1
|
Innovative Surface Modification Procedures to Achieve Micro/Nano-Graded Ti-Based Biomedical Alloys and Implants. COATINGS 2021. [DOI: 10.3390/coatings11060647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to the growing aging population of the world, and as a result of the increasing need for dental implants and prostheses, the use of titanium and its alloys as implant materials has spread rapidly. Although titanium and its alloys are considered the best metallic materials for biomedical applications, the need for innovative technologies is necessary due to the sensitivity of medical applications and to eliminate any potentially harmful reactions, enhancing the implant-to-bone integration and preventing infection. In this regard, the implant’s surface as the substrate for any reaction is of crucial importance, and it is accurately addressed in this review paper. For constructing this review paper, an internet search was performed on the web of science with these keywords: surface modification techniques, titanium implant, biomedical applications, surface functionalization, etc. Numerous recent papers about titanium and its alloys were selected and reviewed, except for the section on forthcoming modern implants, in which extended research was performed. This review paper aimed to briefly introduce the necessary surface characteristics for biomedical applications and the numerous surface treatment techniques. Specific emphasis was given to micro/nano-structured topographies, biocompatibility, osteogenesis, and bactericidal effects. Additionally, gradient, multi-scale, and hierarchical surfaces with multifunctional properties were discussed. Finally, special attention was paid to modern implants and forthcoming surface modification strategies such as four-dimensional printing, metamaterials, and metasurfaces. This review paper, including traditional and novel surface modification strategies, will pave the way toward designing the next generation of more efficient implants.
Collapse
|
3
|
Mazinanian N, Wallinder IO, Hedberg Y. Influence of Citric Acid on the Metal Release of Stainless Steels. CORROSION SCIENCE AND TECHNOLOGY 2015. [DOI: 10.14773/cst.2015.14.4.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Mazinanian N, Odnevall Wallinder I, Hedberg Y. Comparison of the influence of citric acid and acetic acid as simulant for acidic food on the release of alloy constituents from stainless steel AISI 201. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2014.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Correlation between surface physicochemical properties and the release of iron from stainless steel AISI 304 in biological media. Colloids Surf B Biointerfaces 2014; 122:216-222. [DOI: 10.1016/j.colsurfb.2014.06.066] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 11/20/2022]
|
6
|
Doro F, Ramos A, Schneider J, Rodrigues-Filho U, Veiga M, Yano C, Negreti A, Krieger M, Tfouni E. Deposition of organic−inorganic hybrid coatings over 316L surgical stainless steel and evaluation on vascular cells. CAN J CHEM 2014. [DOI: 10.1139/cjc-2014-0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface coating of metallic materials using the sol-gel technique is a suitable approach to obtain hybrid materials with improved properties for biomedical applications. In this study, an AISI 316L stainless steel surface was coated with ormosils prepared from tetraethylsiloxane and 3-glycidoxypropyltrimethoxysilane or polydimethylsiloxane. The characterization of structural and surface properties was performed by several techniques. Surface microstructure, morphology, and energy are dependent on organosilane type and content. Chemical stability of coatings was investigated by static immersion tests in phosphate buffer solution at 37 °C, and silicon leaching after 21 days was found to be in the range of ∼200−300 μg L−1. Mechanical adhesion was found to be within 1.0 and 3.7 N cm−1. The interaction of the samples and materials in the cardiovascular environment was investigated through cellular behavior. Biological assays were performed with slides to avoid any cytotoxic effects on human endothelial cells (HUVEC) and rabbit arterial smooth muscle cells (RASM). No significant alterations were observed after 24 h in the viability of RASM and HUVEC cells exposed to different coatings. No increase of HUVEC or RASM migration was observed after 24 h as evaluated by transwell migration assay. The hybrid materials showed suitable properties for potential application as biomaterials in cardiovascular environment as well as for incorporation of bioactive species with the aim to prepare drug-eluting stents.
Collapse
Affiliation(s)
- F.G. Doro
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
- Departamento de Química Geral e Inorgânica, Instituto de Química, Universidade Federal da Bahia, 40170-290, Salvador, BA, Brazil
| | - A.P. Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - J.F. Schneider
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - U.P. Rodrigues-Filho
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13563-120 São Carlos, SP, Brazil
| | - M.A.M.S. Veiga
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - C.L. Yano
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, SP, Brazil
| | - A. Negreti
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, SP, Brazil
| | - M.H. Krieger
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, SP, Brazil
| | - E. Tfouni
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Saldaña L, Crespo L, Bensiamar F, Arruebo M, Vilaboa N. Mechanical forces regulate stem cell response to surface topography. J Biomed Mater Res A 2013; 102:128-40. [PMID: 23613185 DOI: 10.1002/jbm.a.34674] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/21/2013] [Indexed: 12/21/2022]
Abstract
The interactions between bone tissue and orthopedic implants are strongly affected by mechanical forces at the bone-implant interface, but the interplay between surface topographies, mechanical stimuli, and cell behavior is complex and not well understood yet. This study reports on the influence of mechanical stretch on human mesenchymal stem cells (hMSCs) attached to metallic substrates with different roughness. Controlled forces were applied to plasma membrane of hMSCs cultured on smooth and rough stainless steel surfaces using magnetic collagen-coated particles and an electromagnet system. Degree of phosphorylation of focal adhesion kinase (p-FAK) on the active form (Tyr-397), prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) levels increased on rough samples under static conditions. Cell viability and fibronectin production decreased on rough substrates, while hMSCs maturated to the osteoblastic lineage to a similar extent on both surfaces. PGE2 production and osteoprotegerin/receptor activator of nuclear factor kappa-B ligand ratio increased after force application on both surfaces, although to a greater extent on smooth substrates. p-FAK on Tyr-397 was induced fairly rapidly by mechanical stimulation on rough surfaces while cells cultured on smooth samples failed to activate this kinase in response to tensile forces. Mechanical forces enhanced VEGF secretion and reduced cell viability, fibronetin levels and osteoblastic maturation on smooth surfaces but not on rough samples. The magnetite beads model used in this study is well suited to characterize the response of hMSCs cultured on metallic surfaces to tensile forces and collected data suggest a mechanism whereby mechanotransduction driven by FAK is essential for stem cell growth and functioning on metallic substrates.
Collapse
Affiliation(s)
- Laura Saldaña
- Unidad de Investigación, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | | | | | | |
Collapse
|
8
|
Carreon H, Barriuso S, Lieblich M, González-Carrasco J, Jimenez J, Caballero F. Significance of the contacting and no contacting thermoelectric power measurements applied to grit blasted medical Ti6Al4V. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1417-22. [DOI: 10.1016/j.msec.2012.12.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/08/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
|
9
|
Hedberg Y, Wang X, Hedberg J, Lundin M, Blomberg E, Wallinder IO. Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1015-33. [PMID: 23378148 PMCID: PMC3620448 DOI: 10.1007/s10856-013-4859-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 01/18/2013] [Indexed: 05/18/2023]
Abstract
Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed.
Collapse
Affiliation(s)
- Y Hedberg
- Division of Surface and Corrosion Science, Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|