1
|
Tuygunov N, Zakaria MN, Yahya NA, Abdul Aziz A, Cahyanto A. Efficacy and bone-contact biocompatibility of glass ionomer cement as a biomaterial for bone regeneration: A systematic review. J Mech Behav Biomed Mater 2023; 146:106099. [PMID: 37660446 DOI: 10.1016/j.jmbbm.2023.106099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Bone regeneration is a rapidly growing field that seeks to develop new biomaterials to regenerate bone defects. Conventional bone graft materials have limitations, such as limited availability, complication, and rejection. Glass ionomer cement (GIC) is a biomaterial with the potential for bone regeneration due to its bone-contact biocompatibility, ease of use, and cost-effectiveness. GIC is a two-component material that adheres to the bone and releases ions that promote bone growth and mineralization. A systematic literature search was conducted using PubMed-MEDLINE, Scopus, and Web of Science databases and registered in the PROSPERO database to determine the evidence regarding the efficacy and bone-contact biocompatibility of GIC as bone cement. Out of 3715 initial results, thirteen studies were included in the qualitative synthesis. Two tools were employed in evaluating the Risk of Bias (RoB): the QUIN tool for assessing in vitro studies and SYRCLE for in vivo. The results indicate that GIC has demonstrated the ability to adhere to bone and promote bone growth. Establishing a chemical bond occurs at the interface between the GIC and the mineral phase of bone. This interaction allows the GIC to exhibit osteoconductive properties and promote the growth of bone tissue. GIC's bone-contact biocompatibility, ease of preparation, and cost-effectiveness make it a promising alternative to conventional bone grafts. However, further research is required to fully evaluate the potential application of GIC in bone regeneration. The findings hold implications for advancing material development in identifying the optimal composition and fabrication of GIC as a bone repair material.
Collapse
Affiliation(s)
- Nozimjon Tuygunov
- Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Myrna Nurlatifah Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Noor Azlin Yahya
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Azwatee Abdul Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Department of Dental Materials Science and Technology, Faculty of Dentistry, Padjadjaran University, Jatinangor, 45363, Indonesia.
| |
Collapse
|
2
|
Hasandoost L, Marx D, Zalzal P, Safir O, Hurtig M, Mehrvar C, Waldman SD, Papini M, Towler MR. Comparative Evaluation of Two Glass Polyalkenoate Cements: An In Vivo Pilot Study Using a Sheep Model. J Funct Biomater 2021; 12:jfb12030044. [PMID: 34449631 PMCID: PMC8395762 DOI: 10.3390/jfb12030044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(methyl methacrylate) (PMMA) is used to manage bone loss in revision total knee arthroplasty (rTKA). However, the application of PMMA has been associated with complications such as volumetric shrinkage, necrosis, wear debris, and loosening. Glass polyalkenoate cements (GPCs) have potential bone cementation applications. Unlike PMMA, GPC does not undergo volumetric shrinkage, adheres chemically to bone, and does not undergo an exothermic setting reaction. In this study, two different compositions of GPCs (GPCA and GPCB), based on the patented glass system SiO2-CaO-SrO-P2O5-Ta2O5, were investigated. Working and setting times, pH, ion release, compressive strength, and cytotoxicity of each composition were assessed, and based on the results of these tests, three sets of samples from GPCA were implanted into the distal femur and proximal tibia of three sheep (alongside PMMA as control). Clinical CT scans and micro-CT images obtained at 0, 6, and 12 weeks revealed the varied radiological responses of sheep bone to GPCA. One GPCA sample (implanted in the sheep for 12 weeks) was characterized with no bone resorption. Furthermore, a continuous bone-cement interface was observed in the CT images of this sample. The other implanted GPCA showed a thin radiolucent border at six weeks, indicating some bone resorption occurred. The third sample showed extensive bone resorption at both six and 12 weeks. Possible speculative factors that might be involved in the varied response can be: excessive Zn2+ ion release, low pH, mixing variability, and difficulty in inserting the samples into different parts of the sheep bone.
Collapse
Affiliation(s)
- Leyla Hasandoost
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Daniella Marx
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Paul Zalzal
- Faculty of Medicine, Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Oakville Trafalgar Memorial Hospital, Oakville, ON L6J 3L7, Canada
| | - Oleg Safir
- Division of Orthopedic Surgery, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada;
| | - Mark Hurtig
- Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada;
| | - Cina Mehrvar
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Stephen D. Waldman
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Chemical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Marcello Papini
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Mark R. Towler
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada;
- Correspondence:
| |
Collapse
|
3
|
Kargozar S, Montazerian M, Fiume E, Baino F. Multiple and Promising Applications of Strontium (Sr)-Containing Bioactive Glasses in Bone Tissue Engineering. Front Bioeng Biotechnol 2019; 7:161. [PMID: 31334228 PMCID: PMC6625228 DOI: 10.3389/fbioe.2019.00161] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Improving and accelerating bone repair still are partially unmet needs in bone regenerative therapies. In this regard, strontium (Sr)-containing bioactive glasses (BGs) are highly-promising materials to tackle this challenge. The positive impacts of Sr on the osteogenesis makes it routinely used in the form of strontium ranelate (SR) in the clinical setting, especially for patients suffering from osteoporosis. Therefore, a large number of silicate-, borate-, and phosphate-based BGs doped with Sr and produced in different shapes have been developed and characterized, in order to be used in the most advanced therapeutic strategies designed for the management of bone defects and injuries. Although the influence of Sr incorporation in the glass is debated regarding the obtained physicochemical and mechanical properties, the biological improvements have been found to be substantial both in vitro and in vivo. In the present study, we provide a comprehensive overview of Sr-containing glasses along with the current state of their clinical use. For this purpose, different types of Sr-doped BG systems are described, including composites, coatings and porous scaffolds, and their applications are discussed in the light of existing experimental data along with the significant challenges ahead.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Montazerian
- Center for Research, Technology and Education in Vitreous Materials, Federal University of São Carlos, São Carlos, Brazil
| | - Elisa Fiume
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| |
Collapse
|
4
|
Li Q, Hurt AP, Coleman NJ. The Application of 29Si NMR Spectroscopy to the Analysis of Calcium Silicate-Based Cement using Biodentine™ as an Example. J Funct Biomater 2019; 10:E25. [PMID: 31151191 PMCID: PMC6617092 DOI: 10.3390/jfb10020025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
Biodentine is one of the most successful and widely studied among the second generation of calcium silicate-based endodontic cements. Despite its popularity, the setting reactions of this cement system are not currently well understood. In particular, very little is known about the formation and structure of the major calcium silicate hydrate (C-S-H) gel phase, as it is difficult to obtain information on this poorly crystalline material by the traditional techniques of powder X-ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). In this study, the hydration reactions of Biodentine are monitored by XRD, FTIR, isothermal conduction calorimetry and, for the first time, 29Si magic angle spinning nuclear magnetic resonance spectroscopy (29Si MAS NMR) is used to investigate the structures of the anhydrous calcium silicate phases and the early C-S-H gel product. XRD analysis indicated that the anhydrous powder comprises 73.8 wt% triclinic tricalcium silicate, 4.45 wt% monoclinic β-dicalcium silicate, 16.6 wt% calcite and 5.15 wt% zirconium oxide. Calorimetry confirmed that the induction period for hydration is short, and that the setting reactions are rapid with a maximum heat evolution of 28.4 mW g-1 at 42 min. A progressive shift in the FTIR peak maximum from 905 to 995 cm-1 for the O-Si-O stretching vibrations accompanies the formation of the C-S-H gel during 1 week. The extent of hydration was determined by 29Si MAS NMR to be 87.0%, 88.8% and 93.7% at 6 h, 1 day and 1 week, respectively, which is significantly higher than that of MTA. The mean silicate chain length (MCL) of the C-S-H gel was also estimated by this technique to be 3.7 at 6 h and 1 day, and to have increased to 4.1 after 1 week. The rapid hydration kinetics of Biodentine, arising from the predominance of the tricalcium silicate phase, small particle size, and 'filler effect' of calcite and zirconium oxide, is a favorable characteristic of an endodontic cement, and the high values of MCL are thought to promote the durability of the cement matrix.
Collapse
Affiliation(s)
- Qiu Li
- State Key Lab of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Andrew P Hurt
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK.
| | - Nichola J Coleman
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
5
|
Incorporating Germanium Oxide into the Glass Phase of Novel Zinc/Magnesium-Based GPCs Designed for Bone Void Filling: Evaluating Their Physical and Mechanical Properties. J Funct Biomater 2018; 9:jfb9030047. [PMID: 30065207 PMCID: PMC6165385 DOI: 10.3390/jfb9030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
The structural role of Germanium (Ge), when substituting for Zinc (Zn) up to 8 mol % in the 0.48SiO₂⁻0.12CaO⁻0.36ZnO⁻0.04MgO glass series, was investigated with respect to both the glass chemistry and also the properties of glass polyalkenoate cements (GPCs) manufactured from them. The Network connectivity (NC) of the glass was calculated to increase from 1.83 to 2.42 with the addition of GeO₂ (0⁻8 mol %). Differential thermal analysis (DTA) results confirmed an increase in the glass transition temperature (Tg) of the glass series with GeO₂ content. X-ray photoelectron spectroscopy (XPS) showed an increase in the ratio of bridging oxygens (BO) to non-bridging oxygens (NBO) with the addition of GeO₂, supporting the NC and DTA results. 29Si magic angle spinning nuclear magnetic resonance spectroscopy (29Si MAS-NMR) determined a chemical shift from -80.3 to -83.7 ppm as the GeO₂ concentration increased. These ionomeric glasses were subsequently used as the basic components in a series of GPCs by mixing them with aqueous polyacrylic acid (PAA). The handling properties of the GPCs resulting were evaluated with respect to the increasing concentration of GeO₂ in the glass phase. It was found that the working times of these GPCs increased from 3 to 15 min, while their setting times increased from 4 to 18 min, facilitating the injectability of the Zn/Mg-GPCs through a 16-gauge needle. These Ge-Zn/Mg-GPCs were found to be injectable up to 96% within 12 min. Zn/Mg-GPCs containing GeO₂ show promise as injectable cements for use in bone void filling.
Collapse
|
6
|
Physical property investigation of contemporary glass ionomer and resin-modified glass ionomer restorative materials. Clin Oral Investig 2018; 23:1295-1308. [PMID: 29998443 DOI: 10.1007/s00784-018-2554-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES The objective of this study was to investigate selected physical properties of nine contemporary and recently marketed glass ionomer cement (GIC) and four resin-modified glass ionomer cement (RMGI) dental restorative materials. MATERIALS AND METHODS Specimens (n = 12) were fabricated for fracture toughness and flexure strength using standardized, stainless steel molds. Testing was completed on a universal testing machine until failure. Knoop hardness was obtained using failed fracture toughness specimens on a microhardness tester, while both flexural modulus and flexural toughness was obtained by analysis of the flexure strength results data. Testing was completed at 1 h, 24 h, 1 week, and then at 1, 3, 6, and 12 months. Mean data was analyzed with Kruskal-Wallis and Mann-Whitney (p = 0.05). RESULTS Physical properties results were material dependent. Physical properties of the GIC and RMGI products were inferior at 1 h compared to that at 24 h. Some improvement in selected physical properties were noted over time, but development processes were basically concluded by 24 h. A few materials demonstrated improved physical properties over the course of the evaluation. CONCLUSIONS Under the conditions of this study: 1. GIC and RMGI physical property performance over time was material dependent; 2. Polyalkenoate maturation processes are essentially complete by 24 h; 3. Although differences in GIC physical properties were noted, the small magnitude of the divergences may render such to be unlikely of clinical significance; 4. Modest increases in some GIC physical properties were noted especially flexural modulus and hardness, which lends support to reports of a maturing hydrogel matrix; 5. Overall, GIC product physical properties were more stable than RMGI; 6. A similar modulus reduction at 6 months for both RMGI and GIC produced may suggest a polyalkenoate matrix change; and 7. Globally, RMGI products demonstrated higher values of flexure strength, flexural toughness, and fracture toughness than GIC materials. CLINICAL RELEVANCE As compared to RMGI materials, conventional glass ionomer restorative materials demonstrate more stability in physical properties.
Collapse
|
7
|
An Injectable Glass Polyalkenoate Cement Engineered for Fracture Fixation and Stabilization. J Funct Biomater 2017; 8:jfb8030025. [PMID: 28678157 PMCID: PMC5618276 DOI: 10.3390/jfb8030025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/19/2017] [Accepted: 06/30/2017] [Indexed: 11/17/2022] Open
Abstract
Glass polyalkenoate cements (GPCs) have potential as bio-adhesives due to their ease of application, appropriate mechanical properties, radiopacity and chemical adhesion to bone. Aluminium (Al)-free GPCs have been discussed in the literature, but have proven difficult to balance injectability with mechanical integrity. For example, zinc-based, Al-free GPCs reported compressive strengths of 63 MPa, but set in under 2 min. Here, the authors design injectable GPCs (IGPCs) based on zinc-containing, Al-free silicate compositions containing GeO₂, substituted for ZnO at 3% increments through the series. The setting reactions, injectability and mechanical properties of these GPCs were evaluated using both a hand-mix (h) technique, using a spatula for sample preparation and application and an injection (i) technique, using a 16-gauge needle, post mixing, for application. GPCs ability to act as a carrier for bovine serum albumin (BSA) was also evaluated. Germanium (Ge) and BSA containing IGPCs were produced and reported to have working times between 26 and 44 min and setting times between 37 and 55 min; the extended handling properties being as a result of less Ge. The incorporation of BSA into the cement had no effect on the handling and mechanical properties, but the latter were found to have increased compression strength with the addition of Ge from between 27 and 37 MPa after 30 days maturation.
Collapse
|
8
|
Glass Polyalkenoate Cements Designed for Cranioplasty Applications: An Evaluation of Their Physical and Mechanical Properties. J Funct Biomater 2016; 7:jfb7020008. [PMID: 27023623 PMCID: PMC4932465 DOI: 10.3390/jfb7020008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 11/17/2022] Open
Abstract
Glass polyalkenoate cements (GPCs) have potential for skeletal cementation. Unfortunately, commercial GPCs all contain, and subsequently release, aluminum ions, which have been implicated in degenerative brain disease. The purpose of this research was to create a series of aluminum-free GPCs constructed from silicate (SiO₂), calcium (CaO), zinc (ZnO) and sodium (Na₂O)-containing glasses mixed with poly-acrylic acid (PAA) and to evaluate the potential of these cements for cranioplasty applications. Three glasses were formulated based on the SiO₂-CaO-ZnO-Na₂O parent glass (KBT01) with 0.03 mol % (KBT02) and 0.06 mol % (KBT03) germanium (GeO₂) substituted for ZnO. Each glass was then mixed with 50 wt % of a patented SiO₂-CaO-ZnO-strontium (SrO) glass composition and the resultant mixtures were subsequently reacted with aqueous PAA (50 wt % addition) to produce three GPCs. The incorporation of Ge in the glass phase was found to result in decreased working (142 s to 112 s) and setting (807 s to 448 s) times for the cements manufactured from them, likely due to the increase in crosslink formation between the Ge-containing glasses and the PAA. Compressive (σc) and biaxial flexural (σf) strengths of the cements were examined at 1, 7 and 30 days post mixing and were found to increase with both maturation and Ge content. The bonding strength of a titanium cylinder (Ti) attached to bone by the cements increased from 0.2 MPa, when placed, to 0.6 MPa, after 14 days maturation. The results of this research indicate that Germano-Silicate based GPCs have suitable handling and mechanical properties for cranioplasty fixation.
Collapse
|
9
|
Alhalawani AMF, Rodriguez O, Curran DJ, Co R, Kieran S, Arshad S, Keenan TJ, Wren AW, Crasto G, Peel SAF, Towler MR. A glass polyalkenoate cement carrier for bone morphogenetic proteins. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:151. [PMID: 25773232 DOI: 10.1007/s10856-015-5494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
This work considers a glass polyalkenoate cement (GPC)-based carrier for the effective delivery of bone morphogenetic proteins (BMPs) at an implantation site. A 0.12 CaO-0.04 SrO-0.36 ZnO-0.48 SiO2 based glass and poly(acrylic acid) (PAA, Mw 213,000) were employed for the fabrication of the GPC. The media used for the water source in the GPC reaction was altered to produce a series of GPCs. The GPC liquid media was either 100 % distilled water with additions of albumin at 0, 2, 5 and 8 wt% of the glass content, 100 % formulation buffer (IFB), and 100 % BMP (150 µg rhBMP-2/ml IFB). Rheological properties, compressive strength, ion release profiles and BMP release were evaluated. Working times (Tw) of the formulated GPCs significantly increased with the addition of 2 % albumin and remained constant with further increases in albumin content or IFB solutions. Setting time (Ts) experienced an increase with 2 and 5 % albumin content, but a decrease with 8 % albumin. Changing the liquid source to IFB containing 5 % albumin had no significant effect on Ts compared to the 8 % albumin-containing BT101. Replacing the albumin with IFB/BMP-2 did not significantly affect Tw. However, Ts increased for the BT101_BMP-2 containing GPCs, compared to all other samples. The compressive strength evaluated 1 day post cement mixing was not affected significantly by the incorporation of BMPs, but the ion release did increase from the cements, particularly for Zn and Sr. The GPCs released BMP after the first day, which decreased in content during the following 6 days. This study has proven that BMPs can be immobilized into GPCs and may result in novel materials for clinical applications.
Collapse
Affiliation(s)
- Adel M F Alhalawani
- Department of Mechanical & Industrial Engineering, Faculty of Engineering and Architectural Science, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Valliant EM, Gagnier D, Dickey BT, Boyd D, Joseph Filiaggi M. Calcium polyphosphate as an additive to zinc-silicate glass ionomer cements. J Biomater Appl 2015; 30:61-70. [DOI: 10.1177/0885328215568985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aluminum-free glass ionomer cements (GICs) are under development for orthopedic applications, but are limited by their insufficient handling properties. Here, the addition of calcium polyphosphate (CPP) was investigated as an additive to an experimental zinc-silicate glass ionomer cement. A 50% maximum increase in working time was observed with CPP addition, though this was not clinically significant due to the short working times of the starting zinc-silicate GIC. Surprisingly, CPP also improved the mechanical properties, especially the tensile strength which increased by ∼33% after 30 days in TRIS buffer solution upon CPP addition up to 37.5 wt%. This strengthening may have been due to the formation of ionic crosslinks between the polyphosphate chains and polyacrylic acid. Thus, CPP is a potential additive to future GIC compositions as it has been shown to improve handling and mechanical properties. In addition, CPP may stimulate new bone growth and provide the ability for drug delivery, which are desirable modifications for an orthopedic cement.
Collapse
Affiliation(s)
- Esther Mae Valliant
- Department of Applied Oral Sciences, Dalhousie University, 5981 University Avenue, Halifax, Nova Scotia, B3H 4R2, Canada
| | - David Gagnier
- Department of Applied Oral Sciences, Dalhousie University, 5981 University Avenue, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Brett Thomas Dickey
- Department of Applied Oral Sciences, Dalhousie University, 5981 University Avenue, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Daniel Boyd
- Department of Applied Oral Sciences, Dalhousie University, 5981 University Avenue, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Mark Joseph Filiaggi
- Department of Applied Oral Sciences, Dalhousie University, 5981 University Avenue, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
11
|
Kapoor S, Goel A, Tilocca A, Dhuna V, Bhatia G, Dhuna K, Ferreira JMF. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomater 2014; 10:3264-78. [PMID: 24709542 DOI: 10.1016/j.actbio.2014.03.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/19/2014] [Accepted: 03/30/2014] [Indexed: 11/19/2022]
Abstract
We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed.
Collapse
Affiliation(s)
- Saurabh Kapoor
- Department of Materials and Ceramic Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
| | - Ashutosh Goel
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8065, USA.
| | - Antonio Tilocca
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Vikram Dhuna
- Department of Biotechnology, DAV College, Amritsar 143-001, Punjab, India
| | - Gaurav Bhatia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143-005, Punjab, India
| | - Kshitija Dhuna
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143-005, Punjab, India
| | - José M F Ferreira
- Department of Materials and Ceramic Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Dickey BT, Kehoe S, Boyd D. Novel adaptations to zinc-silicate glass polyalkenoate cements: the unexpected influences of germanium based glasses on handling characteristics and mechanical properties. J Mech Behav Biomed Mater 2013; 23:8-21. [PMID: 23648365 DOI: 10.1016/j.jmbbm.2013.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/13/2013] [Accepted: 03/17/2013] [Indexed: 11/19/2022]
Abstract
Aluminum-free glass polyalkenoate cements (GPC) have been hindered for use as injectable bone cements by their inability to balance handling characteristics with mechanical integrity. Currently, zinc-based, aluminum-free GPCs demonstrate compression strengths in excess of 60MPa, but set in c. 1-2 min. Previous efforts to extend the setting reaction have remained clinically insufficient and are typically accompanied by a significant drop in strength. This work synthesized novel glasses based on a zinc silicate composition with the inclusion of GeO2, ZrO2, and Na2O, and evaluated the setting reaction and mechanical properties of the resultant GPCs. Germanium based GPCs were found to have working times between 5 and 10 min, setting times between 14 and 36 min, and compression strengths in excess of 30 MPa for the first 30 days. The results of this investigation have shown that the inclusion of GeO2, ZrO2, and Na2O into the glass network have produced, for the first time, an aluminum-free GPC that is clinically viable as injectable bone cements with regards to handling characteristics and mechanical properties.
Collapse
Affiliation(s)
- B T Dickey
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
13
|
Xiang Y, Du J, Skinner LB, Benmore CJ, Wren AW, Boyd DJ, Towler MR. Structure and diffusion of ZnO–SrO–CaO–Na2O–SiO2 bioactive glasses: a combined high energy X-ray diffraction and molecular dynamics simulations study. RSC Adv 2013. [DOI: 10.1039/c3ra23231j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
14
|
Wren AW, Coughlan A, Placek L, Towler MR. Gallium containing glass polyalkenoate anti-cancerous bone cements: glass characterization and physical properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1823-1833. [PMID: 22684625 DOI: 10.1007/s10856-012-4624-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 03/17/2012] [Indexed: 06/01/2023]
Abstract
A gallium (Ga) glass series (0.48SiO(2)-0.40ZnO-0.12CaO, with 0.08 mol% substitution for ZnO) was developed to formulate a Ga-containing Glass Polyalkenoate Cement (GPC) series. Network connectivity (NC) and X-ray Photoelectron Spectroscopy (XPS) was employed to investigate the role of Ga(3+) in the glass, where it is assumed to act as a network modifier. Ga-GPC series was formulated with E9 and E11 polyacrylic acid (PAA) at 50, 55 and 60 wt% additions. E11 working times (T(w)) ranged from 68 to 96 s (Lcon.) and 106 s for the Ga-GPCs (LGa-1 and LGa-2). Setting times (T(s)) ranged from 104 to 226 s (Lcon.) and 211 s for LGa-1 and LGa-2. Compression (σc) and biaxial flexural (σf) testing were conducted where Lcon. increased from 62 to 68 MPa, LGa-1 from 14 to 42 MPa and LGa-2 from 20 to 47 MPa in σc over 1-30 days. σf testing revealed that Lcon. increased from 29 to 42 MPa, LGa-1 from 7 to 32 MPa and LGa-2 from 12 to 36 MPa over 1-30 days.
Collapse
Affiliation(s)
- A W Wren
- Inamori School of Engineering, Alfred University, Alfred, NY 14802, USA.
| | | | | | | |
Collapse
|
15
|
Physicochemical properties and cellular responses of strontium-doped gypsum biomaterials. Bioinorg Chem Appl 2012; 2012:976495. [PMID: 22719270 PMCID: PMC3375162 DOI: 10.1155/2012/976495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/01/2012] [Indexed: 11/18/2022] Open
Abstract
This paper describes some physical, structural, and biological properties of gypsum bioceramics doped with various amounts of strontium ions (0.19-2.23 wt%) and compares these properties with those of a pure gypsum as control. Strontium-doped gypsum (gypsum:Sr) was obtained by mixing calcium sulfate hemihydrate powder and solutions of strontium nitrate followed by washing the specimens with distilled water to remove residual salts. Gypsum was the only phase found in the composition of both pure and gypsum:Sr, meanwhile a shift into lower diffraction angles was observed in the X-ray diffraction patterns of doped specimens. Microstructure of all gypsum specimens consisted of many rod-like small crystals entangled to each other with more elongation and higher thickness in the case of gypsum:Sr. The Sr-doped sample exhibited higher compressive strength and lower solubility than pure gypsum. A continuous release of strontium ions was observed from the gypsum:Sr during soaking it in simulated body fluid for 14 days. Compared to pure gypsum, the osteoblasts cultured on strontium-doped samples showed better proliferation rate and higher alkaline phosphatase activity, depending on Sr concentration. These observations can predict better in vivo behavior of strontium-doped gypsum compared to pure one.
Collapse
|
16
|
Taherkhani S, Moztarzadeh F, Mozafari M, Lotfibakhshaiesh N. Sol–gel synthesis and characterization of unexpected rod-like crystal fibers based on SiO2–(1-x)CaO–xSrO–P2O5 dried-gel. JOURNAL OF NON-CRYSTALLINE SOLIDS 2012; 358:342-348. [DOI: 10.1016/j.jnoncrysol.2011.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
17
|
Looney M, O’Shea H, Boyd D. Preliminary evaluation of therapeutic ion release from Sr-doped zinc-silicate glass ceramics. J Biomater Appl 2011; 27:511-24. [DOI: 10.1177/0885328211413621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioactive and degradable porous bioceramics play an important role in many clinical situations. Porosity is essential to the performance of a material that is proposed to be used as an implantable osseous scaffold. Scaffolds provide a three dimensional support and template to osseous integration and vascularization. Combining the porosity of a scaffold with the ability of the scaffold material to deliver therapeutic ions to the site of implantation goes some way towards developing an ideal bone graft. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics scaffoldswere developed, whose porosity was measured to be between 93% and 96%, which is advantageous in terms of osseous integration and vascularization. The levels of Zn2+ and Sr2+ detected as a result of degradation of the crystalline phases were found to be 1.4–600 parts per million (ppm) and 0–583 ppm, respectively. The levels detected correlate well with the levels of Sr2+ and Zn2+ions typically associated with clinical benefits, including antibacterial efficacy, osteoblastic differentiation and impaired osteoclastic resorption.
Collapse
Affiliation(s)
| | | | - Daniel Boyd
- Department of Applied Oral Sciences, Dalhousie University, Halifax, Canada, B3H 1W2
| |
Collapse
|
18
|
Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: Current trends and forecasts for the future. J Biomed Mater Res A 2011; 97:514-35. [DOI: 10.1002/jbm.a.33072] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/23/2010] [Accepted: 01/24/2011] [Indexed: 11/09/2022]
|
19
|
Medri V, Mazzocchi M, Bellosi A. Doped calcium-aluminium-phosphate cements for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:229-236. [PMID: 21165760 DOI: 10.1007/s10856-010-4205-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 12/04/2010] [Indexed: 05/30/2023]
Abstract
Calcium-aluminium-phosphate cements (CAPCs) for biomedical applications, mainly intended for applications in the dental field as non-resorbable fillers, were obtained by reacting Ca-aluminates compounds, i.e. CaO·Al(2)O(3) (CA) and CaO·2 Al(2)O(3) (CA(2)), with Al(H(2)PO(4))(3) aqueous solution. Hydroxyapatite was also introduced as a bioactive dispersed phase. Suitable elements like Sr and La were used to increase the radiopacity of the set yielded pastes towards X-ray wavelength used in clinical diagnostic radiographic equipments. La and Sr doped Ca-aluminates powders have been synthesized by solid state reaction at 1,400°C from a mixture of CaCO(3), Al(2)O(3), La(2)O(3) and SrCO(3). The characteristics of the obtained powders were analyzed and related to the starting compositions and synthesis procedures. The microstructure, setting time, radiopacity and compressive strength of the CAPCs have been investigated and discussed.
Collapse
Affiliation(s)
- V Medri
- ISTEC-CNR, Institute of Science and Technology for Ceramics-National Research Council, via Granarolo, 64, 48018, Faenza, Italy.
| | | | | |
Collapse
|
20
|
O'Donnell MD, Hill RG. Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater 2010; 6:2382-5. [PMID: 20079468 DOI: 10.1016/j.actbio.2010.01.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/18/2009] [Accepted: 01/07/2010] [Indexed: 11/28/2022]
Abstract
The purpose of this article is to highlight some recent in vitro and in vivo studies of bioactive glasses containing strontium and to review selected literature on the in vitro and in vivo behaviour of bioactive glasses to relate this to the structure of the glass. The strontium-glass studies were performed well scientifically, but the results and conclusions could be misleading in terms of the effect of strontium, or more broadly glass chemistry, on the bioactivity and in vivo behaviour of bioactive glasses due to substitutions made on a weight basis. When strontium is substituted by weight for a lighter element such as calcium this will have a significant effect on structure and properties in particular biological response.
Collapse
Affiliation(s)
- M D O'Donnell
- BioCeramic Therapeutics Ltd., Imperial Incubator, London, UK.
| | | |
Collapse
|
21
|
Hesaraki S, Gholami M, Vazehrad S, Shahrabi S. The effect of Sr concentration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2009.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Hesaraki S, Alizadeh M, Nazarian H, Sharifi D. Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:695-705. [PMID: 19866346 DOI: 10.1007/s10856-009-3920-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 10/19/2009] [Indexed: 05/28/2023]
Abstract
Strontium is known to reduce bone resorption and stimulate bone formation. Incorporation of strontium into calcium phosphate bioceramics has been widely reported. In this work, calcium and calcium/strontium silicophosphate glasses were synthesized from the sol-gel process and their rheological, thermal, and in vitro biological properties were studied and compared to each other. The results showed that the gel viscosity and thus the rate of gel formation increased by using strontium in glass composition and by increasing aging temperature. In strontium-containing glass, the crystallization temperature increased and the type of the crystallized phase was different to that of strontium-free glass. Both glasses favored precipitation of calcium phosphate layer when they were soaked in simulated body fluid; however strontium seemed to retard the rate of precipitation slightly. The in vitro biodegradation rate of the strontium/calcium silicophosphate glass was higher than that of strontium-free one. The cell culture experiments carried out using rat calvaria osteoblasts showed that the incorporation of strontium into the glass composition stimulated proliferation of the cells and enhanced their alkaline phosphatase activity, depending on cell culture period.
Collapse
Affiliation(s)
- Saeed Hesaraki
- Ceramics Department, Materials and Energy Research Center, Tehran, Iran.
| | | | | | | |
Collapse
|
23
|
Wren A, Clarkin OM, Laffir FR, Ohtsuki C, Kim IY, Towler MR. The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1991-1999. [PMID: 19459033 DOI: 10.1007/s10856-009-3781-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 05/08/2009] [Indexed: 05/27/2023]
Abstract
Glass ionomer cements (GICs) have potential orthopaedic applications. Solgel processing is reported as having advantages over the traditional melt-quench route for synthesizing the glass phase of GICs, including far lower processing temperatures and higher levels of glass purity and homogeneity. This work investigates a novel glass formulation, BT 101 (0.48 SiO(2)-0.36 ZnO-0.12 CaO-0.04 SrO) produced by both the melt-quench and the solgel route. The glass phase was characterised by X-ray diffraction (XRD) to determine whether the material was amorphous and differential thermal analysis (DTA) to measure the glass transition temperature (T (g)). Particle size analysis (PSA) was used to determine the mean particle size and X-ray photoelectron spectroscopy (XPS) was used to investigate the structure and composition of the glass. Both glasses, the melt-quench BT 101 and the solgel BT 101, were mixed with 50 wt% polyacrylic acid (M (w), 80,800) and water to form a GIC and the working time (T (w)) and the setting time (T (s)) of the resultant cements were then determined. The cement based on the solgel glass had a longer T (w) (78 s) as compared to the cement based on the melt derived glass (19 s). T (s) was also much longer for the cement based on the solgel (1,644 s) glass than for the cement based on the melt-derived glass (25 s). The cements based on the melt derived glass produced higher strengths in both compression (sigma(c)) and biaxial flexure (sigma(f)), where the highest strength was found to be 63 MPa in compression, at both 1 and 7 days. The differences in setting and mechanical properties can be associated to structural differences within the glass as determined by XPS which revealed the absence of Ca in the solgel system and a much greater concentration of bridging oxygens (BO) as compared to the melt-derived system.
Collapse
Affiliation(s)
- A Wren
- Clinical Materials Unit, Materials and Surface Science Institute, University of Limerick, National Technological Park, Limerick, Ireland.
| | | | | | | | | | | |
Collapse
|
24
|
Clarkin OM, Boyd D, Madigan S, Towler MR. Comparison of an experimental bone cement with a commercial control, Hydroset. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1563-1570. [PMID: 19214713 DOI: 10.1007/s10856-009-3701-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 01/26/2009] [Indexed: 05/27/2023]
Abstract
Glass polyalkenoate cements based on strontium calcium zinc silicate glasses (Zn-GPCs) and high molecular weight polyacrylic acids (PAA) (MW; 52,000-210,000) have been shown to exhibit mechanical properties and in vitro bioactivity suitable for arthroplasty applications. Unfortunately, these formulations exhibit working times and setting times which are too short for invasive surgical applications such as bone void filling and fracture fixation. In this study, Zn-GPCs were formulated using a low molecular weight PAA (MW; 12,700) and a modifying agent, trisodium citrate dihydrate (TSC), with the aim of improving the rheological properties of Zn-GPCs. These novel formulations were then compared with commercial self-setting calcium phosphate cement, Hydroset, in terms of compressive strength, biaxial flexural strength and Young's modulus, as well as working time, setting time and injectability. The novel Zn-GPC formulations performed well, with prolonged mechanical strength (39 MPa, compression) greater than both vertebral bone (18.4 MPa) and the commercial control (14 MPa). However, working times (2 min) and rheological properties of Zn-GPCs, though improved, require further modifications prior to their use in minimally invasive surgical techniques.
Collapse
Affiliation(s)
- O M Clarkin
- Materials and Surface Science Institute, University of Limerick, National Technological Park, Limerick, Ireland
| | | | | | | |
Collapse
|
25
|
Boyd D, Carroll G, Towler MR, Freeman C, Farthing P, Brook IM. Preliminary investigation of novel bone graft substitutes based on strontium-calcium-zinc-silicate glasses. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:413-420. [PMID: 18839286 DOI: 10.1007/s10856-008-3569-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 08/18/2008] [Indexed: 05/26/2023]
Abstract
Bone graft procedures typically require surgeons to harvest bone from a second site on a given patient (Autograft) before repairing a bone defect. However, this results in increased surgical time, excessive blood loss and a significant increase in pain. In this context a synthetic bone graft with excellent histocompatibility, built in antibacterial efficacy and the ability to regenerate healthy tissue in place of diseased tissue would be a significant step forward relative to current state of the art philosophies. We developed a range of calcium-strontium-zinc-silicate glass based bone grafts and characterised their structure and physical properties, then evaluated their in vitro cytotoxicity and in vivo biocompatibility using standardised models from the literature. A graft (designated BT109) of composition 0.28SrO/0.32ZnO/0.40 SiO(2) (mol fraction) was the best performing formulation in vitro shown to induce extremely mild cytopathic effects (cell viability up to 95%) in comparison with the commercially available bone graft Novabone (cell viability of up to 72%). Supplementary to this, the grafts were examined using the standard rat femur healing model on healthy Wister rats. All grafts were shown to be equally well tolerated in bone tissue and new bone was seen in close apposition to implanted particles with no evidence of an inflammatory response within bone. Complimentary to this BT109 was implanted into the femurs of ovariectomized rats to monitor the response of osteoporotic tissue to the bone grafts. The results from this experiment indicate that the novel grafts perform equally well in osteoporotic tissue as in healthy tissue, which is encouraging given that bone response to implants is usually diminished in ovariectomized rats. In conclusion these materials exhibit significant potential as synthetic bone grafts to warrant further investigation and optimisation.
Collapse
Affiliation(s)
- D Boyd
- Materials and Surface Science Institute, University of Limerick, Plassey Park, Limerick, Ireland.
| | | | | | | | | | | |
Collapse
|
26
|
Strontium-based Glass Polyalkenoate Cements for Luting Applications in the Skeleton. J Biomater Appl 2008; 24:483-502. [DOI: 10.1177/0885328208099085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glass Polyalkenoate Cements (GPCs) based on strontium calcium zinc silicate (Sr-Ca-Zn-SiO2) glasses and high molecular weight poly(acrylic acid) (PAA) have been shown to exhibit suitable mechanical properties for orthopaedic arthroplasty applications, however for vertebroplasty and other medical luting applications these cements have working and setting times which are unsuitable for such applications. In this study GPCs based on Sr-Ca-Zn-SiO 2 glasses and low molecular weight PAA were evaluated for orthopaedic luting applications. GPCs based on four different glasses; BT100 (0.16CaO, 0.36ZnO, 0.48SiO2), BT101 (0.04SrO, 0.12CaO, 0.36ZnO, 0.48SiO 2), BT102 (0.08SrO 0.08CaO, 0.36ZnO, 0.48SiO2) and BT103 (0.12SrO 0.04CaO, 0.36ZnO, 0.48SiO2) and two PAAs (MW; 12,700 and 25,700) were examined. These cement formulations exhibited handling properties potentially suitable for luting applications as well as mechanical strengths which were similar to those of trabecular bone. Upon immersion in simulated body fluid, the GPCs showed sustained growth of a calcium phosphate layer on the surface of the cement indicating that these cements were bioactive in nature.
Collapse
|
27
|
Towler M, Boyd D, Freeman C, Brook I, Farthing P. Comparison of in vitro and in vivo Bioactivity of SrO—CaO—ZnO—SiO2 Glass Grafts. J Biomater Appl 2008; 23:561-72. [DOI: 10.1177/0885328208094306] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A range of calcium—strontium—zinc—silicate glass grafts are developed. Following characterization, their ability to form an apatite layer in simulated body fluid (SBF) is evaluated. Concurrently, their in vivo biocompatibility is determined. These glasses are incapable of forming an apatite layer in SBF. However, in vivo, each glass is well tolerated with new bone formation apparent in close apposition to implanted particles and no evidence of an inflammatory response. Such results are contrary to much of the literature and indicate that forecasting a materials ability to bond to bone based on SBF experiments may provide a false negative result.
Collapse
Affiliation(s)
- M.R. Towler
- Materials and Surface Science Institute, University of Limerick, Ireland,
| | - D. Boyd
- Materials and Surface Science Institute, University of Limerick, Ireland
| | - C. Freeman
- Department of Oral and Maxillofacial Medicine and Surgery University of Sheffield, UK
| | - I.M. Brook
- Department of Oral and Maxillofacial Medicine and Surgery University of Sheffield, UK
| | - P. Farthing
- Department of Oral Pathology, University of Sheffield, UK
| |
Collapse
|