1
|
Wang X, Qi Y, Hou W, Wu D, Fang L, Leng Y, Liu X, Wang X, Wang J, Min W. Dual-modified starch micelles as nanocarriers for efficient encapsulation and controlled release of walnut-derived active peptides. Food Chem 2024; 454:139750. [PMID: 38810457 DOI: 10.1016/j.foodchem.2024.139750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Hydrophilic and hydrophobic modified nanomicelles might be more conducive to passage of the gastrointestinal barrier than walnut peptide (WP). In this study, a novel double modified starch polymer, SB-CST-DCA, was synthesized by grafting sulfabetaine (SB) and deoxycholic acid (DCA) onto corn starch (CST) molecules through etherification and esterification. The modification mechanism was discussed to determine its chemical structure, morphological properties, and thermal stability. Peptide-loaded nanomicelles (SB-CST-DCA-WP) were prepared using WP as the core material. The encapsulation efficiency and peptide loading amount reached 76.90 ± 1.52% and 18.27 ± 0.53%, respectively, with good stability and pH-responsive release behavior observed to effectively control WP release and enhance its antioxidant activity. The composite exhibited safety, non-toxicity, and good blood compatibility at concentrations below 125 μg/mL. Duodenum was identified as the main absorption site with an absorption ratio of 41.16 ± 0.36%.
Collapse
Affiliation(s)
- Xuehang Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yuan Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Weiyu Hou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
| | - Weihong Min
- State Key Laboratory of Subtropical Silviculture and College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, PR China
| |
Collapse
|
2
|
Fernández-Mimbrera MÁ, Salido S, Marchal JA, Alejo-Armijo A. Tracking Selective Internalization and Intracellular Dynamics of Modified Chitosan Polymeric Micelles of Interest in Primary Hyperoxaluria Diseases. ACS OMEGA 2024; 9:39503-39512. [PMID: 39346832 PMCID: PMC11425826 DOI: 10.1021/acsomega.4c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
Primary hyperoxalurias (PHs) represent rare diseases associated with disruptions in glyoxylate metabolism within hepatocytes. Impaired glyoxylate detoxification in PH patients results in its accumulation and subsequent conversion into oxalate, a process catalyzed by the hepatic lactate dehydrogenase A enzyme (hLDHA). Targeting this enzyme selectively in the liver using small organic molecules emerges as a potential therapeutic strategy for PH. However, achieving selective hepatic inhibition of hLDHA poses challenges, requiring precise delivery of potential inhibitors into hepatocytes to mitigate adverse effects in other tissues. Our recent efforts focused on the design of polymeric micelle nanocarriers tailored for the selective transport and release of hLDHA inhibitors into liver tissues. In this study, we synthesized and assessed the internalization and disaggregation dynamics of chitosan-based polymeric micelles in both hepatic and nonhepatic cell models using live-cell imaging. Our findings indicate that lactonolactone residues confer internalization capacity to the micelles upon exposure to cells. Moreover, we demonstrated the intracellular disaggregation capacity of these nanocarriers facilitated by the cystamine redox-sensitive linker attached to the polymer. Importantly, no cytotoxic effects were observed throughout the experimental time frame. Finally, our results underscore the higher selectivity of these nanocarriers for hepatic HepG2 cells compared to other nonhepatic cell models.
Collapse
Affiliation(s)
| | - Sofía Salido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Juan Alberto Marchal
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Alfonso Alejo-Armijo
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| |
Collapse
|
3
|
Al-Shadidi JRMH, Al-Shammari S, Al-Mutairi D, Alkhudhair D, Thu HE, Hussain Z. Chitosan Nanoparticles for Targeted Cancer Therapy: A Review of Stimuli-Responsive, Passive, and Active Targeting Strategies. Int J Nanomedicine 2024; 19:8373-8400. [PMID: 39161363 PMCID: PMC11332424 DOI: 10.2147/ijn.s472433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Despite all major advancements in drug discovery and development in the pharmaceutical industry, cancer is still one of the most arduous challenges for the scientific community. The implications of nanotechnology have certainly resolved major issues related to conventional anticancer modalities; however, the undesired recognition of nanoparticles (NPs) by the mononuclear phagocyte system (MPS), their poor stability in biological fluids, premature release of payload, and low biocompatibility have restricted their clinical translation. In recent decades, chitosan (CS)-based nanodelivery systems (eg, polymeric NPs, micelles, liposomes, dendrimers, conjugates, solid lipid nanoparticles, etc.) have attained promising recognition from researchers for improving the pharmacokinetics and pharmacodynamics of chemotherapeutics. However, the specialty of this review is to mainly focus on and critically discuss the targeting potential of various CS-based NPs for treatment of different types of cancer. Based on their delivery mechanisms, we classified CS-based NPs into stimuli-responsive, passive, or active targeting nanosystems. Moreover, various functionalization strategies (eg, grafting with polyethylene glycol (PEG), hydrophobic substitution, tethering of stimuli-responsive linkers, and conjugation of targeting ligands) adapted to the architecture of CS-NPs for target-specific delivery of chemotherapeutics have also been considered. Nevertheless, CS-NPs based therapeutics hold great promise for improving therapeutic outcomes while mitigating the off-target effects of chemotherapeutics, a long-term safety profile and clinical testing in humans are warranted for their successful clinical translation.
Collapse
Affiliation(s)
- Jafar R M H Al-Shadidi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shahad Al-Shammari
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Danah Al-Mutairi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Dalal Alkhudhair
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hnin Ei Thu
- Department of Pharmacology, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor Branch, Selangor, Malaysia
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
4
|
Fereydouni P, Al Mohaddesin A, Khaleghi S. Targeted biocompatible Zn-metal-organic framework nanocomposites for intelligent chemotherapy of breast cancer cells. Sci Rep 2024; 14:18311. [PMID: 39112669 PMCID: PMC11306755 DOI: 10.1038/s41598-024-69457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Finding a novel drug delivery system (DDS) represents one of the most challenging endeavors in cancer therapy. Hence, in this study, we developed a new biocompatible and biodegradable zinc-based nanoscale metal-organic framework (Zn-NMOF) coated with folic acid (FA) functionalized chitosan (CS) to facilitate targeted delivery of doxorubicin (D), a standard chemotherapeutic agent, into breast cancer cells. The synthesis of the NMOF-CS-FA-D nanocomposite preceded its comprehensive characterization via FT-IR, DLS, XRD, SEM, and TEM analyses. Subsequent in vitro studies were conducted on MCF-7 breast cancer cells and HFF-1 normal cells, encompassing assessments of cell viability, expression levels of apoptotic and autophagy genes, cell cycle arrest, and apoptotic analyses. The size of the NMOF-CS-FA-D particles was determined to be less than 80 nm, with a drug loading efficiency of 72 ± 5%. The release kinetics of DOX from the nanocomposite were investigated, revealing controlled release behavior at pH 7.4 and accelerated release at pH 5.0, which is conducive to drug delivery into cancer cells. In vitro results indicated a 17.39% ± 6.34 cell viability after 24 h of treatment with a 40 nM concentration of the NMOF-CS-FA-D nanocomposite. Furthermore, the expression levels of Caspase-9 and BAX, key apoptotic genes, along with BECLIN1, an autophagy gene, were found to increase by two-fold, four-fold, and two-fold, respectively, following 5 h of treatment with the nanocomposite. Additionally, analysis of cell cycle distribution revealed 15.4 ± 2% of cells in the sub-G1 phase, indicative of apoptotic cells, and 31.9% of cells undergoing early and late apoptosis in MCF-7 cells. Collectively, these findings underscore the potential of the NMOF-CS-FA-D nanocomposite in inhibiting cancer cell proliferation with low side effects.
Collapse
Affiliation(s)
- Parinaz Fereydouni
- Department of Life Sciences, Faculty of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Arash Al Mohaddesin
- Department of Life Sciences, Faculty of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran.
| |
Collapse
|
5
|
Qi Y, Chen Q, Cai X, Liu L, Jiang Y, Zhu X, Huang Z, Wu K, Luo H, Ouyang Q. Self-Assembled Amphiphilic Chitosan Nanomicelles: Synthesis, Characterization and Antibacterial Activity. Biomolecules 2023; 13:1595. [PMID: 38002276 PMCID: PMC10669896 DOI: 10.3390/biom13111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Although amphiphilic chitosan has been widely studied as a drug carrier for drug delivery, fewer studies have been conducted on the antimicrobial activity of amphiphilic chitosan. In this study, we successfully synthesized deoxycholic acid-modified chitosan (CS-DA) by grafting deoxycholic acid (DA) onto chitosan C2-NH2, followed by grafting succinic anhydride, to prepare a novel amphiphilic chitosan (CS-DA-SA). The substitution degree was 23.93% for deoxycholic acid and 29.25% for succinic anhydride. Both CS-DA and CS-DA-SA showed good blood compatibility. Notably, the synthesized CS-DA-SA can self-assemble to form nanomicelles at low concentrations in an aqueous environment. The results of CS, CS-DA, and CS-DA-SA against Escherichia coli and Staphylococcus aureus showed that CS-DA and CS-DA-SA exhibited stronger antimicrobial effects than CS. CS-DA-SA may exert its antimicrobial effect by disrupting cell membranes or forming a membrane on the cell surface. Overall, the novel CS-DA-SA biomaterials have a promising future in antibacterial therapy.
Collapse
Affiliation(s)
- Yi Qi
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Qizhou Chen
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Xiaofen Cai
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Lifen Liu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Yuwei Jiang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Xufeng Zhu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Zhicheng Huang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Kefeng Wu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Hui Luo
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Qianqian Ouyang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
6
|
Parekh PY, Patel VI, Khimani MR, Bahadur P. Self-assembly of bile salts and their mixed aggregates as building blocks for smart aggregates. Adv Colloid Interface Sci 2023; 312:102846. [PMID: 36736167 DOI: 10.1016/j.cis.2023.102846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
The present communication offers a comprehensive overview of the self-assembly of bile salts emphasizing their mixed smart aggregates with a variety of amphiphiles. Using an updated literature survey, we have explored the dissimilar interactions of bile salts with different types of surfactants, phospholipids, ionic liquids, drugs, and a variety of natural and synthetic polymers. While assembling this review, special attention was also provided to the potency of bile salts to alter the size/shape of aggregates formed by several amphiphiles to use these aggregates for solubility improvement of medicinally important compounds, active pharmaceutical ingredients, and also to develop their smart delivery vehicles. A fundamental understanding of bile salt mixed aggregates will enable the development of new strategies for improving the bioavailability of drugs solubilized in newly developed potential hosts and to formulate smart aggregates of desired morphology for specific targeted applications. It enriches our existing knowledge of the distinct interactions exerted in mixed systems of bile salts with variety of amphiphiles. By virtue of this, researchers can get innovative ideas to construct novel nanoaggregates from bile salts by incorporating various amphiphiles that serve as a building block for smart aggregates for their numerous industrial applications.
Collapse
Affiliation(s)
- Paresh Y Parekh
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| | - Vijay I Patel
- Department of Chemistry, Navyug Science College, Rander Road, Surat 395009, Gujarat, India.
| | - Mehul R Khimani
- Countryside International School, Nr. Bhesan Railway Crossing, CIS Barbodhan Road, Surat 394125, Gujarat, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| |
Collapse
|
7
|
Kumbhar ST, Patil RY, Bhatia MS, Choudhari PB, Gaikwad VL. Synthesis andcharacterization of chitosan nanoparticles decorated with folate and loaded with dasatinib for targeting folate receptors in cancer cells. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. J Pers Med 2021; 11:jpm11020074. [PMID: 33513899 PMCID: PMC7912158 DOI: 10.3390/jpm11020074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism. PHs classification based on gene mutations parallel a variety of enzymatic defects, and all involve the harmful accumulation of calcium oxalate crystals that produce systemic damage. These geographically widespread rare diseases have a deep impact in the life quality of the patients. Until recently, treatments were limited to palliative measures and kidney/liver transplants in the most severe forms. Efforts made to develop pharmacological treatments succeeded with the biotechnological agent lumasiran, a siRNA product against glycolate oxidase, which has become the first effective therapy to treat PH1. However, small molecule drugs have classically been preferred since they benefit from experience and have better pharmacological properties. The development of small molecule inhibitors designed against key enzymes of glyoxylate metabolism is on the focus of research. Enzyme inhibitors are successful and widely used in several diseases and their pharmacokinetic advantages are well known. In PHs, effective enzymatic targets have been determined and characterized for drug design and interesting inhibitory activities have been achieved both in vitro and in vivo. This review describes the most recent advances towards the development of small molecule enzyme inhibitors in the treatment of PHs, introducing the multi-target approach as a more effective and safe therapeutic option.
Collapse
|
9
|
da Silva AB, Rufato KB, de Oliveira AC, Souza PR, da Silva EP, Muniz EC, Vilsinski BH, Martins AF. Composite materials based on chitosan/gold nanoparticles: From synthesis to biomedical applications. Int J Biol Macromol 2020; 161:977-998. [DOI: 10.1016/j.ijbiomac.2020.06.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
|
10
|
Nouri A, Faraji Dizaji B, Kianinejad N, Jafari Rad A, Rahimi S, Irani M, Sharifian Jazi F. Simultaneous linear release of folic acid and doxorubicin from ethyl cellulose/chitosan/g-C 3 N 4 /MoS 2 core-shell nanofibers and its anticancer properties. J Biomed Mater Res A 2020; 109:903-914. [PMID: 32776414 DOI: 10.1002/jbm.a.37081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
The folic acid (FA) and doxorubicin (DOX) have been doped into the g-C3 N4 /MoS2 incorporated-chitosan/ethyl cellulose (EC) core-shell nanofibers for targeted delivery of FA and DOX against HeLa and MCF-7 cell lines. The g-C3 N4 /MoS2 nanosheets and core-shell nanofibers were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV-Vis tests. The drug loading factor, the degradation rate, and the DOX and FA release behavior from core-shell nanofibers have been investigated. The pharmacokinetic results revealed the linear release with non-Fickian diffusion of the both anticancer drugs from nanofibers during 7 days. The DAPI staining and MTT assays of the nanofibers immersed in MCF-7 and HeLa cell lines were studied to determine the potential of DOX and FA doped-core-shell nanofibrous matrix for MCF-7 and HeLa cells death in vitro. The maximum MCF-7 and HeLa cells death percentages were found to be 89 and 85%, respectively, using EC/chitosan/g-C3 N4 /MoS2 /DOX/FA core-shell nanofibers after 7 days. The high activity of g-C3 N4 /MoS2 /DOX/FA loaded-core-shell nanofibers for studied cancer cells killing was achieved.
Collapse
Affiliation(s)
- Arezo Nouri
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Babak Faraji Dizaji
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | - Nazanin Kianinejad
- Department of Pharmaceutical Science, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Azadeh Jafari Rad
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | - Seyedhamidreza Rahimi
- Department of Biomedical Engineering, Islamic Azad University, Tehran Science Research Branch, Tehran, Iran
| | - Mohammad Irani
- Department of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Fariborz Sharifian Jazi
- Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
11
|
UiO-66 metal organic framework nanoparticles loaded carboxymethyl chitosan/poly ethylene oxide/polyurethane core-shell nanofibers for controlled release of doxorubicin and folic acid. Int J Biol Macromol 2020; 150:178-188. [DOI: 10.1016/j.ijbiomac.2020.02.067] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
|
12
|
Zhang Y, Cui Z, Mei H, Xu J, Zhou T, Cheng F, Wang K. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer. Carbohydr Polym 2019; 219:143-154. [DOI: 10.1016/j.carbpol.2019.04.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/24/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
|
13
|
Qindeel M, Ahmed N, Khan GM, Rehman AU. Ligand decorated chitosan as an advanced nanocarrier for targeted delivery: a critical review. Nanomedicine (Lond) 2019; 14:1623-1642. [PMID: 31166147 DOI: 10.2217/nnm-2018-0490] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nontargeted delivery systems present nonspecific delivery, low transfection efficiency and high toxicity. Ligand-conjugated chitosan (CS) nanocarriers have emerged as an outstanding option for achieving active delivery specifically and preferentially to the target sites by exploiting receptors mediated endocytosis. Mannosylated CS nanocarriers have brought tremendous breakthrough in gene therapy and have proven to be an excellent choice for treatment of infectious and inflammatory diseases. Similarly, folate and antibodies-conjugated CS play a significant role in diagnosis and treatment of various cancers. Current evidences obviously propose ligand-decorated CS as an attractive option for diagnosis and treatment of dreadful conditions. In order to bring huge revolution in the field of targeted delivery, challenges associated with these nanocarriers needs to be addressed.
Collapse
Affiliation(s)
- Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
14
|
Hanafy AF, Abdalla AM, Guda TK, Gabr KE, Royall PG, Alqurshi A. Ocular anti-inflammatory activity of prednisolone acetate loaded chitosan-deoxycholate self-assembled nanoparticles. Int J Nanomedicine 2019; 14:3679-3689. [PMID: 31239660 PMCID: PMC6556883 DOI: 10.2147/ijn.s195892] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/11/2019] [Indexed: 12/30/2022] Open
Abstract
Background and purpose: Conventional topical ophthalmic aqueous solutions and suspensions are often associated with low bioavailability and high administration frequency, pulsatile dose and poor exposure to certain ocular parts. The aim of this study was to develop an ophthalmic nanoparticles loaded gel, for delivering prednisolone acetate (PA), to increase dosing accuracy, bioavailability, and accordingly, efficiency of PA in treating inflammatory ocular diseases. Methods: A novel formulation of self-assembled nanoparticles was prepared by the complexation of chitosan (CS) and, the counter-ion, sodium deoxycholate (SD), loaded with the poorly-water-soluble PA. Particle size, zeta potential, encapsulation efficiency (EE) and drug loading content (LC) of prepared nanoparticles were assessed. Moreover, the nanoparticles were characterized using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Drug release and eye anti-inflammatory potential of the prepared novel formulation was investigated. Results: Mean particle size of the nanoparticles have dropped from 976 nm ±43 (PDI 1.285) to 480 nm ±28 (PDI 1.396) when the ratio of CS-SD was decreased. The incorporation of 0.1-0.3% of polyvinyl alcohol (PVA), in the preparation stages, resulted in smaller nanoparticles: 462 nm ±19 (PDI 0.942) and 321 nm ±22 (PDI 0.454) respectively. DSC and FTIR results demonstrated the interaction between CS and SD, however, no interactions were detected between PA and CS or SD. Drug release of PA as received, in simulated tears fluid (pH 7.4), showed a twofold increase (reaching an average of 98.6% in 24 hours) when incorporated into an optimized nanoparticle gel formulation (1:5 CS-SD). Conclusion: The anti-inflammatory effect of PA nanoparticles loaded gel on female guinea pig eyes was significantly superior to that of the micronized drug loaded gel (P < 0.05).
Collapse
Affiliation(s)
- Ahmed F Hanafy
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina, KSA.,Research and Development Department, Al Andalous for Pharmaceutical Industries, Giza, Egypt
| | - Ahmed M Abdalla
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina, KSA
| | - Tawheda K Guda
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina, KSA
| | - Khairy E Gabr
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina, KSA.,Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Paul G Royall
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Abdulmalik Alqurshi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina, KSA
| |
Collapse
|
15
|
Kim KS, Song CG, Kang PM. Targeting Oxidative Stress Using Nanoparticles as a Theranostic Strategy for Cardiovascular Diseases. Antioxid Redox Signal 2019; 30:733-746. [PMID: 29228781 PMCID: PMC6350062 DOI: 10.1089/ars.2017.7428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Nanomedicine is an application of nanotechnology that provides solutions to unmet medical challenges. The unique features of nanoparticles, such as their small size, modifiable components, and diverse functionality, make them attractive and suitable materials for novel diagnostic, therapeutic, or theranostic applications. Cardiovascular diseases (CVDs) are the major cause of noncommunicable illness in both developing and developed countries. Nanomedicine offers novel theranostic options for the treatment of CVDs. Recent Advances: Many innovative nanoparticles to target reactive oxygen species (ROS) have been developed. In this article, we review the characteristics of nanoparticles that are responsive to ROS, their limitations, and their potential clinical uses. Significant advances made in diagnosis of atherosclerosis and treatment of acute coronary syndrome using nanoparticles are discussed. CRITICAL ISSUES Although there is a tremendous potential for the nanoparticle applications in medicine, their safety should be considered while using in humans. We discuss the challenges that may be encountered with some of the innovative nanoparticles used in CVDs. FUTURE DIRECTIONS The unique properties of nanoparticles offer novel diagnostic tool and potential therapeutic strategies. However, nanomedicine is still in its infancy, and further in-depth studies are needed before wide clinical application is achieved.
Collapse
Affiliation(s)
- Kye S Kim
- 1 Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Harvard Medical School, Boston, Massachusetts
| | - Chul Gyu Song
- 3 Department of Electronic Engineering, Chonbuk National University, Jeonju, South Korea
| | - Peter M Kang
- 1 Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Liang C, Sun W, He H, Zhang B, Ling C, Wang B, Huang T, Hou B, Guo Y. Antitumor effect of a new nano-vector with miRNA-135a on malignant glioma. Int J Nanomedicine 2017; 13:209-220. [PMID: 29343959 PMCID: PMC5749566 DOI: 10.2147/ijn.s148142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction MiR-135a is found to selectively induce apoptosis in glioma cell but not in normal neurons and glial cells. However, low transfection efficacy limits its application in vivo as other miRNAs. We prepared a new kind of nano-vector based on polyethylene glycol methyl ether (mPEG) and hyper-branched polyethylenimine (hy-PEI) in order to improve the miRNA delivery system into the glioma cells. Methods The mPEG-g-PEI/miR-135a was constructed and detected by 1H NMR and FTIR analyses. Transmission electron microscope was utilized for its characteristics. Stability and release efficiency was assessed by electrophoresis. Biocompatibility was observed and analyzed through co-culture with astrocytes and malignant glioma cells (C6). Transfection rate was monitored by laser confocal microscopy and flow cytometry. The antitumor effect of mPEG-g-PEI/miR-135a to C6 was confirmed in vivo by MR scanning, pathology and survival curve. RT-PCR was used to assay transfection efficiency of mPEG-g-PEI/miR-135a in vitro and in vivo. And Western blotting was used to assess the expressions of the targeted proteins of miR-135a. Results In this experiment, we found the optimal N/P ratio of mPEG-g-PEI/miR-135a was about 6 judged by Zeta potential, particle size and encapsulation ability. The stability of mPEG-g-PEI/miR-135a in serum and the release efficiency in acid(pH=5.0) of mPEG-g-PEI/miR-135a were simulated the environment in vivo and in tumor. The mPEG-g-PEI nano-vector was co-cultured with malignant glioma cell C6 and normal astrocytes in vitro and showed good biocompatibility evaluated by CCK8 assay. The cell experiments in vitro indicated that mPEG-g-PEI could significantly improve miR-135a transfection by enhancing uptake effect of both normal glial and glioma cells. Given the C6 implanted in situ model, we discovered that the mPEG-g-PEI/miR-135a could obviously increase the survival period and inhibit the growth of glioma confirmed by MRI and histochemistry. In addition, the transfection efficiency of mPEG-g-PEI was better than that of other transfection agents either in vitro or in vivo confirmed by RT-PCR. Moreover, the expressions of the targeted proteins of miR-135a were consistent with the in vitro results. Conclusion These results suggest that mPEG-g-PEI is expected to provide a new effective intracellular miRNA delivery system with low toxicity for glioma therapy.
Collapse
Affiliation(s)
- Chaofeng Liang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Weitong Sun
- The Pharmaceutical College of Jiamusi University, Jiamusi University, Jiamusi, China
| | - Haiyong He
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Baoyu Zhang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Cong Ling
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Bocheng Wang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Tengchao Huang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Bo Hou
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Ying Guo
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
17
|
Sriram K, Maheswari PU, Ezhilarasu A, Begum KMMS, Arthanareeswaran G. CuO-loaded hydrophobically modified chitosan as hybrid carrier for curcumin delivery and anticancer activity. ASIA-PAC J CHEM ENG 2017. [DOI: 10.1002/apj.2124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kamaraj Sriram
- Department of Chemical Engineering; National Institute of Technology; Tiruchirappalli 620 015 Tamilnadu India
| | - Palanisamy Uma Maheswari
- Department of Chemistry; National Institute of Technology; Tiruchirappalli 620 015 Tamilnadu India
| | - Arasagounder Ezhilarasu
- Department of Microbiology; Selvam Arts and Science College; Namakkal 637003 Tamil Nadu India
| | | | - Gangasalam Arthanareeswaran
- Department of Chemical Engineering; National Institute of Technology; Tiruchirappalli 620 015 Tamilnadu India
| |
Collapse
|
18
|
Cheng L, Ma H, Shao M, Fan Q, Lv H, Peng J, Hao T, Li D, Zhao C, Zong X. Synthesis of folate‑chitosan nanoparticles loaded with ligustrazine to target folate receptor positive cancer cells. Mol Med Rep 2017; 16:1101-1108. [PMID: 28627615 PMCID: PMC5562069 DOI: 10.3892/mmr.2017.6740] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/27/2017] [Indexed: 12/13/2022] Open
Abstract
In addition to its vasodilatory effect, ligustrazine (LZ) improves the sensitivity of multidrug resistant cancer cells to chemotherapeutic agents. To enhance the specificity of LZ delivery to tumor cells/tissues, folate‑chitosan nanoparticles (FA‑CS‑NPs) were synthesized by combination of folate ester with the amine group on chitosan to serve as a delivery vehicle for LZ (FA‑CS‑LZ‑NPs). The structure of folate‑chitosan and characteristics of FA‑CS‑LZ‑NPs, including its size, encapsulation efficiency, loading capacity and release rates were analyzed. MCF‑7 (folate receptor‑positive) and A549 (folate receptor‑negative) cells cultured with or without folate were treated with FA‑CS‑LZ‑NPs, CS‑LZ‑NPs or LZ to determine cancer‑targeting specificity of FA‑CS‑LZ‑NPs. Fluorescence intensity of intracellular LZ was observed by laser scanning confocal microscopy, and concentration of intracellular LZ was detected by HPLC. The average size of FA‑CS‑LZ‑NPs was 182.7±0.56 nm, and the encapsulation efficiency and loading capacity was 59.6±0.23 and 15.3±0.16% respectively. The cumulative release rate was about 95% at pH 5.0, which was higher than that at pH 7.4. There was higher intracellular LZ accumulation in MCF‑7 than that in A549 cells and intracellular LZ concentration was not high when MCF‑7 cells were cultured with folate. These results indicated that the targeting specificity of FA‑CS‑LZ‑NPs was mediated by folate receptor. Therefore, the FA‑CS‑LZ‑NPs may be a potential folate receptor‑positive tumor cell targeting drug delivery system that could possibly overcome multidrug resistance during cancer therapy.
Collapse
Affiliation(s)
- Lichun Cheng
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Hui Ma
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Mingkun Shao
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Qing Fan
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Huiyi Lv
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Tangna Hao
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Daiwei Li
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Chenyang Zhao
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xingyue Zong
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47408, USA
| |
Collapse
|
19
|
Sukamporn P, Baek SJ, Gritsanapan W, Chirachanchai S, Nualsanit T, Rojanapanthu P. Self-assembled nanomicelles of damnacanthal-loaded amphiphilic modified chitosan: Preparation, characterization and cytotoxicity study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1068-1077. [DOI: 10.1016/j.msec.2017.03.263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 01/22/2023]
|
20
|
Nittayacharn P, Nasongkla N. Development of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:101. [PMID: 28534285 DOI: 10.1007/s10856-017-5905-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
The objective of this work was to develop self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy and studied the release profiles of doxorubicin (Dox) from different depot formulations. Tri-block copolymers of poly(ε-caprolactone), poly(D,L-lactide) and poly(ethylene glycol) named PLECs were successfully used as a biodegradable material to encapsulate Dox as the injectable local drug delivery system. Depot formation and encapsulation efficiency of these depots were evaluated. Results show that depots could be formed and encapsulate Dox with high drug loading content. For the release study, drug loading content (10, 15 and 20% w/w) and polymer concentration (25, 30, and 35% w/v) were varied. It could be observed that the burst release occurred within 1-2 days and this burst release could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. The degradation at the surface and cross-section of the depots were examined by Scanning Electron Microscope (SEM). In addition, cytotoxicity of Dox-loaded depots and blank depots were tested against human liver cancer cell lines (HepG2). Dox released from depots significantly exhibited potent cytotoxic effect against HepG2 cell line compared to that of blank depots. Results from this study reveals an important insight in the development of injectable drug delivery system for liver cancer chemotherapy. Schematic diagram of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system and in vitro characterizations. (a) Dox-loaded PLEC depots could be formed with more than 90% of sustained-release Dox at 25% polymer concentration and 20% Dox-loading content. The burst release occurred within 1-2 days and could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. (b) Dox released from depots significantly exhibited potent cytotoxic effect against human liver cancer cell lines (HepG2 cell line) compared to that of blank depots.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Norased Nasongkla
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand.
| |
Collapse
|
21
|
Shan X, Xu T, Liu Z, Hu X, Zhang YD, Wang B. Safety and toxicology of the intravenous administration of Ang2‑siRNA plasmid chitosan magnetic nanoparticles. Mol Med Rep 2016; 15:736-742. [PMID: 28035391 PMCID: PMC5364838 DOI: 10.3892/mmr.2016.6090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/04/2016] [Indexed: 11/10/2022] Open
Abstract
This aim of the present study was to investigate the safety and toxicology of intravenous administration of angiopoietin-2 (Ang2)-small interfering (si)RNA plasmid-chitosan magnetic nanoparticles (CMNPs). Ang2-CMNPs were constructed and subsequently administered at different doses to mice and rats via the tail vein. The acute (in mice) and chronic toxicity (in rats) were observed. The results of the acute toxicity assay revealed that the LD50 mice was >707.0 mg·kg-1·d-1, and the general condition of mice revealed no obvious abnormalities. With the exception of the high dose group (254.6 mg·kg-1·d-1), which exhibited partial lung congestion, the other groups exhibited no obvious abnormalities. Results of the chronic toxicity assay demonstrated that the non-toxic dose of Ang2-CMNPs in the rat was >35.35 mg·kg-1·d-1 for 14 days. The rat general condition and blood biochemistry indexes revealed no obvious abnormality. The blood routine indexes and lung/body ratio of each treatment group were higher when compared with the control group. The middle- and high-dose groups exhibited chronic pulmonary congestion, whilst the low-dose and control groups exhibited no abnormality. Similarly, the other organs revealed no obvious abnormality. Ang2-CMNPs have good safety at a certain dose range and may be considered as the target drug carrier.
Collapse
Affiliation(s)
- Xiuying Shan
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Tingting Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Zhaoliang Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xuefeng Hu
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| | - Yan-Ding Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| | - Biao Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
22
|
Nogueira-Librelotto DR, Scheeren LE, Vinardell MP, Mitjans M, Rolim CM. Chitosan-tripolyphosphate nanoparticles functionalized with a pH-responsive amphiphile improved the in vitro antineoplastic effects of doxorubicin. Colloids Surf B Biointerfaces 2016; 147:326-335. [DOI: 10.1016/j.colsurfb.2016.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/04/2016] [Accepted: 08/11/2016] [Indexed: 12/25/2022]
|
23
|
Liu K, Jiang X, Hunziker P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. NANOSCALE 2016; 8:16091-16156. [PMID: 27714108 DOI: 10.1039/c6nr04489a] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanoparticles (NPs) are novel drug delivery systems that have been attracting more and more attention in recent years, and have been used for the treatment of cancer, infection, inflammation and other diseases. Among the numerous classes of materials employed for constructing NPs, organic polymers are outstanding due to the flexibility of design and synthesis and the ease of modification and functionalization. In particular, NP based amphiphilic polymers make a great contribution to the delivery of poorly-water soluble drugs. For example, natural, biocompatible and biodegradable products like polysaccharides are widely used as building blocks for the preparation of such drug delivery vehicles. This review will detail carbohydrate based amphiphilic polymeric systems for cancer therapy. Specifically, it focuses on the nature of the polymer employed for the preparation of targeted nanocarriers, the synthetic methods, as well as strategies for the application and evaluation of biological activity. Applications of the amphiphilic polymer systems include drug delivery, gene delivery, photosensitizer delivery, diagnostic imaging and specific ligand-assisted cellular uptake. As a result, a thorough understanding of the relationship between chemical structure and biological properties facilitate the optimal design and rational clinical application of the resulting carbohydrate based nano delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Kegang Liu
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, Basel, CH-4056, Switzerland.
| | - Xiaohua Jiang
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Patrick Hunziker
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, Basel, CH-4056, Switzerland. and CLINAM Foundation for Clinical Nanomedicine, Alemannengasse 12, Basel, CH-4016, Switzerland.
| |
Collapse
|
24
|
Faustino C, Serafim C, Rijo P, Reis CP. Bile acids and bile acid derivatives: use in drug delivery systems and as therapeutic agents. Expert Opin Drug Deliv 2016; 13:1133-48. [DOI: 10.1080/17425247.2016.1178233] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Serafim
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Rijo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Universidade Lusófona de Humanidades e Tecnologias, Escola de Ciências e Tecnologias da Saúde, Research Center for Biosciences and Healht Technologies (CBIOS), Lisbon, Portugal
| | - Catarina Pinto Reis
- Universidade Lusófona de Humanidades e Tecnologias, Escola de Ciências e Tecnologias da Saúde, Research Center for Biosciences and Healht Technologies (CBIOS), Lisbon, Portugal
- Biophysics and Biomedical Engineering Institute (IBEB), Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
25
|
Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumour Biol 2015; 36:5727-42. [PMID: 26142733 DOI: 10.1007/s13277-015-3706-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023] Open
Abstract
The selective and efficient drug delivery to tumor cells can remarkably improve different cancer therapeutic approaches. There are several nanoparticles (NPs) which can act as a potent drug carrier for cancer therapy. However, the specific drug delivery to cancer cells is an important issue which should be considered before designing new NPs for in vivo application. It has been shown that cancer cells over-express folate receptor (FR) in order to improve their growth. As normal cells express a significantly lower levels of FR compared to tumor cells, it seems that folate molecules can be used as potent targeting moieties in different nanocarrier-based therapeutic approaches. Moreover, there is evidence which implies folate-conjugated NPs can selectively deliver anti-tumor drugs into cancer cells both in vitro and in vivo. In this review, we will discuss about the efficiency of different folate-conjugated NPs in cancer therapy.
Collapse
|