehyde 3-phosphate dehydrogenase (GAPDH), beta-2-microglobulin (B2M), large ribosomal protein P0 (RPLP0), beta-actin (ACTB), and peptidylprolyl isomerase A (PPIA). Overall, the stability of all RGs differed among ovarian cell types and tissues. NormFinder identified ACTB as the best RG for oocytes and cumulus cells, and B2M for medulla tissue and isolated follicles. The combination of two RGs only marginally increased the stability, indicating that using a single validated RG would be sufficient when the available testing material is limited. For the ovarian cortex, depending on culture conditions, GAPDH or ACTB were found to be the most stable genes. Our results highlight the importance of assessing RGs for each cell type or tissue when performing RT-qPCR analysis.
Collapse
|
10
|
Salimiaghdam N, Singh L, Schneider K, Chwa M, Atilano SR, Nalbandian A, Limb GA, Kenney MC. Effects of fluoroquinolones and tetracyclines on mitochondria of human retinal MIO-M1 cells. Exp Eye Res 2022; 214:108857. [PMID: 34856207 PMCID: PMC9949354 DOI: 10.1016/j.exer.2021.108857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 01/26/2023]
Abstract
Our goal was to explore the detrimental impacts of ciprofloxacin (CPFX) and tetracycline (TETRA) on human retinal Müller (MIO-M1) cells in vitro. Cells were exposed to 30, 60 and 120 μg/ml of CPFX and TETRA. The cellular metabolism was measured with the MTT assay. The JC-1 and CM-H2DCFDA assays were used to evaluate the levels of mitochondrial membrane potential (MMP) and ROS (reactive oxygen species), respectively. Mitochondrial DNA (mtDNA) copy number, along with gene expression levels associated with apoptotic (BAX, BCL2-L13, BCL2, CASP-3 and CASP-9), inflammatory (IL-6, IL-1β, TGF-α, TGF-β1 and TGF-β2) and antioxidant pathways (SOD2, SOD3, GPX3 and NOX4) were analyzed via Quantitative Real-Time PCR (qRT-PCR). Bioenergetic profiles were measured using the Seahorse® XF Flux Analyzer. Cells exposed 24 h to 120 μg/ml TETRA demonstrated higher cellular metabolism compared to vehicle-treated cells. At each time points, (i) all TETRA concentrations reduced MMP levels and (ii) ROS levels were reduced by TETRA 120 μg/ml treatment. TETRA caused (i) higher expression of CASP-3, CASP-9, TGF-α, IL-1B, GPX3 and SOD3 but (ii) decreased levels of TGF-B2 and SOD2. ATP production and spare respiratory capacity declined with TETRA treatment. Cellular metabolism was reduced with CPFX 120 μg/ml in all cultures and 60 μg/ml after 72 h. The CPFX 120 μg/ml reduced MMP in all cultures and ROS levels (72 h). CPFX treatment (i) increased expression of CASP-3, CASP-9, and BCL2-L13, (ii) elevated the basal oxygen consumption rate, and (iii) lowered the mtDNA copy numbers and expression levels of TGF-B2, IL-6 and IL-1B compared to vehicle-control cells. We conclude that clinically relevant dosages of bactericidal and bacteriostatic antibiotics can have negative effects on the cellular metabolism and mitochondrial membrane potential of the retinal MIO-M1 cells in vitro. It is noteworthy to mention that apoptotic and inflammatory pathways in exposed cells were affected significantly This is the first study showing the negative impact of fluoroquinolones and tetracyclines on mitochondrial behavior of human retinal MIO-M1 cells.
Collapse
Affiliation(s)
- Nasim Salimiaghdam
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
| | - Lata Singh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA; Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Kevin Schneider
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
| | - Marilyn Chwa
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
| | - Shari R Atilano
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
| | - Angele Nalbandian
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
| | - G Astrid Limb
- Institute of Ophthalmology, University College, London, United Kingdom
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
11
|
New insights into the GDF9-Hedgehog-GLI signaling pathway in human ovaries: from fetus to postmenopause. J Assist Reprod Genet 2021; 38:1387-1403. [PMID: 33772413 DOI: 10.1007/s10815-021-02161-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022] Open
Abstract
RESEARCH QUESTION Are glioma-associated oncogene homolog 1, 2, and 3 (GLI1, 2, and 3) and protein patched homolog 1 (PTCH1) specific markers for precursor theca cells in human ovaries as in mouse ovaries? DESIGN To study the GDF9-HH-GLI pathway and assess whether GLI1 and 3 and PTCH1 are specific markers for precursor theca cells in the human ovary, growth differentiation factor 9 (GDF9), Indian Hedgehog (IHH), Desert Hedgehog (DHH), Sonic Hedgehog (SHH), PTCH1 and GLI1, 2 and 3 were investigated in fetal (n=9), prepubertal (n=9), reproductive-age (n=15), and postmenopausal (n=8) human ovarian tissue. Immunohistochemistry against GDF9, IHH, DHH, SHH, PTCH1, GLI1, GLI2, and GLI3 was performed on human ovarian tissue sections fixed in 4% formaldehyde and embedded in paraffin. Western blotting was carried out on extracted proteins from the same samples used in the previous step to prove the antibodies' specificity. The quantitative real-time polymerase chain reaction was performed to identify mRNA levels for Gdf9, Ihh, Gli1, Gli2, and Gli3 in menopausal ovaries. RESULTS Our results showed that, in contrast to mice, all studied proteins were expressed in primordial follicles of fetal, prepubertal, and reproductive-age human ovaries and stromal cells of reproductive-age and postmenopausal ovaries. Intriguingly, Gdf9, Ihh, and Gli3 mRNA, but not Gli1 and 2, was detected in postmenopausal ovaries. Moreover, GLI1, GLI3, and PTCH1 are not limited to a specific population of cells. They were spread throughout the organ, which means they are not specific markers for precursor theca cells in human ovaries. CONCLUSION These results could provide a basis for understanding how this pathway modulates follicle development and ovarian cell steroidogenesis in human ovaries.
Collapse
|