1
|
Petit N, Chang YYJ, Lobianco FA, Hodgkinson T, Browne S. Hyaluronic acid as a versatile building block for the development of biofunctional hydrogels: In vitro models and preclinical innovations. Mater Today Bio 2025; 31:101596. [PMID: 40083836 PMCID: PMC11903855 DOI: 10.1016/j.mtbio.2025.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Hyaluronic acid (HyA) is a non-sulphated linear polysaccharide found abundantly in the extracellular matrix, known for its biocompatibility and versatility in tissue engineering. Chemical modifications of HyA, including methacrylate, acrylate, click chemistry, norbornene, or host-guest chemistry, are necessary for the formation of stable hydrogels with tuneable biophysical characteristics. These modifications enable precise control over stiffness, swelling, degradation, and advanced functionalities such as shear-thinning, self-healing, and injectability. Functionalisation further enhances hydrogel bioactivity, enabling controlled cell adhesion, modulation of cell behaviour, hydrogel degradation, and release profiles, as well as inflammation modulation or bacterial growth inhibition. These are achieved by conjugating proteins, peptides, antibodies, or reactive chemical groups. HyA hydrogels find broad applications both in vitro and in vivo. In vitro, HyA-based hydrogels can support the development of models to understand fundamental processes in health and mechanisms behind disease progression, serving as highly tuneable extracellular matrix mimetics. As therapeutic interventions, injectable or implantable HyA-based hydrogels have been developed to repair a range of tissues, including cartilage, bone, muscle, and skin defects. However, issues remain to be addressed before widespread adoption of HyA-based hydrogels as clinical options. Future innovations for HyA hydrogels include its establishment as an enabling technology for the delivery of novel therapeutics, with a particular focus on immunomodulatory molecules, and the development of more dynamic, tissue-mimetic HyA-based hydrogels.
Collapse
Affiliation(s)
- Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Yu-yin Joanne Chang
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Franz Acker Lobianco
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Tom Hodgkinson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
2
|
Sereda TJ, Beck J, Semchuk P, Abu Maziad AS, Wertheim JA, Koss KM. The multifaceted helical net of amphipathic alpha-helices; the next dimension of the helical peptide wheel. Sci Prog 2024; 107:368504241266357. [PMID: 39655381 PMCID: PMC11629431 DOI: 10.1177/00368504241266357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The amphipathic nature of helical proteins is crucial to their binding features across a broad spectrum of physiological examples, including heat-shock proteins and hyaluronic acid (HA) receptor binding. By taking advantage of the amphipathic balance of amino acids and their presentation in helical faces, novel synthetic peptides can be designed to improve biofunctionality. We present a new approach for designing synthetic alpha helical peptides using a multifaceted analysis, which allows for new bioengineering designs of amphipathic alpha helices. Amphipathic helical peptides were presented with distinct hydrophobic and hydrophilic faces; two series of analogs, namely, peptides AX9 and AX7, were designed to contain a hydrophobic and hydrophilic face, respectively. The presence of one series of peptides exhibited a distinct hydrophobic face and the second series exhibited a distinct hydrophilic face, which was corroborated with reversed-phase chromatography (C8). Using a multifaceted approach to analyze the potential faces of an amphipathic helix, we demonstrated that these helices contain seven distinct "side-viewed" helical faces (based on the hydrophobic face of the AXP series of analogs), which provides additional spatial dimensional information beyond the averaging effect of the hydrophobic moment generated from the "top-down" view of a helical wheel. Furthermore, we cross-compared our recently published HA-binding peptide in this manner to demonstrate that the most significant binding was related to (1) balanced amphipathicity and (2) a distribution of the key HA-binding domain B1(X7)B2 presented spatially. For example, our most effective peptide binder 17x-3 has five of seven faces with B1(X7)B2 domains, while the positive control mPEP35 has three, which reflects a lower affinity. With such a tool, one is able to map helical peptides on an additional dimension to characterize and redesign fundamental amphipathic properties among other critical characteristics, such as sugar and glycan binding, which is a fundamental characteristic feature of cellular interactions in almost every biological system.
Collapse
Affiliation(s)
| | - Jordan Beck
- BIO5 Institution, College of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Paul Semchuk
- Department of Biochemistry, Protein Engineering Network Centres of Excellence, University of Alberta, Edmonton, AB, Canada
| | - Asmaa S Abu Maziad
- BIO5 Institution, College of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jason A Wertheim
- BIO5 Institution, College of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Kyle M Koss
- BIO5 Institution, College of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
3
|
Erkanli ME, Kang TK, Kirsch T, Turley EA, Kim JR, Cowman MK. The spatial separation of basic amino acids is similar in RHAMM and hyaluronan binding peptide P15-1 despite different sequences and conformations. PROTEOGLYCAN RESEARCH 2024; 2:e70001. [PMID: 39290872 PMCID: PMC11404675 DOI: 10.1002/pgr2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Peptides that increase pro-reparative responses to injury and disease by modulating the functional organization of hyaluronan (HA) with its cell surface binding proteins (e.g., soluble receptor for hyaluronan-mediated motility [RHAMM] and integral membrane CD44) have potential therapeutic value. The binding of RHAMM to HA is an attractive target, since RHAMM is normally absent or expressed at low levels in homeostatic conditions, but its expression is significantly elevated in the extracellular matrix during tissue stress, response-to-injury, and in cancers and inflammation-based diseases. The HA-binding site in RHAMM contains two closely spaced sequences of clustered basic amino acids, in an alpha-helical conformation. In the present communication, we test whether an alpha-helical conformation is required for effective peptide binding to HA, and competitive disruption of HA-RHAMM interaction. The HA-binding RHAMM-competitive peptide P15-1, identified using the unbiased approach of phage display, was examined using circular dichroism spectroscopy and the conformation-predictive AI-based AlphaFold2 algorithm. Unlike the HA-binding site in RHAMM, peptide P15-1 was found to adopt irregular conformations in solution rather than alpha helices. Instead, our structural analysis suggests that the primary determinant of peptide-HA binding is associated with a specific clustering and spacing pattern of basic amino acids, allowing favorable electrostatic interaction with carboxylate groups on HA.
Collapse
Affiliation(s)
- Mehmet Emre Erkanli
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Ted Keunsil Kang
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Thorsten Kirsch
- Department of Biomedical Engineering, Tandon School of Engineering New York University New York New York USA
- Department of Orthopedic Surgery, Grossman School of Medicine New York University New York New York USA
| | - Eva A Turley
- Verspeeten Family Cancer Centre, London Health Sciences Centre, Lawson Health Research Institute London Ontario Canada
- Departments of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Mary K Cowman
- Department of Biomedical Engineering, Tandon School of Engineering New York University New York New York USA
- Department of Orthopedic Surgery, Grossman School of Medicine New York University New York New York USA
| |
Collapse
|
4
|
Koss KM, Sereda TJ, Kumirov VK, Wertheim JA. A class of peptides designed to replicate and enhance the Receptor for Hyaluronic Acid Mediated Motility binding domain. Acta Biomater 2023:S1742-7061(23)00251-9. [PMID: 37178990 DOI: 10.1016/j.actbio.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The extra-cellular matrix (ECM) is a complex and rich microenvironment that is exposed and over-expressed across several injury or disease pathologies. Biomaterial therapeutics are often enriched with peptide binders to target the ECM with greater specificity. Hyaluronic acid (HA) is a major component of the ECM, yet to date, few HA adherent peptides have been discovered. A class of HA binding peptides was designed using B(X7)B hyaluronic acid binding domains inspired from the helical face of the Receptor for Hyaluronic Acid Mediated Motility (RHAMM). These peptides were bioengineered using a custom alpha helical net method, allowing for the enrichment of multiple B(X7)B domains and the optimisation of contiguous and non-contiguous domain orientations. Unexpectedly, the molecules also exhibited the behaviour of nanofiber forming self-assembling peptides and were investigated for this characteristic. Ten 23-27 amino acid residue peptides were assessed. Simple molecular modelling was used to depict helical secondary structures. Binding assays were performed with varying concentrations (1-10 mg/mL) and extra-cellular matrices (HA, collagens I-IV, elastin, and Geltrex). Concentration mediated secondary structures were assessed using circular dichroism (CD), and higher order nanostructures were visualized using transmission electron microscopy (TEM). All peptides formed the initial apparent 310/alpha-helices, yet peptides 17x-3, 4, BHP3 and BHP4 were HA specific and potent (i.e., a significant effect) binders at increasing concentrations. These peptides shifted from apparent 310/alpha-helical structures at low concentration to beta-sheets at increasing concentration and also formed nanofibers which are noted as self-assembling structures. Several of the HA binding peptides outperformed our positive control (mPEP35) at 3-4 times higher concentrations, and were enhanced by self-assembly as each of these groups had observable nanofibers. STATEMENT OF SIGNIFICANCE: Specific biomolecules or peptides have played a crucial role in developing materials or systems to deliver key drugs and therapeutics to a broad spectrum of diseases and disorders. In these diseased tissues, cells build protein/sugar networks, which are uniquely exposed and great targets to deliver drugs to. Hyaluronic acid (HA) is involved in every stage of injury and is abundant in cancer. To date, only two HA specific peptides have been discovered. In our work, we have designed a way to model and trace binding regions as they appear on the face of a helical peptide. Using this method we have created a family of peptides enriched with HA binding domains that stick with 3-4 higher affinity than those previously discovered.
Collapse
Affiliation(s)
- Kyle M Koss
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
| | | | - Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
| | - Jason A Wertheim
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
| |
Collapse
|
5
|
Yan LH, Zhang YJ, Hu HJ, Zhang C, Wang Y, Xu XT, Zhang TC, Su R, Luo XG. Enhanced Transdermal Absorption of Hyaluronic Acid via Fusion with Pep-1 and a Hyaluronic Acid Binding Peptide. Macromol Biosci 2023; 23:e2200173. [PMID: 36448643 DOI: 10.1002/mabi.202200173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/16/2022] [Indexed: 01/14/2023]
Abstract
It is always big challenges for hyaluronic acid (HA) in transmembrane absorbing and efficient delivering to the skin. Pep-1, as one of the cell-penetrating peptides, has been documented to permeate various substances across cellular membranes without covalent binding. Here, a novel hyaluronic acid binding peptide (named HaBP) is designed, and then combined with Pep-1 to enhance the cell-penetrating efficiency of HA. The results of ELISA and immunofluorescence assay show that HaBP could bind with HA very well, and a combination of Pep-1 and HaBP could efficiently improve the transmembrane ability of HA. Furthermore, HA gradually enters the dermis from the surface of the skin in mice when it is administrated with both HaBP and Pep-1, while there are no obvious allergies or other adverse reactions during this process. This study finds a new method to promote the efficient transmembrane and transdermal absorption of HA, and throws some light on further research on the development of hyaluronic acid and its related cosmetics or drugs.
Collapse
Affiliation(s)
- Li-Hua Yan
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin, 300192, China
| | - Yu-Jie Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,College of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hai-Jie Hu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chuan Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yue Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xue-Tian Xu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Rui Su
- Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin, 300192, China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
6
|
Zhang YW, Mess J, Aizarani N, Mishra P, Johnson C, Romero-Mulero MC, Rettkowski J, Schönberger K, Obier N, Jäcklein K, Woessner NM, Lalioti ME, Velasco-Hernandez T, Sikora K, Wäsch R, Lehnertz B, Sauvageau G, Manke T, Menendez P, Walter SG, Minguet S, Laurenti E, Günther S, Grün D, Cabezas-Wallscheid N. Hyaluronic acid-GPRC5C signalling promotes dormancy in haematopoietic stem cells. Nat Cell Biol 2022; 24:1038-1048. [PMID: 35725769 PMCID: PMC9276531 DOI: 10.1038/s41556-022-00931-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
Abstract
Bone marrow haematopoietic stem cells (HSCs) are vital for lifelong maintenance of healthy haematopoiesis. In inbred mice housed in gnotobiotic facilities, the top of the haematopoietic hierarchy is occupied by dormant HSCs, which reversibly exit quiescence during stress. Whether HSC dormancy exists in humans remains debatable. Here, using single-cell RNA sequencing, we show a continuous landscape of highly purified human bone marrow HSCs displaying varying degrees of dormancy. We identify the orphan receptor GPRC5C, which enriches for dormant human HSCs. GPRC5C is also essential for HSC function, as demonstrated by genetic loss- and gain-of-function analyses. Through structural modelling and biochemical assays, we show that hyaluronic acid, a bone marrow extracellular matrix component, preserves dormancy through GPRC5C. We identify the hyaluronic acid-GPRC5C signalling axis controlling the state of dormancy in mouse and human HSCs.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Julian Mess
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine (SGBM), Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany
| | - Nadim Aizarani
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Pankaj Mishra
- Pharmaceutical Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Carys Johnson
- Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Mari Carmen Romero-Mulero
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jasmin Rettkowski
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine (SGBM), Freiburg, Germany
| | - Katharina Schönberger
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Nadine Obier
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Karin Jäcklein
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Nadine M Woessner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine (SGBM), Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany.,Signalling Research Center BIOSS, Freiburg, Germany
| | | | - Talia Velasco-Hernandez
- Josep Carreras Leukemia Research Institute-Campus Clinic and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Katarzyna Sikora
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medical, University of Freiburg, Freiburg, Germany
| | - Bernhard Lehnertz
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Canada
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Pablo Menendez
- Signalling Research Center BIOSS, Freiburg, Germany.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Spanish Network for Cancer Research (CIBER-ONC)-ISCIII, Barcelona, Spain
| | | | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany.,Signalling Research Center BIOSS, Freiburg, Germany
| | - Elisa Laurenti
- Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Stefan Günther
- Pharmaceutical Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Dominic Grün
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany.,Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany. .,Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany.
| |
Collapse
|
7
|
Tolg C, Messam BJA, McCarthy JB, Nelson AC, Turley EA. Hyaluronan Functions in Wound Repair That Are Captured to Fuel Breast Cancer Progression. Biomolecules 2021; 11:1551. [PMID: 34827550 PMCID: PMC8615562 DOI: 10.3390/biom11111551] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Signaling from an actively remodeling extracellular matrix (ECM) has emerged as a critical factor in regulating both the repair of tissue injuries and the progression of diseases such as metastatic cancer. Hyaluronan (HA) is a major component of the ECM that normally functions in tissue injury to sequentially promote then suppress inflammation and fibrosis, a duality in which is featured, and regulated in, wound repair. These essential response-to-injury functions of HA in the microenvironment are hijacked by tumor cells for invasion and avoidance of immune detection. In this review, we first discuss the numerous size-dependent functions of HA and emphasize the multifunctional nature of two of its receptors (CD44 and RHAMM) in regulating the signaling duality of HA in excisional wound healing. This is followed by a discussion of how HA metabolism is de-regulated in malignant progression and how targeting HA might be used to better manage breast cancer progression.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada;
| | - Britney Jodi-Ann Messam
- Department Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada;
| | - James Benjamin McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Andrew Cook Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Eva Ann Turley
- London Regional Cancer Program, Lawson Health Research Institute, Department Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
8
|
RHAMM Is a Multifunctional Protein That Regulates Cancer Progression. Int J Mol Sci 2021; 22:ijms221910313. [PMID: 34638654 PMCID: PMC8508827 DOI: 10.3390/ijms221910313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
The functional complexity of higher organisms is not easily accounted for by the size of their genomes. Rather, complexity appears to be generated by transcriptional, translational, and post-translational mechanisms and tissue organization that produces a context-dependent response of cells to specific stimuli. One property of gene products that likely increases the ability of cells to respond to stimuli with complexity is the multifunctionality of expressed proteins. Receptor for hyaluronan-mediated motility (RHAMM) is an example of a multifunctional protein that controls differential responses of cells in response-to-injury contexts. Here, we trace its evolution into a sensor-transducer of tissue injury signals in higher organisms through the detection of hyaluronan (HA) that accumulates in injured microenvironments. Our goal is to highlight the domain and isoform structures that generate RHAMM's function complexity and model approaches for targeting its key functions to control cancer progression.
Collapse
|
9
|
Bu C, Jin L. NMR Characterization of the Interactions Between Glycosaminoglycans and Proteins. Front Mol Biosci 2021; 8:646808. [PMID: 33796549 PMCID: PMC8007983 DOI: 10.3389/fmolb.2021.646808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) constitute a considerable fraction of the glycoconjugates found on cellular membranes and in the extracellular matrix of virtually all mammalian tissues. The essential role of GAG-protein interactions in the regulation of physiological processes has been recognized for decades. However, the underlying molecular basis of these interactions has only emerged since 1990s. The binding specificity of GAGs is encoded in their primary structures, but ultimately depends on how their functional groups are presented to a protein in the three-dimensional space. This review focuses on the application of NMR spectroscopy on the characterization of the GAG-protein interactions. Examples of interpretation of the complex mechanism and characterization of structural motifs involved in the GAG-protein interactions are given. Selected families of GAG-binding proteins investigated using NMR are also described.
Collapse
Affiliation(s)
- Changkai Bu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Abstract
In the last few decades, hyaluronic acid (HA) has become increasingly employed as a biomaterial in both clinical and research applications. The abundance of HA in many tissues, together with its amenability to chemical modification, has made HA an attractive material platform for a wide range of applications including regenerative medicine, drug delivery, and scaffolds for cell culture. HA has traditionally been appreciated to modulate tissue mechanics and remodeling through its distinctive biophysical properties and ability to organize other matrix proteins. However, HA can influence cell behavior in much more direct and specific ways by engaging cellular HA receptors, which can trigger signals that influence cell survival, proliferation, adhesion, and migration. In turn, cells modify HA by regulating synthesis and degradation through a dedicated arsenal of enzymes. Optimal design of HA-based biomaterials demands full consideration of these diverse modes of regulation. This review summarizes how HA-based signaling regulates cell behavior and discusses how these signals can be leveraged to create cell-instructive biomaterials.
Collapse
Affiliation(s)
- Kayla J. Wolf
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Sanjay Kumar
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
11
|
Hauser-Kawaguchi A, Tolg C, Peart T, Milne M, Turley EA, Luyt LG. A truncated RHAMM protein for discovering novel therapeutic peptides. Bioorg Med Chem 2018; 26:5194-5203. [PMID: 30249497 DOI: 10.1016/j.bmc.2018.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
The receptor for hyaluronan mediated motility (RHAMM, gene name HMMR) belongs to a group of proteins that bind to hyaluronan (HA), a high-molecular weight anionic polysaccharide that has pro-angiogenic and inflammatory properties when fragmented. We propose to use a chemically synthesized, truncated version of the protein (706-767), 7 kDa RHAMM, as a target receptor in the screening of novel peptide-based therapeutic agents. Chemical synthesis by Fmoc-based solid-phase peptide synthesis, and optimization using pseudoprolines, results in RHAMM protein of higher purity and yield than synthesis by recombinant protein production. 7 kDa RHAMM was evaluated for its secondary structure, ability to bind the native ligand, HA, and its bioactivity. This 62-amino acid polypeptide replicates the HA binding properties of both native and recombinant RHAMM protein. Furthermore, tubulin-derived HA peptide analogues that bind to recombinant RHAMM and were previously reported to compete with HA for interactions with RHAMM, bind with a similar affinity and specificity to the 7 kDa RHAMM. Therefore, in terms of its key binding properties, the 7 kDa RHAMM mini-protein is a suitable replacement for the full-length recombinant protein.
Collapse
Affiliation(s)
| | - Cornelia Tolg
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | - Teresa Peart
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | - Mark Milne
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | - Eva A Turley
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Department of Biochemistry, Western University, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada
| | - Leonard G Luyt
- Department of Chemistry, Western University, London, Ontario, Canada; Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada.
| |
Collapse
|
12
|
Hauser-Kawaguchi A, Luyt LG, Turley E. Design of peptide mimetics to block pro-inflammatory functions of HA fragments. Matrix Biol 2018; 78-79:346-356. [PMID: 29408009 DOI: 10.1016/j.matbio.2018.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 12/26/2022]
Abstract
Hyaluronan is a simple extracellular matrix polysaccharide that actively regulates inflammation in tissue repair and disease processes. The native HA polymer, which is large (>500 kDa), contributes to the maintenance of homeostasis. In remodeling and diseased tissues, polymer size is strikingly polydisperse, ranging from <10 kDa to >500 kDa. In a diseased or stressed tissue context, both smaller HA fragments and high molecular weight HA polymers can acquire pro-inflammatory functions, which result in the activation of multiple receptors, triggering pro-inflammatory signaling to diverse stimuli. Peptide mimics that bind and scavenge HA fragments have been developed, which show efficacy in animal models of inflammation. These studies indicate both that HA fragments are key to driving inflammation and that scavenging these is a viable therapeutic approach to blunting inflammation in disease processes. This mini-review summarizes the peptide-based methods that have been reported to date for blocking HA signaling events as an anti-inflammatory therapeutic approach.
Collapse
Affiliation(s)
| | - Leonard G Luyt
- Department of Chemistry, Western University, London, ON, Canada; Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada
| | - Eva Turley
- Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada; Department of Biochemistry, Schulich School of Medicine, Western University, London, ON, Canada; Department of Surgery, Schulich School of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
13
|
Singh G, Singh G, Kang TS. Colloidal systems of surface active ionic liquids and sodium carboxymethyl cellulose: physicochemical investigations and preparation of magnetic nano-composites. Phys Chem Chem Phys 2018; 20:18528-18538. [DOI: 10.1039/c8cp02841a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carboxymethyl cellulose-surface active ionic liquid colloidal formulations for preparation of magnetic nano-composites.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Chemistry
- UGC-Centre for Advance Studies – II
- Guru Nanak Dev University
- Amritsar
- India
| | - Gurbir Singh
- Department of Chemistry
- UGC-Centre for Advance Studies – II
- Guru Nanak Dev University
- Amritsar
- India
| | - Tejwant Singh Kang
- Department of Chemistry
- UGC-Centre for Advance Studies – II
- Guru Nanak Dev University
- Amritsar
- India
| |
Collapse
|
14
|
Mandaliti W, Nepravishta R, Pica F, Vallebona PS, Garaci E, Paci M. Thymosin α1 Interacts with Hyaluronic Acid Electrostatically by Its Terminal Sequence LKEKK. Molecules 2017; 22:E1843. [PMID: 29077041 PMCID: PMC6150299 DOI: 10.3390/molecules22111843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 11/17/2022] Open
Abstract
Thymosin α1 (Tα1), is a peptidic hormone, whose immune regulatory properties have been demonstrated both in vitro and in vivo and approved in different countries for treatment of several viral infections and cancers. Tα1 assumes a conformation in negative membranes upon insertion into the phosphatidylserine exposure as found in several pathologies and in apoptosis. These findings are in agreement with the pleiotropy of Tα1, which targets both normal and tumor cells, interacting with multiple cellular components, and have generated renewed interest in the topic. Hyaluronan (HA) occurs ubiquitously in the extracellular matrix and on cell surfaces and has been related to a variety of diseases, and developmental and physiological processes. Proteins binding HA, among them CD44 and the Receptor for HA-mediated motility (RHAMM) receptors, mediate its biological effects. NMR spectroscopy indicated preliminarily that an interaction of Tα1 with HA occurs specifically around lysine residues of the sequence LKEKK of Tα1 and is suggestive of a possible interference of Tα1 in the binding of HA with CD44 and RHAMM. Further studies are needed to deepen these observations because Tα1 is known to potentiate the T-cell immunity and anti-tumor effect. The binding inhibitory activity of Tα1 on HA-CD44 or HA-RHAMM interactions can suppress both T-cell reactivity and tumor progression.
Collapse
Affiliation(s)
- Walter Mandaliti
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Ridvan Nepravishta
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, 00133 Rome, Italy.
- School of Pharmacy, East Anglia University, Norwich NR4 7TJ, UK.
| | - Francesca Pica
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", via Montpellier 1, 00133 Rome, Italy.
| | - Paola Sinibaldi Vallebona
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", via Montpellier 1, 00133 Rome, Italy.
| | - Enrico Garaci
- San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care, 00163 Rome, Italy.
| | - Maurizio Paci
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
15
|
Duan N, Lv W, Zhu L, Zheng W, Hua Z. Expression and purification of RHC–EGFP fusion protein and its application in hyaluronic acid assay. Prep Biochem Biotechnol 2016; 47:261-267. [DOI: 10.1080/10826068.2016.1224243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ningjun Duan
- State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Wansheng Lv
- State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Lingli Zhu
- State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Weijuan Zheng
- State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Zichun Hua
- State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
16
|
Esguerra KVN, Tolg C, Akentieva N, Price M, Cho CF, Lewis JD, McCarthy JB, Turley EA, Luyt LG. Identification, design and synthesis of tubulin-derived peptides as novel hyaluronan mimetic ligands for the receptor for hyaluronan-mediated motility (RHAMM/HMMR). Integr Biol (Camb) 2015; 7:1547-60. [PMID: 26456171 DOI: 10.1039/c5ib00222b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragments of the extracellular matrix component hyaluronan (HA) promote tissue inflammation, fibrosis and tumor progression. HA fragments act through HA receptors including CD44, LYVE1, TLR2, 4 and the receptor for hyaluronan mediated motility (RHAMM/HMMR). RHAMM is a multifunctional protein with both intracellular and extracellular roles in cell motility and proliferation. Extracellular RHAMM binds directly to HA fragments while intracellular RHAMM binds directly to ERK1 and tubulin. Both HA and regions of tubulin (s-tubulin) are anionic and bind to basic amino acid-rich regions in partner proteins, such as in HA and tubulin binding regions of RHAMM. We used this as a rationale for developing bioinformatics and SPR (surface plasmon resonance) based screening to identify high affinity anionic RHAMM peptide ligands. A library of 12-mer peptides was prepared based on the carboxyl terminal tail sequence of s-tubulin isoforms and assayed for their ability to bind to the HA/tubulin binding region of recombinant RHAMM using SPR. This approach resulted in the isolation of three 12-mer peptides with nanomolar affinity for RHAMM. These peptides bound selectively to RHAMM but not to CD44 or TLR2,4 and blocked RHAMM:HA interactions. Furthermore, fluorescein-peptide uptake by PC3MLN4 prostate cancer cells was blocked by RHAMM mAb but not by CD44 mAb. These peptides also reduced the ability of prostate cancer cells to degrade collagen type I. The selectivity of these novel HA peptide mimics for RHAMM suggest their potential for development as HA mimetic imaging and therapeutic agents for HA-promoted disease.
Collapse
|
17
|
Tolg C, Hamilton SR, Zalinska E, McCulloch L, Amin R, Akentieva N, Winnik F, Savani R, Bagli DJ, Luyt LG, Cowman MK, McCarthy JB, Turley EA. A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1250-70. [PMID: 22889846 DOI: 10.1016/j.ajpath.2012.06.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 06/14/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Hyaluronan is activated by fragmentation and controls inflammation and fibroplasia during wound repair and diseases (eg, cancer). Hyaluronan-binding peptides were identified that modify fibrogenesis during skin wound repair. Peptides were selected from 7- to 15mer phage display libraries by panning with hyaluronan-Sepharose beads and assayed for their ability to block fibroblast migration in response to hyaluronan oligosaccharides (10 kDa). A 15mer peptide (P15-1), with homology to receptor for hyaluronan mediated motility (RHAMM) hyaluronan binding sequences, was the most effective inhibitor. P15-1 bound to 10-kDa hyaluronan with an affinity of K(d) = 10(-7) and appeared to specifically mimic RHAMM since it significantly reduced binding of hyaluronan oligosaccharides to recombinant RHAMM but not to recombinant CD44 or TLR2,4, and altered wound repair in wild-type but not RHAMM(-/-) mice. One topical application of P15-1 to full-thickness excisional rat wounds significantly reduced wound macrophage number, fibroblast number, and blood vessel density compared to scrambled, negative control peptides. Wound collagen 1, transforming growth factor β-1, and α-smooth muscle actin were reduced, whereas tenascin C was increased, suggesting that P15-1 promoted a form of scarless healing. Signaling/microarray analyses showed that P15-1 blocks RHAMM-regulated focal adhesion kinase pathways in fibroblasts. These results identify a new class of reagents that attenuate proinflammatory, fibrotic repair by blocking hyaluronan oligosaccharide signaling.
Collapse
Affiliation(s)
- Cornelia Tolg
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tolg C, Hamilton SR, Morningstar L, Zhang J, Zhang S, Esguerra KV, Telmer PG, Luyt LG, Harrison R, McCarthy JB, Turley EA. RHAMM promotes interphase microtubule instability and mitotic spindle integrity through MEK1/ERK1/2 activity. J Biol Chem 2010; 285:26461-74. [PMID: 20558733 DOI: 10.1074/jbc.m110.121491] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An oncogenic form of RHAMM (receptor for hyaluronan-mediated motility, mouse, amino acids 163-794 termed RHAMM(Delta163)) is a cell surface hyaluronan receptor and mitotic spindle protein that is highly expressed in aggressive human cancers. Its regulation of mitotic spindle integrity is thought to contribute to tumor progression, but the molecular mechanisms underlying this function have not previously been defined. Here, we report that intracellular RHAMM(Delta163) modifies the stability of interphase and mitotic spindle microtubules through ERK1/2 activity. RHAMM(-/-) mouse embryonic fibroblasts exhibit strongly acetylated interphase microtubules, multi-pole mitotic spindles, aberrant chromosome segregation, and inappropriate cytokinesis during mitosis. These defects are rescued by either expression of RHAMM or mutant active MEK1. Mutational analyses show that RHAMM(Delta163) binds to alpha- and beta-tubulin protein via a carboxyl-terminal leucine zipper, but in vitro analyses indicate this interaction does not directly contribute to tubulin polymerization/stability. Co-immunoprecipitation and pulldown assays reveal complexes of RHAMM(Delta163), ERK1/2-MEK1, and alpha- and beta-tubulin and demonstrate direct binding of RHAMM(Delta163) to ERK1 via a D-site motif. In vitro kinase analyses, expression of mutant RHAMM(Delta163) defective in ERK1 binding in mouse embryonic fibroblasts, and blocking MEK1 activity collectively confirm that the effect of RHAMM(Delta163) on interphase and mitotic spindle microtubules is mediated by ERK1/2 activity. Our results suggest a model wherein intracellular RHAMM(Delta163) functions as an adaptor protein to control microtubule polymerization during interphase and mitosis as a result of localizing ERK1/2-MEK1 complexes to their tubulin-associated substrates.
Collapse
Affiliation(s)
- Cornelia Tolg
- Department of Oncology and Biochemistry, London Regional Cancer Program, University of Western Ontario and London Health Sciences Center, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kolker SJ, Walder RY, Usachev Y, Hillman J, Boyle DL, Firestein GS, Sluka KA. Acid-sensing ion channel 3 expressed in type B synoviocytes and chondrocytes modulates hyaluronan expression and release. Ann Rheum Dis 2010; 69:903-9. [PMID: 19933746 PMCID: PMC3476728 DOI: 10.1136/ard.2009.117168] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Rheumatoid arthritis is an inflammatory disease marked by intra-articular decreases in pH, aberrant hyaluronan regulation and destruction of bone and cartilage. Acid-sensing ion channels (ASICs) are the primary acid sensors in the nervous system, particularly in sensory neurons and are important in nociception. ASIC3 was recently discovered in synoviocytes, non-neuronal joint cells critical to the inflammatory process. OBJECTIVES To investigate the role of ASIC3 in joint tissue, specifically the relationship between ASIC3 and hyaluronan and the response to decreased pH. METHODS Histochemical methods were used to compare morphology, hyaluronan expression and ASIC3 expression in ASIC3+/+ and ASIC3-/- mouse knee joints. Isolated fibroblast-like synoviocytes (FLS) were used to examine hyaluronan release and intracellular calcium in response to decreases in pH. RESULTS In tissue sections from ASIC3+/+ mice, ASIC3 localised to articular cartilage, growth plate, meniscus and type B synoviocytes. In cultured FLS, ASIC3 mRNA and protein was also expressed. In FLS cultures, pH 5.5 increased hyaluronan release in ASIC3+/+ FLS, but not ASIC3-/- FLS. In FLS from ASIC3+/+ mice, approximately 50% of cells (25/53) increased intracellular calcium while only 24% (14/59) showed an increase in ASIC3-/- FLS. Of the cells that responded to pH 5.5, there was significantly less intracellular calcium increases in ASIC3-/- FLS compared to ASIC3+/+ FLS. CONCLUSION ASIC3 may serve as a pH sensor in synoviocytes and be important for modulation of expression of hyaluronan within joint tissue.
Collapse
Affiliation(s)
- S J Kolker
- Graduate Program in Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa, USA
| | - R Y Walder
- Graduate Program in Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa, USA
| | - Y Usachev
- Department of Pharmacology, Pain Research Program, University of Iowa, Iowa, USA
| | - J Hillman
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - D L Boyle
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - G S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - K A Sluka
- Graduate Program in Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa, USA
| |
Collapse
|
20
|
Zhao J, Yoneda M, Takeyama M, Miyaishi O, Inoue Y, Kataoka T, Ohno-Jinno A, Isogai Z, Kimata K, Iwaki M, Zako M. Characterization of a motif for specific binding to hyaluronan in chicken SPACR. J Neurochem 2008; 106:1117-24. [DOI: 10.1111/j.1471-4159.2008.05468.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Johnson MA, Pinto BM. Structural and functional studies of Peptide-carbohydrate mimicry. Top Curr Chem (Cham) 2008; 273:55-116. [PMID: 23605459 DOI: 10.1007/128_2007_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Certain peptides act as molecular mimics of carbohydrates in that they are specifically recognizedby carbohydrate-binding proteins. Peptides that bind to anti-carbohydrate antibodies, carbohydrate-processingenzymes, and lectins have been identified. These peptides are potentially useful as vaccines andtherapeutics; for example, immunologically functional peptide molecular mimics (mimotopes) can strengthenor modify immune responses induced by carbohydrate antigens. However, peptides that bind specificallyto carbohydrate-binding proteins may not necessarily show the corresponding biological activity, andfurther selection based on biochemical studies is always required. The degree of structural mimicryrequired to generate the desired biological activity is therefore an interesting question. This reviewwill discuss recent structural studies of peptide-carbohydrate mimicry employing NMR spectroscopy,X-ray crystallography, and molecular modeling, as well as relevant biochemical data. These studiesprovide insights into the basis of mimicry at the molecular level. Comparisons with other carbohydrate-mimeticcompounds, namely proteins and glycopeptides, will be drawn. Finally, implications for the designof new therapeutic compounds will also be presented.
Collapse
Affiliation(s)
- Margaret A Johnson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB-44, 92037, La Jolla, CA, USA,
| | | |
Collapse
|