1
|
Qu Q, Chen Y, Wang Y, Wang W, Long S, Yang HY, Wu J, Li M, Tian X, Wei X, Liu YH, Xu S, Xiong J, Yang C, Wu Z, Huang X, Xie C, Wu Y, Xu Z, Zhang C, Zhang B, Feng JW, Chen J, Feng Y, Fang H, Lin L, Xie ZK, Sun B, Tian H, Yu Y, Piao HL, Xie XS, Deng X, Zhang CS, Lin SC. Lithocholic acid binds TULP3 to activate sirtuins and AMPK to slow down ageing. Nature 2024:10.1038/s41586-024-08348-2. [PMID: 39695235 DOI: 10.1038/s41586-024-08348-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Lithocholic acid (LCA) is accumulated in mammals during calorie restriction and it can activate AMP-activated protein kinase (AMPK) to slow down ageing1. However, the molecular details of how LCA activates AMPK and induces these biological effects are unclear. Here we show that LCA enhances the activity of sirtuins to deacetylate and subsequently inhibit vacuolar H+-ATPase (v-ATPase), which leads to AMPK activation through the lysosomal glucose-sensing pathway. Proteomics analyses of proteins that co-immunoprecipitated with sirtuin 1 (SIRT1) identified TUB-like protein 3 (TULP3), a sirtuin-interacting protein2, as a LCA receptor. In detail, LCA-bound TULP3 allosterically activates sirtuins, which then deacetylate the V1E1 subunit of v-ATPase on residues K52, K99 and K191. Muscle-specific expression of a V1E1 mutant (3KR), which mimics the deacetylated state, strongly activates AMPK and rejuvenates muscles in aged mice. In nematodes and flies, LCA depends on the TULP3 homologues tub-1 and ktub, respectively, to activate AMPK and extend lifespan and healthspan. Our study demonstrates that activation of the TULP3-sirtuin-v-ATPase-AMPK pathway by LCA reproduces the benefits of calorie restriction.
Collapse
Affiliation(s)
- Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Weiche Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shating Long
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Heng-Ye Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shengrong Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chunyan Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhenhua Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jin-Wei Feng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yuanji Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Liyun Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Z K Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Beibei Sun
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yong Yu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiao-Song Xie
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Dike PN, Soni KG, Chang DS, Preidis GA. Bile acids differentially regulate longitudinal smooth muscle contractility in everted mouse ileum. FASEB Bioadv 2024; 6:200-206. [PMID: 38974116 PMCID: PMC11226990 DOI: 10.1096/fba.2024-00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
Bile acids regulate gastrointestinal motility by mechanisms that are poorly understood. Standard isolated tissue bath assays might not recapitulate in vivo physiology if contractile responses to certain bile acids require direct application to the intestinal mucosa. We sought to determine the feasibility of quantifying longitudinal smooth muscle contractile responses to bile acids from intact segments of everted mouse ileum. Ileum from adult female C57BL/6J mice was isolated, gently everted over a notched metal rod, and mounted in tissue baths. Individual bile acids and agonists of bile acid receptors were added to the baths, and longitudinal smooth muscle contractile responses were quantified by isometric force transduction. Ursodeoxycholic acid robustly increased contractile responses in a dose-dependent manner. Deoxycholic acid stimulated contractility at low doses but inhibited contractility at high doses. Chenodeoxycholic acid, glycocholic acid, and lithocholic acid did not alter contractility. The dose-dependent increase in contractility resulting from the application of ursodeoxycholic acid was recapitulated by INT-777, an agonist of the Takeda G protein-coupled receptor 5 (TGR5), and by cevimeline, a muscarinic acetylcholine receptor agonist. Agonists to the nuclear receptors farnesoid X receptor, glucocorticoid receptor, pregnane X receptor, vitamin D receptor, and to the plasma membrane epidermal growth factor receptor did not modify baseline contractile patterns. These results demonstrate that gentle eversion of intact mouse ileum facilitates the quantification of longitudinal smooth muscle contractile responses to individual bile acids. Prokinetic effects of ursodeoxycholic acid and low-dose deoxycholic acid are replicated by agonists to TGR5 and muscarinic acetylcholine receptors.
Collapse
Affiliation(s)
- Peace N. Dike
- Division of Gastroenterology, Hepatology and Nutrition, Department of PediatricsBaylor College of Medicine and Texas Children's HospitalHoustonTexasUSA
| | - Krishnakant G. Soni
- Division of Gastroenterology, Hepatology and Nutrition, Department of PediatricsBaylor College of Medicine and Texas Children's HospitalHoustonTexasUSA
| | - Diana S. Chang
- Division of Gastroenterology, Hepatology and Nutrition, Department of PediatricsBaylor College of Medicine and Texas Children's HospitalHoustonTexasUSA
| | - Geoffrey A. Preidis
- Division of Gastroenterology, Hepatology and Nutrition, Department of PediatricsBaylor College of Medicine and Texas Children's HospitalHoustonTexasUSA
| |
Collapse
|
3
|
Cheng H, Zhang D, Wu J, Liu J, Zhou Y, Tan Y, Feng W, Peng C. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154979. [PMID: 37552899 DOI: 10.1016/j.phymed.2023.154979] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Polyphenols are a class of naturally sourced compounds with widespread distribution and an extensive array of bioactivities. However, due to their complex constituents and weak absorption, a convincing explanation for their remarkable bioactivity remains elusive for a long time. In recent years, interaction with gut microbiota is hypothesized to be a reasonable explanation of the potential mechanisms for natural compounds especially polyphenols. OBJECTIVES This review aims to present a persuasive explanation for the contradiction between the limited bioavailability and the remarkable bioactivities of polyphenols by examining their interactions with gut microbiota. METHODS We assessed literatures published before April 10, 2023, from several databases, including Scopus, PubMed, Google Scholar, and Web of Science. The keywords used include "polyphenols", "gut microbiota", "short-chain fatty acids", "bile acids", "trimethylamine N-oxide", "lipopolysaccharides" "tryptophan", "dopamine", "intestinal barrier", "central nervous system", "lung", "anthocyanin", "proanthocyanidin", "baicalein", "caffeic acid", "curcumin", "epigallocatechin-3-gallate", "ferulic acid", "genistein", "kaempferol", "luteolin", "myricetin", "naringenin", "procyanidins", "protocatechuic acid", "pterostilbene", "quercetin", "resveratrol", etc. RESULTS: The review first demonstrates that polyphenols significantly alter gut microbiota diversity (α- and β-diversity) and the abundance of specific microorganisms. Polyphenols either promote or inhibit microorganisms, with various factors influencing their effects, such as dosage, treatment duration, and chemical structure of polyphenols. Furthermore, the review reveals that polyphenols regulate several gut microbiota metabolites, including short-chain fatty acids, dopamine, trimethylamine N-oxide, bile acids, and lipopolysaccharides. Polyphenols affect these metabolites by altering gut microbiota composition, modifying microbial enzyme activity, and other potential mechanisms. The changed microbial metabolites induced by polyphenols subsequently trigger host responses in various ways, such as acting as intestinal acid-base homeostasis regulators and activating on specific target receptors. Additionally, polyphenols are transformed into microbial derivatives by gut microbiota and these polyphenols' microbial derivatives have many potential advantages (e.g., increased bioactivity, improved absorption). Lastly, the review shows polyphenols maintain intestinal barrier, central nervous system, and lung function homeostasis by regulating gut microbiota. CONCLUSION The interaction between polyphenols and gut microbiota provides a credible explanation for the exceptional bioactivities of polyphenols. This review aids our understanding of the underlying mechanisms behind the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
4
|
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Kokorina PI, Khlebnikov AI, Quinn MT. Neutrophil Immunomodulatory Activity of Nerolidol, a Major Component of Essential Oils from Populus balsamifera Buds and Propolis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3399. [PMID: 36501438 PMCID: PMC9739404 DOI: 10.3390/plants11233399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Propolis is a resinous mixture of substances collected and processed from various botanical sources by honeybees. Black poplar (Populus balsamifera L.) buds are one of the primary sources of propolis. Despite their reported therapeutic properties, little is known about the innate immunomodulatory activity of essential oils from P. balsamifera and propolis. In the present studies, essential oils were isolated from the buds of P. balsamifera and propolis collected in Montana. The main components of the essential oil from P. balsamifera were E-nerolidol (64.0%), 1,8-cineole (10.8%), benzyl benzoate (3.7%), α-terpinyl acetate (2.7%), α-pinene (1.8%), o-methyl anisol (1.8%), salicylaldehyde (1.8%), and benzyl salicylate (1.6%). Likewise, the essential oil from propolis was enriched with E-nerolidol (14.4%), cabreuva oxide-VI (7.9%), α-bisabolol (7.1%), benzyl benzoate (6.1%), β-eudesmol (3.6%), T-cadinol (3.1%), 2-methyl-3-buten-2-ol (3.1%), α-eudesmol (3.0%), fokienol (2.2%), nerolidol oxide derivative (1.9%), decanal (1.8%), 3-butenyl benzene (1.5%), 1,4-dihydronaphthalene (1.5%), selina-4,11-diene (1.5%), α-cadinol (1.5%), linalool (1.4%), γ-cadinene (1.4%), 2-phenylethyl-2-methyl butyrate (1.4%), 2-methyl-2-butenol (1.3%), octanal (1.1%), benzylacetone (1.1%), and eremoligenol (1.1%). A comparison between P. balsamifera and propolis essential oils demonstrated that 22 compounds were found in both essential oil samples. Both were enriched in E-nerolidol and its derivatives, including cabreuva oxide VI and nerolidol oxides. P. balsamifera and propolis essential oils and pure nerolidol activated Ca2+ influx in human neutrophils. Since these treatments activated neutrophils, the essential oil samples were also evaluated for their ability to down-regulate the neutrophil responses to subsequent agonist activation. Indeed, treatment with P. balsamifera and propolis essential oils inhibited subsequent activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, nerolidol inhibited human neutrophil activation induced by fMLF (IC50 = 4.0 μM) and WKYMVM (IC50 = 3.7 μM). Pretreatment with the essential oils and nerolidol also inhibited human neutrophil chemotaxis induced by fMLF, again suggesting that these treatments down-regulated human neutrophil responses to inflammatory chemoattractants. Finally, reverse pharmacophore mapping predicted several potential kinase targets for nerolidol. Thus, our studies have identified nerolidol as a potential anti-inflammatory modulator of human neutrophils.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Polina I. Kokorina
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia
| | | | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
5
|
Wickstead ES, Solito E, McArthur S. Promiscuous Receptors and Neuroinflammation: The Formyl Peptide Class. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122009. [PMID: 36556373 PMCID: PMC9786789 DOI: 10.3390/life12122009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors (GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types crucial for homeostatic brain regulation, including microglia and blood-brain barrier endothelial cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular adhesion and directed migration through chemotaxis, to granule release and superoxide formation, to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the evidence for their importance in the development of neuroinflammatory disease, alongside their potential as therapeutic targets.
Collapse
Affiliation(s)
- Edward S. Wickstead
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (E.S.W.); (S.M.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
- Correspondence: (E.S.W.); (S.M.)
| |
Collapse
|
6
|
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Khlebnikov AI, Klein RA, Quinn MT. Neutrophil Immunomodulatory Activity of Farnesene, a Component of Artemisia dracunculus Essential Oils. Pharmaceuticals (Basel) 2022; 15:642. [PMID: 35631467 PMCID: PMC9143003 DOI: 10.3390/ph15050642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Despite their reported therapeutic properties, not much is known about the immunomodulatory activity of essential oils present in Artemisia species. We isolated essential oils from the flowers and leaves of five Artemisia species: A. tridentata, A. ludoviciana, A. dracunculus, A. frigida, and A. cana. The chemical composition of the Artemisia essential oil samples had similarities and differences as compared to those previously reported in the literature. The main components of essential oils obtained from A. tridentata, A. ludoviciana, A. frigida, and A. cana were camphor (23.0-51.3%), 1,8-cineole (5.7-30.0%), camphene (1.6-7.7%), borneol (2.3-14.6%), artemisiole (1.2-7.5%), terpinen-4-ol (2.0-6.9%), α-pinene (0.8-3.9%), and santolinatriene (0.7-3.5%). Essential oils from A. dracunculus were enriched in methyl chavicol (38.8-42.9%), methyl eugenol (26.1-26.4%), terpinolene (5.5-8.8%), (E/Z)-β-ocimene (7.3-16.0%), β-phellandrene (1.3-2.2%), p-cymen-8-ol (0.9-2.3%), and xanthoxylin (1.2-2.2%). A comparison across species also demonstrated that some compounds were present in only one Artemisia species. Although Artemisia essential oils were weak activators of human neutrophils, they were relatively more potent in inhibiting subsequent neutrophil Ca2+ mobilization with N-formyl peptide receptor 1 (FPR1) agonist fMLF- and FPR2 agonist WKYMVM, with the most potent being essential oils from A. dracunculus. Further analysis of unique compounds found in A. dracunculus showed that farnesene, a compound with a similar hydrocarbon structure as lipoxin A4, inhibited Ca2+ influx induced in human neutrophils by fMLF (IC50 = 1.2 μM), WKYMVM (IC50 = 1.4 μM), or interleukin 8 (IC50 = 2.6 μM). Pretreatment with A. dracunculus essential oils and farnesene also inhibited human neutrophil chemotaxis induced by fMLF, suggesting these treatments down-regulated human neutrophil responses to inflammatory chemoattractants. Thus, our studies have identified farnesene as a potential anti-inflammatory modulator of human neutrophils.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (G.Ö.); (T.Ö.)
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (G.Ö.); (T.Ö.)
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | | | - Robyn A. Klein
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| |
Collapse
|
7
|
Keely SJ, Urso A, Ilyaskin AV, Korbmacher C, Bunnett NW, Poole DP, Carbone SE. Contributions of bile acids to gastrointestinal physiology as receptor agonists and modifiers of ion channels. Am J Physiol Gastrointest Liver Physiol 2022; 322:G201-G222. [PMID: 34755536 PMCID: PMC8782647 DOI: 10.1152/ajpgi.00125.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Bile acids (BAs) are known to be important regulators of intestinal motility and epithelial fluid and electrolyte transport. Over the past two decades, significant advances in identifying and characterizing the receptors, transporters, and ion channels targeted by BAs have led to exciting new insights into the molecular mechanisms involved in these processes. Our appreciation of BAs, their receptors, and BA-modulated ion channels as potential targets for the development of new approaches to treat intestinal motility and transport disorders is increasing. In the current review, we aim to summarize recent advances in our knowledge of the different BA receptors and BA-modulated ion channels present in the gastrointestinal system. We discuss how they regulate motility and epithelial transport, their roles in pathogenesis, and their therapeutic potential in a range of gastrointestinal diseases.
Collapse
Affiliation(s)
- Stephen J Keely
- Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Andreacarola Urso
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Pharmacology, Columbia University, New York, New York
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, New York
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, New York
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Choi HJ, Yun JW, Kim YH, Kwon E, Hyon MK, Kim JY, Che JH, Ho Kim W, Seong SY, Kang BC. Evaluation of acute and subacute toxicity of sodium taurodeoxycholate in rats. Drug Chem Toxicol 2021; 44:268-276. [PMID: 31215257 DOI: 10.1080/01480545.2019.1609493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 01/06/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022]
Abstract
Taurodeoxycholate (TDCA) inhibits various inflammatory responses suggesting potential clinical application. However, the toxicity of TDCA has not been evaluated in detail in vivo. We investigated the acute toxicity and 4-week repeated-dose toxicity of TDCA following intravenous infusion under Good Laboratory Practice regulations. In the sighting study of acute toxicity, one of two rats (one male and one female) treated with 300 mg/kg TDCA died with hepatotoxicity, suggesting that the approximate 50% lethal dose of TDCA is 300 mg/kg. Edema and discoloration were observed at the injection sites of tails when rats were infused with 150 mg/kg or higher amount of TDCA once. In 4-week repeated-dose toxicity study, no treatment-related mortality or systemic changes in hematology and serum biochemistry, organ weights, gross pathology, or histopathology were observed. However, the tail injection site showed redness, discharge, hardening, and crust formation along with histopathological changes such as ulceration, edema, fibrosis, and thrombosis when rats were infused with 20 mg/kg TDCA. Taken together, TDCA induced no systemic toxicity or macroscopic lesions at the injection site at a dose of 10 mg/kg/day, which is 33 times higher than the median effective dose observed in a mouse sepsis model. These findings suggest that TDCA might have a favorable therapeutic index in clinical applications.
Collapse
Affiliation(s)
- Hyung Jun Choi
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Youn-Hee Kim
- Wide River Institute of Immunology, Department of Microbiology and Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min-Kyong Hyon
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji Young Kim
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Yong Seong
- Wide River Institute of Immunology, Department of Microbiology and Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea
- Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| |
Collapse
|
9
|
Choi HJ, Yun JW, Kim YH, Kwon E, Hyon MK, Kim JY, Che JH, Park JS, Kim HC, Ho Kim W, Seong SY, Kang BC. Nonclinical toxicology studies with sodium taurodeoxycholate: acute and subacute toxicity in dogs. Drug Chem Toxicol 2021; 44:161-169. [PMID: 31215246 DOI: 10.1080/01480545.2019.1566352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 10/26/2022]
Abstract
Sodium taurodeoxycholate (TDCA) has been investigated for various inflammatory disorders such as sepsis. We recently evaluated nonclinical safety profile of TDCA using rats infused intravenously. As a series of preclinical safety investigations, we further conducted toxicity studies with TDCA delivered to dogs via intravenous administration under Good Laboratory Practice regulation in this study. In dose range-finding study (dose escalation study), dogs given with TDCA at a dose of 150 mg/kg showed marked changes in clinical signs, hematology, and serum biochemistry. And biochemical markers of liver damage and local skin lesions were observed following intravenous infusion of 100 mg/kg TDCA, suggesting that 100 mg/kg was chosen as the highest dose of TDCA for 4-week repeated-dose toxicity study using dogs. Despite no treatment-related significant changes in body weight, food consumption, ophthalmoscopy, and urinalysis, skin lesions were observed at the injection site of animals administered with higher than 50 mg/kg of TDCA along with biochemical and histopathological changes associated with liver injury. However, most of off-target effects were found to be reversible since these were recovered after stopping TDCA infusion. These findings indicate that the no-observed-adverse-effect-level (NOAEL) for TDCA in dogs was considered to be 5 mg/kg/d. Taken together, our results provide important toxicological profiles regarding the safe dose of TDCA for drug development or clinical application.
Collapse
Affiliation(s)
- Hyung Jun Choi
- Graduate School of Translational Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Youn-Hee Kim
- Department of Microbiology and Immunology, Department of Biomedical Sciences, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute Seoul National University Hospital, Seoul, Republic of Korea
| | - Min-Kyong Hyon
- Graduate School of Translational Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji Young Kim
- Graduate School of Translational Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Sung Park
- Department of Experimental Animal Research, Biomedical Research Institute Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Yong Seong
- Department of Microbiology and Immunology, Department of Biomedical Sciences, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea
- Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, Republic of Korea
| |
Collapse
|
10
|
Bile Acid-Activated Receptors: GPBAR1 (TGR5) and Other G Protein-Coupled Receptors. Handb Exp Pharmacol 2019; 256:19-49. [PMID: 31302759 DOI: 10.1007/164_2019_230] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The BA-responsive GPCRs S1PR2 and TGR5 are almost ubiquitously expressed in human and rodent tissues. In the liver, S1PR2 is expressed in all cell types, while TGR5 is predominately found in non-parenchymal cells. In contrast to S1PR2, which is mainly activated by conjugated bile acids (BAs), all BAs serve as ligands for TGR5 irrespective of their conjugation state and substitution pattern.Mice with targeted deletion of either S1PR2 or TGR5 are viable and develop no overt phenotype. In liver injury models, S1PR2 exerts pro-inflammatory and pro-fibrotic effects and thus aggravates liver damage, while TGR5 mediates anti-inflammatory, anti-cholestatic, and anti-fibrotic effects. Thus, inhibitors of S1PR2 signaling and agonists for TGR5 have been employed to attenuate liver injury in rodent models for cholestasis, nonalcoholic steatohepatitis, and fibrosis/cirrhosis.In biliary epithelial cells, both receptors activate a similar signaling cascade resulting in ERK1/2 phosphorylation and cell proliferation. Overexpression of both S1PR2 and TGR5 was found in human cholangiocarcinoma tissue as well as in CCA cell lines, where stimulation of both GPCRs resulted in transactivation of the epidermal growth factor receptor and triggered cell proliferation as well as increased cell migration and invasiveness.This chapter will focus on the function of S1PR2 and TGR5 in different liver cell types and summarizes current knowledge on the role of these receptors in liver disease models.
Collapse
|
11
|
Chang S, Kim YH, Kim YJ, Kim YW, Moon S, Lee YY, Jung JS, Kim Y, Jung HE, Kim TJ, Cheong TC, Moon HJ, Cho JA, Kim HR, Han D, Na Y, Seok SH, Cho NH, Lee HC, Nam EH, Cho H, Choi M, Minato N, Seong SY. Taurodeoxycholate Increases the Number of Myeloid-Derived Suppressor Cells That Ameliorate Sepsis in Mice. Front Immunol 2018; 9:1984. [PMID: 30279688 PMCID: PMC6153344 DOI: 10.3389/fimmu.2018.01984] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023] Open
Abstract
Bile acids (BAs) control metabolism and inflammation by interacting with several receptors. Here, we report that intravenous infusion of taurodeoxycholate (TDCA) decreases serum pro-inflammatory cytokines, normalizes hypotension, protects against renal injury, and prolongs mouse survival during sepsis. TDCA increases the number of granulocytic myeloid-derived suppressor cells (MDSCLT) distinctive from MDSCs obtained without TDCA treatment (MDSCL) in the spleen of septic mice. FACS-sorted MDSCLT cells suppress T-cell proliferation and confer protection against sepsis when adoptively transferred better than MDSCL. Proteogenomic analysis indicated that TDCA controls chromatin silencing, alternative splicing, and translation of the immune proteome of MDSCLT, which increases the expression of anti-inflammatory molecules such as oncostatin, lactoferrin and CD244. TDCA also decreases the expression of pro-inflammatory molecules such as neutrophil elastase. These findings suggest that TDCA globally edits the proteome to increase the number of MDSCLT cells and affect their immune-regulatory functions to resolve systemic inflammation during sepsis.
Collapse
Affiliation(s)
- Sooghee Chang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Youn-Hee Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-Joo Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Young-Woo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Sungyoon Moon
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Yong Yook Lee
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Jin Sun Jung
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hi-Eun Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae-Joo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Taek-Chin Cheong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye-Jung Moon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Ah Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Dohyun Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yirang Na
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Hyeok Seok
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hai-Chon Lee
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Eun-Hee Nam
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hyosuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seung-Yong Seong
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| |
Collapse
|
12
|
He HQ, Ye RD. The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for Recognition. Molecules 2017; 22:E455. [PMID: 28335409 PMCID: PMC6155412 DOI: 10.3390/molecules22030455] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
The formyl peptide receptors (FPRs) are G protein-coupled receptors that transduce chemotactic signals in phagocytes and mediate host-defense as well as inflammatory responses including cell adhesion, directed migration, granule release and superoxide production. In recent years, the cellular distribution and biological functions of FPRs have expanded to include additional roles in homeostasis of organ functions and modulation of inflammation. In a prototype, FPRs recognize peptides containing N-formylated methionine such as those produced in bacteria and mitochondria, thereby serving as pattern recognition receptors. The repertoire of FPR ligands, however, has expanded rapidly to include not only N-formyl peptides from microbes but also non-formyl peptides of microbial and host origins, synthetic small molecules and an eicosanoid. How these chemically diverse ligands are recognized by the three human FPRs (FPR1, FPR2 and FPR3) and their murine equivalents is largely unclear. In the absence of crystal structures for the FPRs, site-directed mutagenesis, computer-aided ligand docking and structural simulation have led to the identification of amino acids within FPR1 and FPR2 that interact with several formyl peptides. This review article summarizes the progress made in the understanding of FPR ligand diversity as well as ligand recognition mechanisms used by these receptors.
Collapse
Affiliation(s)
- Hui-Qiong He
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| | - Richard D Ye
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
13
|
Schepetkin IA, Khlebnikov AI, Kirpotina LN, Quinn MT. Antagonism of human formyl peptide receptor 1 with natural compounds and their synthetic derivatives. Int Immunopharmacol 2015; 37:43-58. [PMID: 26382576 DOI: 10.1016/j.intimp.2015.08.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/25/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022]
Abstract
Formyl peptide receptor 1 (FPR1) regulates a wide variety of neutrophil functional responses and plays an important role in inflammation and the pathogenesis of various diseases. To date, a variety of natural and synthetic molecules have been identified as FPR1 ligands. Here, we review current knowledge on natural products and natural product-inspired small molecules reported to antagonize and/or inhibit the FPR1-mediated responses. Based on this literature, additional screening of selected commercially available natural compounds for their ability to inhibit fMLF-induced Ca(2+) mobilization in human neutrophils and FPR1 transfected HL-60 cells, and pharmacophore modeling, natural products with potential as FPR1 antagonists are considered and discussed in this review. The identification and characterization of natural products that antagonize FPR1 activity may have potential for the development of novel therapeutics to limit or alter the outcome of inflammatory processes.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States
| | - Andrei I Khlebnikov
- Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk 634050, Russia; Department of Chemistry, Altai State Technical University, Barnaul, Russia
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
14
|
Abstract
Bile acids are well known for their effects on cholesterol homeostasis and lipid digestion. Since the discovery of bile acid receptors, of which there are farnesoid X receptor (FXR), a nuclear receptor, and the plasma membrane G-protein receptor, as well as Takeda G-protein coupled receptor clone 5, further roles have been elucidated for bile acids including glucose and lipid metabolism as well as inflammation. Additionally, treatment with bile acid receptor agonists has shown a decrease in the amount of atherosclerosis plaque formation and decreased portal vascular resistance and portal hypotension in animal models. Furthermore, rodent models have demonstrated antifibrotic activity using bile acid receptor agonists. Early human data using a FXR agonist, obeticholic acid, have shown promising results with improvement of histological activity and even a reduction of fibrosis. Human studies are ongoing and will provide further information on bile acid receptor agonist therapies. Thus, bile acids and their derivatives have the potential for management of liver diseases and potentially other disease states including diabetes and the metabolic syndrome.
Collapse
|
15
|
Kundu S, Kumar S, Bajaj A. Cross-talk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications. IUBMB Life 2015; 67:514-23. [PMID: 26177921 DOI: 10.1002/iub.1399] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022]
Abstract
Increasing incidences of gastrointestinal (GI) cancer are linked to changes in lifestyle with excess of red meat/fat consumption, and elevated secretion of bile acids. Bile acids are strong signaling molecules that control various physiological processes. Failure in bile acid regulation has detrimental effects, often linked with development and promotion of cancer of digestive tract including esophagus, stomach, liver, and intestine. Excessive concentration of bile acids especially lipophillic secondary bile acids are cytotoxic causing apoptosis and reactive oxygen species-mediated damage to the cells. Resistance to this apoptosis and accumulation of mutations leads to progression of cancer. Cytotoxicity of bile acids is contingent on their chemical structure. In this review, we discuss the chemistry of bile acids, bile acid mediated cellular signaling processes, their role in GI cancer progression, and therapeutic potential of synthetic bile acid derivatives for cancer therapy.
Collapse
Affiliation(s)
- Somanath Kundu
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, Faridabad, Haryana, 121001, India.,Manipal University, Manipal, Karnataka, India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, Faridabad, Haryana, 121001, India.,Manipal University, Manipal, Karnataka, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
16
|
Schepetkin IA, Khlebnikov AI, Giovannoni MP, Kirpotina LN, Cilibrizzi A, Quinn MT. Development of small molecule non-peptide formyl peptide receptor (FPR) ligands and molecular modeling of their recognition. Curr Med Chem 2015; 21:1478-504. [PMID: 24350845 DOI: 10.2174/0929867321666131218095521] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 10/14/2013] [Accepted: 12/10/2013] [Indexed: 02/07/2023]
Abstract
Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) expressed on a variety of cell types. These receptors play an important role in the regulation of inflammatory reactions and sensing cellular damage. They have also been implicated in the pathogenesis of various diseases, including neurodegenerative diseases, cataract formation, and atherogenesis. Thus, FPR ligands, both agonists and antagonists, may represent novel therapeutics for modulating host defense and innate immunity. A variety of molecules have been identified as receptor subtype-selective and mixed FPR agonists with potential therapeutic value during last decade. This review describes our efforts along with recent advances in the identification, optimization, biological evaluation, and structure-activity relationship (SAR) analysis of small molecule non-peptide FPR agonists and antagonists, including chiral molecules. Questions regarding the interaction at the molecular level of benzimidazoles, pyrazolones, pyridazin-3(2H)-ones, N-phenylureas and other derivatives with FPR1 and FPR2 are discussed. Application of computational models for virtual screening and design of FPR ligands is also considered.
Collapse
Affiliation(s)
| | | | | | | | | | - M T Quinn
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
17
|
Sonne DP, Hansen M, Knop FK. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. Eur J Endocrinol 2014; 171:R47-65. [PMID: 24760535 DOI: 10.1530/eje-14-0154] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bile acid sequestrants have been used for decades for the treatment of hypercholesterolaemia. Sequestering of bile acids in the intestinal lumen interrupts enterohepatic recirculation of bile acids, which initiate feedback mechanisms on the conversion of cholesterol into bile acids in the liver, thereby lowering cholesterol concentrations in the circulation. In the early 1990s, it was observed that bile acid sequestrants improved glycaemic control in patients with type 2 diabetes. Subsequently, several studies confirmed the finding and recently - despite elusive mechanisms of action - bile acid sequestrants have been approved in the USA for the treatment of type 2 diabetes. Nowadays, bile acids are no longer labelled as simple detergents necessary for lipid digestion and absorption, but are increasingly recognised as metabolic regulators. They are potent hormones, work as signalling molecules on nuclear receptors and G protein-coupled receptors and trigger a myriad of signalling pathways in many target organs. The most described and well-known receptors activated by bile acids are the farnesoid X receptor (nuclear receptor) and the G protein-coupled cell membrane receptor TGR5. Besides controlling bile acid metabolism, these receptors are implicated in lipid, glucose and energy metabolism. Interestingly, activation of TGR5 on enteroendocrine L cells has been suggested to affect secretion of incretin hormones, particularly glucagon-like peptide 1 (GLP1 (GCG)). This review discusses the role of bile acid sequestrants in the treatment of type 2 diabetes, the possible mechanism of action and the role of bile acid-induced secretion of GLP1 via activation of TGR5.
Collapse
Affiliation(s)
- David P Sonne
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark
| | - Morten Hansen
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark
| | - Filip K Knop
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark
| |
Collapse
|
18
|
Stepanov V, Stankov K, Mikov M. The bile acid membrane receptor TGR5: a novel pharmacological target in metabolic, inflammatory and neoplastic disorders. J Recept Signal Transduct Res 2013; 33:213-23. [PMID: 23782454 DOI: 10.3109/10799893.2013.802805] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TGR5 is the G-protein-coupled bile acid-activated receptor, found in many human and animal tissues. Considering different endocrine and paracrine functions of bile acids, the current review focuses on the role of TGR5 as a novel pharmacological target in the metabolic syndrome and related disorders, such as diabetes, obesity, atherosclerosis, liver diseases and cancer. TGR5 ligands improve insulin sensitivity and glucose homeostasis through the secretion of incretins. The bile acid/TGR5/cAMP signaling pathway increases energy expenditure in brown adipose tissue and skeletal muscle. Activation of TGR5 in macrophages inhibits production of proinflammatory cytokines and attenuates the development of atherosclerosis. This receptor has been detected in many cell types of the liver where it has anti-inflammatory effects, thus reducing liver steatosis and damage. TGR5 also modulates hepatic microcirculation and fluid secretion in the biliary tree. In cell culture models TGR5 has been linked to signaling pathways involved in metabolism, cell survival, proliferation and apoptosis, which suggest a possible role of TGR5 in cancer development. Despite the fact that TGR5 ligands may represent novel drugs for prevention and treatment of different aspects of the metabolic syndrome, clinical studies are awaited with the perspective that they will complete TGR5 biology and identify efficient and safe TGR5 agonists.
Collapse
Affiliation(s)
- Vanesa Stepanov
- Department of Pharmacology, Clinical Pharmacology and Toxicology, University of Novi Sad, Novi Sad, Serbia.
| | | | | |
Collapse
|
19
|
Giovannoni MP, Schepetkin IA, Cilibrizzi A, Crocetti L, Khlebnikov AI, Dahlgren C, Graziano A, Dal Piaz V, Kirpotina LN, Zerbinati S, Vergelli C, Quinn MT. Further studies on 2-arylacetamide pyridazin-3(2H)-ones: design, synthesis and evaluation of 4,6-disubstituted analogs as formyl peptide receptors (FPRs) agonists. Eur J Med Chem 2013; 64:512-28. [PMID: 23685570 DOI: 10.1016/j.ejmech.2013.03.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/19/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
Abstract
Formyl peptide receptors (FPRs) play an essential role in the regulation of endogenous inflammation and immunity. In the present studies, a large series of pyridazin-3(2H)-one derivatives bearing an arylacetamide chain at position 2 was synthesized and tested for FPR agonist activity. The pyridazin-3(2H)-one ring was confirmed to be an appropriate scaffold to support FPR agonist activity, and its modification at the 4 and 6 positions led to the identification of additional active agonists, which induced intracellular Ca(2+) flux in HL-60 cells transfected with either FPR1, FPR2, or FPR3. Seven formyl peptide receptor 1 (FPR1)-specific and several mixed FPR1/FPR2 dual agonists were identified with low micromolar EC50 values. Furthermore, these agonists also activated human neutrophils, inducing intracellular Ca(2+) flux and chemotaxis. Finally, molecular docking studies indicated that the most potent pyridazin-3(2H)-ones overlapped in their best docking poses with fMLF and WKYMVM peptides in the FPR1 and FPR2 ligand binding sites, respectively. Thus, pyridazinone-based compounds represent potential lead compounds for further development of selective and/or potent FPR agonists.
Collapse
Affiliation(s)
- Maria Paola Giovannoni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Khlebnikov AI, Schepetkin IA, Kirpotina LN, Brive L, Dahlgren C, Jutila MA, Quinn MT. Molecular docking of 2-(benzimidazol-2-ylthio)-N-phenylacetamide-derived small-molecule agonists of human formyl peptide receptor 1. J Mol Model 2011; 18:2831-43. [PMID: 22127612 DOI: 10.1007/s00894-011-1307-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/07/2011] [Indexed: 12/25/2022]
Abstract
Human N-formyl peptide receptor 1 (FPR1) is a G protein-coupled receptor (GPCR) involved in host defense and sensing cellular damage. Since structure-based ligand design for many GPCRs, including FPR1, is restricted by the lack of experimental three dimensional structures, homology modeling has been widely used to study GPCR-ligand binding. Indeed, receptor-ligand binding mode predictions can be derived from homology modeling with supporting ligand information. In the present work, we report comparative docking studies of 2-(benzimidazol-2-ylthio)-N-phenylacetamide derived FPR1 agonists, identified here and previously, with several known FPR1 peptide agonists in a FPR1 homology model that is based on the crystal structure of bovine rhodopsin. We found that the binding pocket of the most active molecules shares some common features with high affinity FPR1 peptide agonists, suggesting that they may bind to similar binding sites. Classification tree analysis led to the derivation of a good recognition model based on four amino acid descriptors for distinguishing FPR1 ligands from inactive analogs. Hence, the corresponding residues (Thr199, Arg201, Gly202, and Ala261) can be considered as markers of important areas in the ligand binding site. Concurrently, we identified several unique binding features of benzimidazole derivatives and showed that alkoxy-substituents of the benzimidazole ring are located within a FPR1 hole bounded by Thr199, Thr265, Ile268, and Leu271 or in a groove in the vicinity of Leu198, Arg201, Gly202, and Arg205. The understanding of these molecular features will likely prove beneficial in future design of novel FPR1 agonists based on the benzimidazole scaffold.
Collapse
|
21
|
Pols TWH, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 2011; 54:1263-72. [PMID: 21145931 PMCID: PMC3650458 DOI: 10.1016/j.jhep.2010.12.004] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/11/2010] [Accepted: 12/02/2010] [Indexed: 02/08/2023]
Abstract
Bile acids (BAs) are amphipathic molecules that facilitate the uptake of lipids, and their levels fluctuate in the intestine as well as in the blood circulation depending on food intake. Besides their role in dietary lipid absorption, bile acids function as signaling molecules capable to activate specific receptors. These BA receptors are not only important in the regulation of bile acid synthesis and their metabolism, but also regulate glucose homeostasis, lipid metabolism, and energy expenditure. These processes are important in diabetes and other facets of the metabolic syndrome, which represents a considerable increasing health burden. In addition to the function of the nuclear receptor FXRα in regulating local effects in the organs of the enterohepatic axis, increasing evidence points to a crucial role of the G-protein coupled receptor (GPCR) TGR5 in mediating systemic actions of BAs. Here we discuss the current knowledge on BA receptors, with a strong focus on the cell membrane receptor TGR5, which emerges as a valuable target for intervention in metabolic diseases.
Collapse
Affiliation(s)
- Thijs W H Pols
- Laboratory of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Kirpotina LN, Khlebnikov AI, Schepetkin IA, Ye RD, Rabiet MJ, Jutila MA, Quinn MT. Identification of novel small-molecule agonists for human formyl peptide receptors and pharmacophore models of their recognition. Mol Pharmacol 2010; 77:159-70. [PMID: 19903830 PMCID: PMC2812066 DOI: 10.1124/mol.109.060673] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/09/2009] [Indexed: 01/03/2023] Open
Abstract
N-formyl peptide receptor (FPR1) and N-formyl peptide receptor-like 1 (FPRL1, now known as FPR2) are G protein-coupled receptors involved in host defense and sensing cellular dysfunction. Because of the potential for FPR1/FPR2 as a therapeutic target, our recent high-throughput screening efforts have focused on the identification of unique nonpeptide agonists of FPR1/FPR2. In the present studies, we screened a chemolibrary of drug-like molecules for their ability to induce intracellular calcium mobilization in RBL-2H3 cells transfected with human FPR1 or FPR2. Screening of these compounds resulted in the identification of novel and potent agonists that activated both FPR1 and FPR2, as well as compounds that were specific for either FPR1 or FPR2 with EC(50) values in the low micromolar range. Specificity of the compounds was supported by analysis of calcium mobilization in HL-60 cells transfected with human FPR1 and FPR2. In addition, all but one agonist activated intracellular calcium flux and chemotaxis in human neutrophils, irrespective of agonist specificity for FPR1 or FPR2. Molecular modeling of the group of FPR1 and FPR2 agonists using field point methodology allowed us to create pharmacophore models for ligand binding sites and formulate requirements for these specific N-formyl peptide receptor agonists. These studies further demonstrate that agonists of FPR1/FPR2 include compounds with wide chemical diversity and that analysis of such compounds can enhance our understanding of their ligand/receptor interaction.
Collapse
Affiliation(s)
- Liliya N Kirpotina
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7:678-93. [PMID: 18670431 DOI: 10.1038/nrd2619] [Citation(s) in RCA: 1029] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bile acids are increasingly being appreciated as complex metabolic integrators and signalling factors and not just as lipid solubilizers and simple regulators of bile-acid homeostasis. It is therefore not surprising that a number of bile-acid-activated signalling pathways have become attractive therapeutic targets for metabolic disorders. Here, we review how the signalling functions of bile acids can be exploited in the development of drugs for obesity, type 2 diabetes, hypertriglyceridaemia and atherosclerosis, as well as other associated chronic diseases such as non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Charles Thomas
- Institute of Genetics and Molecular and Cellular Biology, 1 Rue Laurent Fries, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
24
|
Nguyen A, Bouscarel B. Bile acids and signal transduction: role in glucose homeostasis. Cell Signal 2008; 20:2180-97. [PMID: 18634871 DOI: 10.1016/j.cellsig.2008.06.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
Bile acids are mainly recognized for their role in dietary lipid absorption and cholesterol homeostasis. However, recent progress in bile acid research suggests that bile acids are important signaling molecules that play a role in glucose homeostasis. Among the various supporting evidence, several reports have demonstrated an improvement of the glycemic index of type 2 diabetic patients treated with diverse bile acid binding resins. Herein, we review the diverse interactions of bile acids with various signaling/response pathways, including calcium mobilization and protein kinase activation, membrane receptor-mediated responses, and nuclear receptor responses. Some of the effects of the bile acids are direct through the activation of specific receptors, i.e., TGR5, CAR, VDR, and FXR, while others imply modulation of the hormonal, growth factor and/or neuromediator responses, i.e., glucagon, EGF, and acetylcholine. We also discuss recent evidence implicating the interaction of bile acids with glucose homeostasis mechanisms, with the integration of our understanding of how the signaling mechanisms modulated by bile acid could regulate glucose metabolism.
Collapse
Affiliation(s)
- Amy Nguyen
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|