1
|
Abady MM, Saadeldin IM, Han A, Bang S, Kang H, Seok DW, Kwon HJ, Cho J, Jeong JS. Modeling lamotrigine-induced reprotoxicity in porcine endometrial organoids: Integrated multi-platform profiling. Reprod Toxicol 2025; 135:108926. [PMID: 40252710 DOI: 10.1016/j.reprotox.2025.108926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/26/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Lamotrigine, a newer generation anti-epileptic drug aimed at addressing reproductive complications, requires thorough evaluation of its effects on the endometrium. Using the three-dimensional endometrial organoid (EO) model provides a distinct advantage in modeling lamotrigine-induced toxicity, offering a more relevant physiological system. In this study, a porcine EO model was used and treated with lamotrigine to mimic and analyze drug-induced toxicity. Porcine uteri were processed and digested with collagenase, then combined with Matrigel and incubated with 5 % CO2 environment, at 38°C. During passaging, cells were dissociated, treated with trypsin-EDTA, and subcultured, with the medium renewed every 2-3 days. Different analytical methods were employed to evaluate lamotrigine's impact on the endometrial organoids, covering aspects such as cell viability, morphology, replication, steroidogenesis, and metabolic changes. The results showed significant alterations in cell morphology with a decrease in number and size. Metabolite analysis revealed metabolic shifts in some amino acids, glucose and galactose, ranging from approximately 1.5 to 5 times, (p < 0.05), when compared to the control groups. Molecular assays indicated increased oxidative stress, activation of apoptotic pathway, and disrupted steroidogenesis, revealing lamotrigine as an active endocrine disruptor. Moreover, lamotrigine induced changes in specific miRNAs that regulate implantation, and epithelial-mesenchymal transition pathways. In conclusion, our study highlights the potential diverse impact of lamotrigine on the endometrial microenvironment, emphasizing the need for further investigations into its implications on reproductive health and embryo implantation.
Collapse
Affiliation(s)
- Mariam M Abady
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Nutrition and Food Sciences, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Islam M Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; Research Institute of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ayeong Han
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; Laboratory of Theriogenology, College of Veterinary Medicine, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; Laboratory of Theriogenology, College of Veterinary Medicine, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Heejae Kang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; Laboratory of Theriogenology, College of Veterinary Medicine, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong Wook Seok
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Tempest N, Soul J, Hill CJ, Caamaño Gutierrez E, Hapangama DK. Cell type and region-specific transcriptional changes in the endometrium of women with RIF identify potential treatment targets. Proc Natl Acad Sci U S A 2025; 122:e2421254122. [PMID: 40063812 PMCID: PMC11929460 DOI: 10.1073/pnas.2421254122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
Recurrent implantation failure (RIF) is a devastating condition that leaves many undergoing fertility treatment childless. The human endometrium is receptive to a blastocyst for a brief period, the window of implantation. Critical knowledge underpinning biological processes leading to RIF, essential for effective treatment, is lacking. We employed spatial transcriptomics to define region- and cell-type-specific differences in endometrial gene expression in luteinizing hormone timed biopsies between women with RIF (n = 8) and fertile controls (FC) (n = 8). Differentially expressed genes (DEGs) were identified when comparing endometrial regions between FC and RIF (685 luminal epithelium, 293 glandular epithelium, 419 subluminal stroma, 264 functionalis stroma, 1,125 subluminal stromal CD45+ leukocytes, and 1,049 functionalis stromal CD56+ leukocytes). Only 57 DEGs were common to all subregions and cell types, which highlights that multiple DEGs are lost when the endometrium is examined as a single entity. When RIF-specific DEGs were leveraged against knowledge from mouse genetic models, genes associated with aberrant embryo implantation phenotypes were observed, mostly in immune cell populations. Dysregulated pathways in specific endometrial regions included the "WNT signaling pathway," altered in the functionalis and subluminal stroma. "Response to estradiol" and "ovulation cycle" pathways were dysregulated in the subluminal stroma. In silico drug screening identified potential compounds that can reverse the RIF gene expression profile (e.g., raloxifene, bisoprolol). Our findings, in a well-characterized cohort, highly endorse consideration of each endometrial region and cell type as separate entities. Ignoring individual regions and composite cell populations will overlook important aberrations, forego potential treatment targets, and lead to research waste pursuing clinically irrelevant treatment options.
Collapse
Affiliation(s)
- Nicola Tempest
- Department of Women’s and Children’s Health, Centre for Women’s Health Research, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, LiverpoolL8 7SS, United Kingdom
- Liverpool Women’s National Health Service Foundation Trust, Member of Liverpool Health Partners, LiverpoolL8 7SS, United Kingdom
- Hewitt Centre for Reproductive Medicine, Liverpool Women’s National Health Service Foundation Trust, LiverpoolL8 7SS, United Kingdom
| | - Jamie Soul
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
- Computational Biology Facility, Liverpool Shared Research Facilities, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Christopher J. Hill
- Department of Women’s and Children’s Health, Centre for Women’s Health Research, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, LiverpoolL8 7SS, United Kingdom
| | - Eva Caamaño Gutierrez
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
- Computational Biology Facility, Liverpool Shared Research Facilities, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Dharani K. Hapangama
- Department of Women’s and Children’s Health, Centre for Women’s Health Research, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, LiverpoolL8 7SS, United Kingdom
- Liverpool Women’s National Health Service Foundation Trust, Member of Liverpool Health Partners, LiverpoolL8 7SS, United Kingdom
| |
Collapse
|
3
|
Zhou H, Tan L, Zhang B, Kwong DLW, Wong CN, Zhang Y, Ru B, Lyu Y, Siu KTH, Luo J, Yang Y, Liu Q, Chen Y, Zhang W, He C, Jiang P, Qin Y, Liu B, Guan XY. GPRC5A promotes lung colonization of esophageal squamous cell carcinoma. Nat Commun 2024; 15:9950. [PMID: 39550386 PMCID: PMC11569164 DOI: 10.1038/s41467-024-54251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Emerging evidence suggests that cancer cells may disseminate early, prior to the formation of traditional macro-metastases. However, the mechanisms underlying the seeding and transition of early disseminated cancer cells (DCCs) into metastatic tumors remain poorly understood. Through single-cell RNA sequencing, we show that early lung DCCs from esophageal squamous cell carcinoma (ESCC) exhibit a trophoblast-like 'tumor implantation' phenotype, which enhances their dissemination and supports metastatic growth. Notably, ESCC cells overexpressing GPRC5A demonstrate improved implantation and persistence, resulting in macro-metastases in the lungs. Clinically, elevated GPRC5A level is associated with poorer outcomes in a cohort of 148 ESCC patients. Mechanistically, GPRC5A is found to potentially interact with WWP1, facilitating the polyubiquitination and degradation of LATS1, thereby activating YAP1 signaling pathways essential for metastasis. Importantly, targeting YAP1 axis with CA3 or TED-347 significantly diminishes early implantation and macro-metastases. Thus, the GPRC5A/WWP1/LATS1/YAP1 pathway represents a crucial target for therapeutic intervention in ESCC lung metastases.
Collapse
Grants
- Hong Kong Research Grant Council (RGC) grants including Collaborative Research Funds (C7065-18GF, C7026-18GF and C4039-19GF), Research Impact Fund (R4017-18, R1020-18F and R7022-20), General Research Fund (17119322), Theme-based Research Scheme Fund (T12-703/22-R), the National Natural Science Foundation of China (82072738, 82273483), Shenzhen Key Laboratory for cancer metastasis and personalized therapy (ZDSYS20210623091811035), Shenzhen Science and Technology Program (JCYJ20220818103014030, KQTD20180411185028798, JCYJ20220818103012025), Sanming Project of Medicine in Shenzhen (SZSM202211017), Guangdong Science and Technology Department (2020B1212030004), the Program for Guangdong Introducing Innovative and Entrepreneurial Team (2019BT02Y198)
- National Natural Science Foundation of China (82303160), GuangdongBasic and Applied Basic Research Foundation (2023A1515010109)
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Licheng Tan
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Baifeng Zhang
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dora Lai Wan Kwong
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ching Ngar Wong
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Zhang
- Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Beibei Ru
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yingchen Lyu
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Luo
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuma Yang
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qin Liu
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yixin Chen
- Department of Liver Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaohui He
- Department of Cardiovascular Surgery, Songshan Lake Central Hospital of Dongguan City, Dongguan, China
| | - Peng Jiang
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanru Qin
- Department of Clinical Oncology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Beilei Liu
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Köhne M, Diel E, Packeiser EM, Böttcher D, Tönissen A, Unruh C, Goericke-Pesch S, Ulrich R, Sieme H. Analysis of gene and protein expression in the endometrium for validation of an ex vivo model of the equine uterus using PCR, digital and visual histopathology. Theriogenology 2024; 221:38-46. [PMID: 38537320 DOI: 10.1016/j.theriogenology.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
In the past, most research in equine reproduction has been performed in vivo but the use of in vitro and ex vivo models has recently increased. This study aimed to evaluate the functional stability of an ex vivo hemoperfused model for equine uteri with molecular characterization of marker genes and their proteins. In addition, the study validated the respective protein expression and the aptness of the software QuPath for identifying and scoring immunohistochemically stained equine endometrium. After collection, uteri (n = 12) were flushed with preservation solution, transported to the laboratory on ice, and perfused with autologous blood for 6 h. Cycle stage was determined by examination of the ovaries for presence of Graafian follicles or corpora lutea and analysis of plasma progesterone concentration (estrus: n = 4; diestrus: n = 4; anestrus: n = 4). Samples were obtained directly after slaughter, after transportation, and during perfusion (240, 300, 360 min). mRNA expression levels of progesterone (PGR), estrogen (ESR1) and oxytocin (OXTR) receptor as well as of MKI67 (marker of cell growth) and CASP3 (marker of apoptosis) were analyzed by RT-qPCR, and correlation to protein abundance was validated by immunohistochemical staining. Endometrial samples were analyzed by visual and computer-assisted evaluation of stained antigens via QuPath. For PGR, effects of the perfusion and cycle stage on expression were found (P < 0.05), while ESR1 was affected only by cycle stage (P < 0.05) and OXTR was unaffected by perfusion and cycle stage. MKI67 was lower after 360 min of perfusion as compared to samples collected before perfusion (P < 0.05). For CASP3, differences in gene expression were found after transport and samples taken after 240 min (P < 0.05). Immunohistochemical staining revealed effects of perfusion on stromal and glandular cells for steroid hormone receptors, but not for Ki-67 and active Caspase 3. OXTR was visualized in all layers of the endometrium and was unaffected by perfusion. Comparison of QuPath and visual analysis resulted in similar results. For most cell types and stained antigens, the correlation coefficient was r > 0.5. In conclusion, the isolated hemoperfused model of the equine uterus was successfully validated at the molecular level, demonstrating stability of key marker gene expression. The utility of computer-assisted immunohistochemical analysis of equine endometrial samples was also confirmed.
Collapse
Affiliation(s)
- Martin Köhne
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine, Foundation, 30559, Hannover, Germany.
| | - Emilia Diel
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine, Foundation, 30559, Hannover, Germany
| | - Eva-Maria Packeiser
- Unit for Reproductive Medicine, Clinic for Small Animals, University of Veterinary Medicine, Foundation, 30559, Hannover, Germany
| | - Denny Böttcher
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, 04103, Leipzig, Germany
| | - Anna Tönissen
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine, Foundation, 30559, Hannover, Germany
| | - Christin Unruh
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine, Foundation, 30559, Hannover, Germany
| | - Sandra Goericke-Pesch
- Unit for Reproductive Medicine, Clinic for Small Animals, University of Veterinary Medicine, Foundation, 30559, Hannover, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, 04103, Leipzig, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine, Foundation, 30559, Hannover, Germany
| |
Collapse
|
5
|
Godakumara K, Heath PR, Fazeli A. Rhythm of the First Language: Dynamics of Extracellular Vesicle-Based Embryo-Maternal Communication in the Pre-Implantation Microenvironment. Int J Mol Sci 2023; 24:ijms24076811. [PMID: 37047784 PMCID: PMC10095160 DOI: 10.3390/ijms24076811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
One of the most critical steps in mammalian reproduction is implantation. Embryos with an impaired capacity for embryo-maternal crosstalk are thought to have a reduced potential for implantation. One agent of embryo-maternal communication is extracellular vesicles (EV). EVs are lipid bilayer-bound biological nanoparticles implicated in intercellular communication between many of the known cell types. In the current study, we isolated EVs from trophoblast analogue JAr spheroids and supplemented the EVs with receptive endometrium analogue RL95-2 cells to simulate pre-implantation embryo-maternal dialogue. The transcriptome of the endometrial cells was examined at 30 min, 4 h and 48 h intervals using Oxford Nanopore® technology. At the time points, 30 min, 4 h and 48 h, the endometrial cells showed a significantly altered transcriptome. It seems trophoblast EVs induce a swift and drastic effect on the endometrial transcriptome. The effect peaks at around 4 h of EV supplementation, indicating a generalized effect on cell physiology. Alterations are especially apparent in biological pathways critical to embryonic implantation, such as extracellular matrix-receptor interactions and cytokine-receptor interactions. These observations can be helpful in elucidating the dynamics of embryo-maternal communication in the pre-implantation period.
Collapse
Affiliation(s)
- Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 50411 Tartu, Estonia
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITRAN), University of Sheffield, 385a Glossop Rd., Broomhall, Sheffield S10 2HQ, UK
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 50411 Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 14B Ravila, 50411 Tartu, Estonia
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
6
|
Segura-Benítez M, Carbajo-García MC, Corachán A, Faus A, Pellicer A, Ferrero H. Proteomic analysis of extracellular vesicles secreted by primary human epithelial endometrial cells reveals key proteins related to embryo implantation. Reprod Biol Endocrinol 2022; 20:3. [PMID: 34980157 PMCID: PMC8722215 DOI: 10.1186/s12958-021-00879-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Successful implantation is dependent on coordination between maternal endometrium and embryo, and the role of EVs in the required cross-talk cell-to-cell has been recently established. In this regard, it has been reported that EVs secreted by the maternal endometrium can be internalized by human trophoblastic cells transferring their contents and enhancing their adhesive and invasive capacity. This is the first study to comprehensively evaluate three EV isolation methods on human endometrial epithelial cells in culture and to describe the proteomic content of EVs secreted by pHEECs from fertile women. METHODS Ishikawa cells and pHEECs were in vitro cultured and hormonally treated; subsequently, conditioned medium was collected and EVs isolated. Ishikawa cells were used for the comparison of EVs isolation methods ultracentrifugation, ExoQuick-TC and Norgen Cell Culture Media Exosome Purification Kit (n = 3 replicates/isolation method). pHEECs were isolated from endometrial biopsies (n = 8/replicate; 3 replicates) collected from healthy oocyte donors with confirmed fertility, and protein content of EVs isolated by the most efficient methodology was analysed using liquid chromatography-tandem mass spectrometry. EV concentration and size were analyzed by nanoparticle tracking analysis, EV morphology visualized by transmission electron microscopy and protein marker expression was determined by Western blotting. RESULTS Ultracentrifugation was the most efficient methodology for EV isolation from medium of endometrial epithelial cells. EVs secreted by pHEECs and isolated by ultracentrifugation were heterogeneous in size and expressed EV protein markers HSP70, TSG101, CD9, and CD81. Proteomic analysis identified 218 proteins contained in these EVs enriched in biological processes involved in embryo implantation, including cell adhesion, differentiation, communication, migration, extracellular matrix organization, vasculature development, and reproductive processes. From these proteins, 82 were selected based on their functional relevance in implantation success as possible implantation biomarkers. CONCLUSIONS EV protein cargos are implicated in biological processes related to endometrial receptivity, embryo implantation, and early embryo development, supporting the concept of a communication system between the embryo and the maternal endometrium via EVs. Identified proteins may define new biomarkers of endometrial receptivity and implantation success.
Collapse
Affiliation(s)
- Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia Y Ginecología, Universidad de Valencia, Valencia, Spain
| | - María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia Y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia Y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Rome, Rome, Italy
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| |
Collapse
|