1
|
Martelli A, Bellucci D, Cannillo V. An Enhanced Bioactive Glass Composition with Improved Thermal Stability and Sinterability. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6175. [PMID: 39769775 PMCID: PMC11677950 DOI: 10.3390/ma17246175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
The development of new bioactive glasses (BGs) with enhanced bioactivity and improved resistance to crystallization is crucial for overcoming the main challenges faced by commercial BGs. Most shaping processes require thermal treatments, which can induce partial crystallization, negatively impacting the biological and mechanical properties of the final product. In this study, we present a novel bioactive glass composition, S53P4_MSK, produced by a melt-quench route. This novel composition includes magnesium and strontium, known for their therapeutic effects, and potassium, recognized for improving the thermal properties of bioactive glasses. The thermal properties were investigated through differential thermal analysis, heating microscopy and sintering tests from 600 °C to 900 °C. These characterizations, combined with X-ray diffraction analysis, demonstrated the high sinterability without crystallization of S53P4_MSK, effectively mitigating related issues. The mechanical properties-elastic modulus, hardness and fracture toughness-were evaluated on the sintered sample by micro-indentation, showing high elastic modulus and hardness. The bioactivity of the novel BG was assessed following Kokubo's protocol and confirmed by scanning electron microscopy, X-ray energy dispersive spectroscopy, and Raman spectroscopy. The novel bioactive glass composition has shown high sinterability without crystallization at 700 °C, along with good mechanical properties and bioactivity.
Collapse
|
2
|
Lyyra I, Isomäki M, Huhtala H, Kellomäki M, Miettinen S, Massera J, Sartoneva R. Ionic Dissolution Products of Lithium-, Strontium-, and Boron-Substituted Silicate Glasses Influence the Viability and Proliferation of Adipose Stromal Cells, Fibroblasts, Urothelial and Endothelial Cells. ACS OMEGA 2024; 9:49348-49367. [PMID: 39713681 PMCID: PMC11656255 DOI: 10.1021/acsomega.4c06587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
While bioactive glasses (BaGs) have been studied mainly for bone applications, studies have also shown their potential for soft tissue engineering. Incorporating therapeutic ions, such as lithium (Li+), strontium (Sr2+), and boron (B3+) into the BaGs, has been found to promote angiogenesis and wound healing. However, a systematic study on the impact of Li+, Sr2+, B3+, and the other ions in the BaGs, has not been conducted on a wide range of cells. Although the interactions between the BaGs and cells have been studied, it is difficult to compare the results between studies and conclude the impact of BaGs between cell types due to the variability of culture conditions, cells, and materials. We aim to evaluate the dissolution behavior of Li-, Sr-, and B-substituted BaGs and the effects of their ionic dissolution products on the viability, proliferation, and morphology of multiple cell types: human adipose stromal cells (hASCs), human lung fibroblasts (cell line WI-38), human urothelial cells (hUCs), and human umbilical vein endothelial cells (HUVECs). In the dissolution study, the B-substituted glasses induced a higher increase in pH and released more ions than the silicate glasses. The undiluted BaG extracts supported the viability and proliferation of all the other cell types except the hUCs. Diluting the BaG extracts to 1:10 restored the viability of hUCs but induced distinctive morphological changes. Diluting the extracts more (1:100) almost fully restored the hUC morphology. To conclude, the ionic dissolution products of Li-, Sr-, and B-substituted BaGs seem beneficial for hASCs, WI-38, hUCs, and HUVECs, but attention must be paid to the ion concentrations.
Collapse
Affiliation(s)
- Inari Lyyra
- Faculty of
Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 3, Tampere FI-33720, Finland
| | - Mari Isomäki
- Faculty of
Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 3, Tampere FI-33720, Finland
| | - Heini Huhtala
- Faculty of
Social Sciences, Tampere University, Arvo Ylpön katu 34, Tampere FI-33520, Finland
| | - Minna Kellomäki
- Faculty of
Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 3, Tampere FI-33720, Finland
| | - Susanna Miettinen
- Faculty of
Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, Tampere FI-33520, Finland
- Research
and Development and Innovation, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Arvo Ylpön katu 6, Tampere FI-33521, Finland
| | - Jonathan Massera
- Faculty of
Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 3, Tampere FI-33720, Finland
| | - Reetta Sartoneva
- Faculty of
Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, Tampere FI-33520, Finland
- Research
and Development and Innovation, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Arvo Ylpön katu 6, Tampere FI-33521, Finland
- Department
of Obstetrics and Gynaecology, Seinäjoki Central Hospital, South Ostrobothnia Wellbeing Services County, Hanneksenrinne 7, Seinäjoki FI-60220, Finland
| |
Collapse
|
3
|
Tainio JM, Vanhatupa S, Miettinen S, Massera J. Borosilicate bioactive glasses with added Mg/Sr enhances human adipose-derived stem cells osteogenic commitment and angiogenic properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:71. [PMID: 39614975 PMCID: PMC11608307 DOI: 10.1007/s10856-024-06830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/06/2024] [Indexed: 12/22/2024]
Abstract
Bioactive glasses are one of the most promising materials for applications in bone tissue engineering. In this study, the focus was on borosilicate bioactive glasses with composition 47.12 SiO2 - 6.73 B2O3 - 21.77-x-y CaO - 22.65 Na2O - 1.72 P2O5 - x MgO - y SrO (mol%). These compositions are based on silicate S53P4 bioactive glass, from where 12.5% of SiO2 is replaced with B2O3, and additionally, part of CaO is substituted for MgO and/or SrO. The impact of ion release, both as extract and in direct contact, on human adipose-derived stem cells' (hADSCs) viability, proliferation, ECM maturation, osteogenic commitment and endothelial marker expression was assessed. Osteogenic media supplements were utilized with the extracts, and in part of the direct cell/material culturing conditions. While it has been reported in other studies that boron release can induce cytotoxicity, the glasses in this study supported cells viability and proliferation. Moreover, borosilicate's, especially with further Mg/Sr substitutions, upregulated several osteogenic markers (such as RUNX2a, OSTERIX, DLX5, OSTEOPONTIN), as well as angiogenic factors (e.g., vWF and PECAM-1). Furthermore, the studied glasses supported collagen-I production even in the absence of osteogenic supplements, when hADSCs were cultured in contact with the glasses, suggesting that while the bioactive glass degradation products are beneficial for osteogenesis, the glasses surface physico-chemical properties play a significant role on hADSCs differentiation. This study brings critical information on the impact of bioactive glass compositional modification to control glass dissolution and the subsequent influence on stem cells proliferation and differentiation. Furthermore, the role of the material surface chemistry on promoting cell differentiation is reported.
Collapse
Affiliation(s)
- Jenna M Tainio
- Bioceramics, Bioglasses and Biocomposites Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland.
| | - Sari Vanhatupa
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520, Tampere, Finland
| | - Jonathan Massera
- Bioceramics, Bioglasses and Biocomposites Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
| |
Collapse
|
4
|
Aalto-Setälä L, Uppstu P, Björkenheim R, Strömberg G, Lindfors NC, Pajarinen J, Hupa L. In vitro and in vivo dissolution of biocompatible S59 glass scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:38. [PMID: 38958834 PMCID: PMC11222206 DOI: 10.1007/s10856-024-06795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/20/2024] [Indexed: 07/04/2024]
Abstract
Fabrication of porous tissue-engineering scaffolds from bioactive glasses (BAG) is complicated by the tendency of BAG compositions to crystallize in thermal treatments during scaffold manufacture. Here, experimental biocompatible glass S59 (SiO2 59.7 wt%, Na2O 25.5 wt%, CaO 11.0 wt%, P2O5 2.5 wt%, B2O3 1.3 wt%), known to be resistant to crystallization, was used in sintering of glass granules (300-500 µm) into porous scaffolds. The dissolution behavior of the scaffolds was then studied in vivo in rabbit femurs and under continuous flow conditions in vitro (14 days in vitro/56 days in vivo). The scaffolds were osteoconductive in vivo, as bone could grow into the scaffold structure. Still, the scaffolds could not induce sufficiently rapid bone ingrowth to replace the strength lost due to dissolution. The scaffolds lost their structure and strength as the scaffold necks dissolved. In vitro, S59 dissolved congruently throughout the 14-day experiments, resulting in only a slight reaction layer formation. Manufacturing BAG scaffolds from S59 that retain their amorphous structure was thus possible. The relatively rapid and stable dissolution of the scaffold implies that the glass S59 may have the potential to be used in composite implants providing initial strength and stable, predictable release of ions over longer exposure times.
Collapse
Affiliation(s)
- Laura Aalto-Setälä
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland.
| | - Peter Uppstu
- Polymer Technology Research Group, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Robert Björkenheim
- Department of Musculoskeletal and Plastic Surgery, Helsinki University Hospital, Helsinki University, Helsinki, Finland
| | | | - Nina C Lindfors
- Department of Musculoskeletal and Plastic Surgery, Helsinki University Hospital, Helsinki University, Helsinki, Finland
| | - Jukka Pajarinen
- Department of Musculoskeletal and Plastic Surgery, Helsinki University Hospital, Helsinki University, Helsinki, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| |
Collapse
|
5
|
Silva AV, Gomes DDS, Victor RDS, Santana LNDL, Neves GA, Menezes RR. Influence of Strontium on the Biological Behavior of Bioactive Glasses for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7654. [PMID: 38138796 PMCID: PMC10744628 DOI: 10.3390/ma16247654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Bioactive glasses (BGs) can potentially be applied in biomedicine, mainly for bone repair and replacement, given their unique ability to connect to natural bone tissue and stimulate bone regeneration. Since their discovery, several glass compositions have been developed to improve the properties and clinical abilities of traditional bioactive glass. Different inorganic ions, such as strontium (Sr2+), have been incorporated in BG due to their ability to perform therapeutic functions. Sr2+ has been gaining prominence due to its ability to stimulate osteogenesis, providing an appropriate environment to improve bone regeneration, in addition to its antibacterial potential. However, as there are still points in the literature that are not well consolidated, such as the influence of ionic concentrations and the BG production technique, this review aims to collect information on the state of the art of the biological behavior of BGs containing Sr2+. It also aims to gather data on different types of BGs doped with different concentrations of Sr2+, and to highlight the manufacturing techniques used in order to analyze the influence of the incorporation of this ion for bone regeneration purposes.
Collapse
Affiliation(s)
- Amanda Vieira Silva
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil;
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Déborah dos Santos Gomes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Rayssa de Sousa Victor
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Gelmires Araújo Neves
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| |
Collapse
|
6
|
Tuygunov N, Zakaria MN, Yahya NA, Abdul Aziz A, Cahyanto A. Efficacy and bone-contact biocompatibility of glass ionomer cement as a biomaterial for bone regeneration: A systematic review. J Mech Behav Biomed Mater 2023; 146:106099. [PMID: 37660446 DOI: 10.1016/j.jmbbm.2023.106099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Bone regeneration is a rapidly growing field that seeks to develop new biomaterials to regenerate bone defects. Conventional bone graft materials have limitations, such as limited availability, complication, and rejection. Glass ionomer cement (GIC) is a biomaterial with the potential for bone regeneration due to its bone-contact biocompatibility, ease of use, and cost-effectiveness. GIC is a two-component material that adheres to the bone and releases ions that promote bone growth and mineralization. A systematic literature search was conducted using PubMed-MEDLINE, Scopus, and Web of Science databases and registered in the PROSPERO database to determine the evidence regarding the efficacy and bone-contact biocompatibility of GIC as bone cement. Out of 3715 initial results, thirteen studies were included in the qualitative synthesis. Two tools were employed in evaluating the Risk of Bias (RoB): the QUIN tool for assessing in vitro studies and SYRCLE for in vivo. The results indicate that GIC has demonstrated the ability to adhere to bone and promote bone growth. Establishing a chemical bond occurs at the interface between the GIC and the mineral phase of bone. This interaction allows the GIC to exhibit osteoconductive properties and promote the growth of bone tissue. GIC's bone-contact biocompatibility, ease of preparation, and cost-effectiveness make it a promising alternative to conventional bone grafts. However, further research is required to fully evaluate the potential application of GIC in bone regeneration. The findings hold implications for advancing material development in identifying the optimal composition and fabrication of GIC as a bone repair material.
Collapse
Affiliation(s)
- Nozimjon Tuygunov
- Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Myrna Nurlatifah Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Noor Azlin Yahya
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Azwatee Abdul Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Department of Dental Materials Science and Technology, Faculty of Dentistry, Padjadjaran University, Jatinangor, 45363, Indonesia.
| |
Collapse
|
7
|
Mecca FG, Bellucci D, Cannillo V. Effect of Thermal Treatments and Ion Substitution on Sintering and Crystallization of Bioactive Glasses: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4651. [PMID: 37444965 DOI: 10.3390/ma16134651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Bioactive glasses (BGs) are promising materials for bone regeneration due to their ability to bond with living bone tissue. However, thermal stability and mechanical properties of BGs need improvement for better clinical performance. In this paper, we present an overview of the influence of different ions on the sintering and crystallization of BGs. Specifically, this review focuses on the impact of thermal treatments on the crystallization of 45S5 and other significant BG compositions. Potential applications of these thermally treated BGs, such as scaffolds, BG-based composites, and thermally sprayed coatings, are explored. Moreover, the substitution of ions has been investigated as a method to enhance the thermal properties of BGs. Notably, zinc, potassium, and strontium have been studied extensively and have demonstrated promising effects on both the thermal and the mechanical properties of BGs. However, it is important to note that research on ion inclusion in BGs is still in its early stages, and further investigation is necessary to fully comprehend the effects of different ions on sintering and crystallization. Therefore, future studies should focus on optimizing the ion substitution method to improve the thermal, mechanical, and even biological properties of BGs, thereby enhancing their potential for various biomedical applications.
Collapse
Affiliation(s)
- Francesco Gerardo Mecca
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| | - Devis Bellucci
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| |
Collapse
|
8
|
Placek LM, Keenan TJ, Coughlan A, Wren AW. Synthesis, Processing and the Effect of Thermal Treatment on the Solubility, Antioxidant Potential and Cytocompatibility of Y2O3 and CeO2 doped SiO2-SrO-Na2O Glass-Ceramics. J Biomater Appl 2022; 37:102-117. [PMID: 35442110 DOI: 10.1177/08853282221078448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thermal treatment of a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramic series (where x = 0.08 and MO = Y2O3 or CeO2) was conducted in order to synthesize yttrium (Y3+) and cerium (Ce3+) crystalline species that may act as radical oxygen specie (ROS) scavengers. The prominent phase for the Control is a sodium-strontium-silicate while the experimental glass-ceramics (HY, YCe, and HCe) present sodium-Y/Ce-silicate and oxide phases. Disk shrinkage during thermal processing ranges from 1-7% for Control, HY, YCe, and HCe in both diameter and thickness. Solubility studies determined that the release of Si4+ and Na+ are greatest from the Control disks which peaks at 1550 µg/mL. Release from the Y3+ and Ce3+ glass-ceramics reached 320 µg/mL for Si4+ and 630 µg/mL for Na+. The range of antioxidant capacity (ABTS assay) for all samples was 0.31-3.9 mMTE. No significant reduction in MC 3T3 Osteoblast cell viability was observed for any composition tested.
Collapse
Affiliation(s)
- Lana M Placek
- Inamori School of Engineering, 1132Alfred University, Alfred, NY, USA
| | - Timothy J Keenan
- Inamori School of Engineering, 1132Alfred University, Alfred, NY, USA
| | - Aisling Coughlan
- Department of Bioengineering, University of Toledo, Toledo, OH, USA
| | - Anthony W Wren
- Inamori School of Engineering, 1132Alfred University, Alfred, NY, USA
| |
Collapse
|
9
|
Schätzlein E, Kicker C, Söhling N, Ritz U, Neijhoft J, Henrich D, Frank J, Marzi I, Blaeser A. 3D-Printed PLA-Bioglass Scaffolds with Controllable Calcium Release and MSC Adhesion for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14122389. [PMID: 35745964 PMCID: PMC9229101 DOI: 10.3390/polym14122389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Large bone defects are commonly treated by replacement with auto- and allografts, which have substantial drawbacks including limited supply, donor site morbidity, and possible tissue rejection. This study aimed to improve bone defect treatment using a custom-made filament for tissue engineering scaffolds. The filament consists of biodegradable polylactide acid (PLA) and a varying amount (up to 20%) of osteoconductive S53P4 bioglass. By employing an innovative, additive manufacturing technique, scaffolds with optimized physico-mechanical and biological properties were produced. The scaffolds feature adjustable macro- and microporosity (200–2000 µm) with adaptable mechanical properties (83–135 MPa). Additionally, controllable calcium release kinetics (0–0.25 nMol/µL after 24 h), tunable mesenchymal stem cell (MSC) adhesion potential (after 24 h by a factor of 14), and proliferation (after 168 h by a factor of 18) were attained. Microgrooves resulting from the 3D-printing process on the surface act as a nucleus for cell aggregation, thus being a potential cell niche for spheroid formation or possible cell guidance. The scaffold design with its adjustable biomechanics and the bioglass with its antimicrobial properties are of particular importance for the preclinical translation of the results. This study comprehensibly demonstrates the potential of a 3D-printed bioglass composite scaffold for the treatment of critical-sized bone defects.
Collapse
Affiliation(s)
- Eva Schätzlein
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany;
| | | | - Nicolas Söhling
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Ulrike Ritz
- BiomaTiCS Group, Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, 55122 Mainz, Germany;
| | - Jonas Neijhoft
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Johannes Frank
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany;
- Centre for Synthetic Biology, Technical University of Darmstadt, 64289 Darmstadt, Germany
- Correspondence:
| |
Collapse
|
10
|
Aalto-Setälä L, Uppstu P, Sinitsyna P, Lindfors NC, Hupa L. Dissolution of Amorphous S53P4 Glass Scaffolds in Dynamic In Vitro Conditions. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4834. [PMID: 34500924 PMCID: PMC8432720 DOI: 10.3390/ma14174834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022]
Abstract
The silicate-based bioactive glass S53P4 is clinically used in bone regenerative applications in granule form. However, utilization of the glass in scaffold form has been limited by the high tendency of the glass to crystallize during sintering. Here, careful optimization of sintering parameters enabled the manufacture of porous amorphous S53P4 scaffolds with a strength high enough for surgical procedures in bone applications (5 MPa). Sintering was conducted in a laboratory furnace for times ranging from 25 to 300 min at 630 °C, i.e., narrowly below the commencement of the crystallization. The phase composition of the scaffolds was verified with XRD, and the ion release was tested in vitro and compared with granules in continuous flow of Tris buffer and simulated body fluid (SBF). The amorphous, porous S53P4 scaffolds present the possibility of using the glass composition in a wider range of applications.
Collapse
Affiliation(s)
- Laura Aalto-Setälä
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland; (L.A.-S.); (P.S.)
| | - Peter Uppstu
- Polymer Technology Research Group, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland;
| | - Polina Sinitsyna
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland; (L.A.-S.); (P.S.)
| | - Nina C. Lindfors
- Department of Musculoskeletal and Plastic Surgery, Helsinki University Hospital, PL 3 00014 University of Helsinki, 00260 Helsinki, Finland;
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland; (L.A.-S.); (P.S.)
| |
Collapse
|
11
|
Hasandoost L, Marx D, Zalzal P, Safir O, Hurtig M, Mehrvar C, Waldman SD, Papini M, Towler MR. Comparative Evaluation of Two Glass Polyalkenoate Cements: An In Vivo Pilot Study Using a Sheep Model. J Funct Biomater 2021; 12:jfb12030044. [PMID: 34449631 PMCID: PMC8395762 DOI: 10.3390/jfb12030044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(methyl methacrylate) (PMMA) is used to manage bone loss in revision total knee arthroplasty (rTKA). However, the application of PMMA has been associated with complications such as volumetric shrinkage, necrosis, wear debris, and loosening. Glass polyalkenoate cements (GPCs) have potential bone cementation applications. Unlike PMMA, GPC does not undergo volumetric shrinkage, adheres chemically to bone, and does not undergo an exothermic setting reaction. In this study, two different compositions of GPCs (GPCA and GPCB), based on the patented glass system SiO2-CaO-SrO-P2O5-Ta2O5, were investigated. Working and setting times, pH, ion release, compressive strength, and cytotoxicity of each composition were assessed, and based on the results of these tests, three sets of samples from GPCA were implanted into the distal femur and proximal tibia of three sheep (alongside PMMA as control). Clinical CT scans and micro-CT images obtained at 0, 6, and 12 weeks revealed the varied radiological responses of sheep bone to GPCA. One GPCA sample (implanted in the sheep for 12 weeks) was characterized with no bone resorption. Furthermore, a continuous bone-cement interface was observed in the CT images of this sample. The other implanted GPCA showed a thin radiolucent border at six weeks, indicating some bone resorption occurred. The third sample showed extensive bone resorption at both six and 12 weeks. Possible speculative factors that might be involved in the varied response can be: excessive Zn2+ ion release, low pH, mixing variability, and difficulty in inserting the samples into different parts of the sheep bone.
Collapse
Affiliation(s)
- Leyla Hasandoost
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Daniella Marx
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Paul Zalzal
- Faculty of Medicine, Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Oakville Trafalgar Memorial Hospital, Oakville, ON L6J 3L7, Canada
| | - Oleg Safir
- Division of Orthopedic Surgery, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada;
| | - Mark Hurtig
- Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada;
| | - Cina Mehrvar
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Stephen D. Waldman
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Chemical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Marcello Papini
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Mark R. Towler
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada;
- Correspondence:
| |
Collapse
|
12
|
Deraine A, Rebelo Calejo MT, Agniel R, Kellomäki M, Pauthe E, Boissière M, Massera J. Polymer-Based Honeycomb Films on Bioactive Glass: Toward a Biphasic Material for Bone Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29984-29995. [PMID: 34129320 PMCID: PMC8289249 DOI: 10.1021/acsami.1c03759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 05/03/2023]
Abstract
The development of innovative materials for bone tissue engineering to promote bone regeneration while avoiding fibrous tissue infiltration is of paramount importance. Here, we combined the known osteopromotive properties of bioactive glasses (BaGs) with the biodegradability, biocompatibility, and ease to shape/handle of poly-l-co-d,l-lactic acid (PLDLA) into a single biphasic material. The aim of this work was to unravel the role of the surface chemistry and topography of BaG surfaces on the stability of a PLDLA honeycomb membrane, in dry and wet conditions. The PLDLA honeycomb membrane was deposited using the breath figure method (BFM) on the surface of untreated BaG discs (S53P4 and 13-93B20), silanized with 3-aminopropyltriethoxysilane (APTES) or conditioned (immersed for 24 h in TRIS buffer solution). The PLDLA membranes deposited onto the BaG discs, regardless of their composition or surface treatments, exhibited a honeycomb-like structure with pore diameter ranging from 1 to 5 μm. The presence of positively charged amine groups (APTES grafting) or the precipitation of a CaP layer (conditioned) significantly improved the membrane resistance to shear as well as its stability upon immersion in the TRIS buffer solution. The obtained results demonstrated that the careful control of the substrate surface chemistry enabled the deposition of a stable honeycomb membrane at their surface. This constitutes a first step toward the development of new biphasic materials enabling osteostimulation (BaG) while preventing migration of fibrous tissue inside the bone defect (honeycomb polymer membrane).
Collapse
Affiliation(s)
- A. Deraine
- ERRMECe,
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules
(EA1391), Université de Cergy-Pontoise, Maison Internationale
de la Recherche (MIR), Rue Descartes, 95001 Neuville sur Oise, Cedex, France
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - M. T. Rebelo Calejo
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - R. Agniel
- ERRMECe,
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules
(EA1391), Université de Cergy-Pontoise, Maison Internationale
de la Recherche (MIR), Rue Descartes, 95001 Neuville sur Oise, Cedex, France
| | - M. Kellomäki
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - E. Pauthe
- ERRMECe,
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules
(EA1391), Université de Cergy-Pontoise, Maison Internationale
de la Recherche (MIR), Rue Descartes, 95001 Neuville sur Oise, Cedex, France
| | - M. Boissière
- ERRMECe,
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules
(EA1391), Université de Cergy-Pontoise, Maison Internationale
de la Recherche (MIR), Rue Descartes, 95001 Neuville sur Oise, Cedex, France
| | - J. Massera
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| |
Collapse
|
13
|
Sneha KR, Sreeja S, Sailaja GS. Radiopacity endowed magnetic nanocomposite with hyperthermia and in vitromineralization potential: a combinatorial therapeutic system for osteosarcoma. Biomed Mater 2021; 16. [PMID: 34061045 DOI: 10.1088/1748-605x/ac01af] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
The development of clinically advanced multifaceted therapeutic materials for osteosarcoma is at the forefront of cancer research. Accordingly, this work presents the design of a multifunctional magnetic nanocomposite composed of maghemite, strontium doped hydroxyapatite and silica nanoparticles prospectively holding indispensable therapeutic features such as magnetic hyperthermia,in vitrobiomineralization, sustained drug release and intrinsic radiopacity for the treatment of osteosarcoma. The optimal composition has been identified by sequentially modulating the ratio of precursors of the magnetic nanocomposite synthesized by sol-gel technique. Structural and morphological characterization by x-ray diffraction, fourier transform infrared spectrum, Brunauer-Emmet-Teller and transmission electron microscopy analyses followed by VSM, hyperthermia and micro-CT analyses essentially assisted in the selective configuration of biofunctional properties. Results exemplify that MSHSr1 has a saturation magnetization of 47.4 emu g-1and attained hyperthermia temperature (42 °C) at a very low exposure time of 4 min. MSHSr1 is further unique with respect to its exceptional x-ray attenuation ability (contrast enhancement 154.5% in digital radiography; CT number 3100 HU), early biomimetic mineralization (in vitro) evident by the formation of spheroidal apatite layer (Ca/P ratio 1.33) harvested from FESEM-EDX analysis and controlled release of Doxorubicin, the clinically used chemotherapeutic drug: 87.7% at 120 h in tumour analogous pH (6.5) when compared to physiological pH (71.3% at 7.4). MTT assay complemented with cytoskeleton (F-actin) staining of human osteosarcoma (HOS) cells affirm biocompatibility of MSHSr1.In vitrobiomineralization authenticated by Alizarin red S and von Kossa staining has been further corroborated by semi-quantitative calcium estimation of HOS cells cultured with MSHSr1 for two weeks. The results therefore validate the multifunctionality of MSHSr1, and hence could be proposed as a combinatorial therapeutic nanocomposite for osteosarcoma treatment.
Collapse
Affiliation(s)
- K R Sneha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi 682022, India
| | - S Sreeja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi 682022, India
| | - G S Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi 682022, India.,Inter University Centre for Nanomaterials and Devices, CUSAT, Kochi 682022, India.,Centre for Advanced Materials, CUSAT, Kochi 682022, India
| |
Collapse
|
14
|
Tiskaya M, Shahid S, Gillam D, Hill R. The use of bioactive glass (BAG) in dental composites: A critical review. Dent Mater 2021; 37:296-310. [PMID: 33441250 DOI: 10.1016/j.dental.2020.11.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/23/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In recent years, numerous studies have analyzed the role of bioactive glass (BAG) as remineralizing additives in dental restorative composites. This current review provides a critical analysis of the existing literature, particularly focusing on BAGs prepared via the melt-quench route that form an "apatite-like" phase when immersed in physiological-like solutions. METHODS Online databases (Science Direct, PubMed and Google Scholar) were used to collect data published from 1962 to 2020. The research papers were analyzed and the relevant papers were selected for this review. Sol-gel BAGs were not included in this review since it is not a cost-effective manufacturing technique that can be upscaled and is difficult to incorporate fluoride. RESULTS BAGs release Ca2+, PO43- and F- ions, raise the pH and form apatite. There are numerous published papers on the bioactivity of BAGs, but the different glass compositions, volume fractions, particle sizes, immersion media, time points, and the characterization techniques used, make comparison difficult. Several papers only use certain characterization techniques that do not provide a full picture of the behavior of the glass. It was noted that in most studies, mechanical properties were measured on dry samples, which does not replicate the conditions in the oral environment. Therefore, it is recommended that samples should be immersed for longer time periods in physiological solutions to mimic clinical environments. SIGNIFICANCE BAGs present major benefits in dentistry, especially their capacity to form apatite, which could potentially fill any marginal gaps produced due to polymerization shrinkage.
Collapse
Affiliation(s)
- Melissa Tiskaya
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Institute of Dentistry, Centre for Oral Bioengineering, Mile End Road, London E1 4NS, UK.
| | - Saroash Shahid
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Institute of Dentistry, Centre for Oral Bioengineering, Mile End Road, London E1 4NS, UK
| | - David Gillam
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Institute of Dentistry, Centre for Oral Bioengineering, Mile End Road, London E1 4NS, UK
| | - Robert Hill
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Institute of Dentistry, Centre for Oral Bioengineering, Mile End Road, London E1 4NS, UK
| |
Collapse
|
15
|
Mosqueira L, Barrioni BR, Martins T, Ocarino NDM, Serakides R, Pereira MDM. In vitro effects of the co-release of icariin and strontium from bioactive glass submicron spheres on the reduced osteogenic potential of rat osteoporotic bone marrow mesenchymal stem cells. ACTA ACUST UNITED AC 2020; 15:055023. [PMID: 32375130 DOI: 10.1088/1748-605x/ab9095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Osteoporosis is a metabolic disease that affects bone tissue and is highly associated with bone fractures. Typical osteoporosis fracture treatments, such as bisphosphonates and hormone replacement, present important challenges because of their low bioavailability on the site of action. Options to overcome this issue are systems for the local release of therapeutic agents such as bioactive glasses containing therapeutic molecules and ions. These agents are released during the dissolution process, combining the drugs and ion therapeutic effects for osteoporosis treatment. Among the therapeutic agents that can be applied for bone repair are strontium (Sr) ion and phytopharmaceutical icariin, which have shown potential to promote healthy bone marrow stem cells osteogenic differentiation, increase bone formation and prevent bone loss. Submicron Sr-containing bioactive glass mesoporous spheres with sustained ion release capacity were obtained. Icariin was successfully incorporated into the particles, and the glass composition influenced the icariin incorporation efficiency and release rates. In this work, for the first time, Sr and icariin were incorporated into bioactive glass submicron mesoporous spheres and the in vitro effects of the therapeutic agents release were evaluated on the reduced osteogenic potential of rat osteoporotic bone marrow mesenchymal stem cells, and results showed an improvement on the reduced differentiation potential.
Collapse
Affiliation(s)
- Layla Mosqueira
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Nommeots-Nomm A, Houaoui A, Pradeepan Packiyanathar A, Chen X, Hokka M, Hill R, Pauthe E, Petit L, Boissière M, Massera J. Phosphate/oxyfluorophosphate glass crystallization and its impact on dissolution and cytotoxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111269. [PMID: 32919633 DOI: 10.1016/j.msec.2020.111269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 11/19/2022]
Abstract
The role of fluorine in bioactive glasses is of interest due to the potential of precipitating fluorapatite, a phase with higher chemical resistance than the typical hydroxyapatite precipitated from oxide bioactive glasses. However, the introduction of fluorine in silicate bioactive glasses was found deleterious to the bioactivity of the glass. Here, phosphate glasses with the composition 75NaPO3-(25-x) CaO-xCaF2 (in mol%), with x = 0-20 and glass-ceramics were investigated to evaluate their potential as substitutes to the traditional silicate bioactive glass. An increase in CaF2 substitution for CaO led to an increase in the glass solubility, due to an increase in highly soluble F(M)n species (where M is a cation) and to an increased polymerization of the phosphate network. Structural analysis reveals the formation of FP bonds, in addition to the F(M)n species, in the glass with the higher CaF2 content. Furthermore, with heat treatment, CaF2 crystals precipitate within the bulk in the newly developed glass, when x = 20. This bulk crystallization reduces the glass dissolution without compromising the precipitation of a reactive layer at the glass surface. Finally, in vitro cell tests were performed using MC3T3 pre-osteoblastic cells. While the substitution of CaF2 for CaO led to an increased cytotoxicity, the controlled crystallization of the fluorine containing glasses decreased such cytotoxicity to similar values than traditional bioactive phosphate glass (x0). This study reports on new oxyfluorophosphate glass and glass-ceramics able, not only, to precipitate a Ca-P reactive layer but also to be processed into glass-ceramics with controlled crystal size, density and cellular activity. STATEMENT OF SIGNIFICANCE: Uncontrolled crystallization of bioactive glasses has negative effect on the materials' bioactivity. While in silicate glass the bioactivity is solely reduced, in phosphate glasses it is often completely suppressed. Furthermore, the need for fluorine containing bioactive glasses, not only for use in bone reconstruction but also in toothpaste as emerged. The addition of F in both silicate and phosphate has led to challenges due the lack of Si-F or P-F bonds, generally leading to a decrease in bioactivity. Here, we developed a bioactive invert phosphate glass where up to 20 mol% of CaO was replaced with CaF2. In the new developed glasses, NMR demonstrated formation of P-F bonds. The content of fluorine was tailored to induce CaF2 bulk crystallization. Overall an increase in F was associated with an increase network connectivity. In turns it led to an increased dissolution rate which was linked to a higher cytotoxicity. Upon (partial to full) surface crystallization of the F-free glass, the bioactivity (ability to form a reactive layer) was loss and the cytotoxicity again increased due to the rapid dissolution of one crystal phase and of the remaining amorphous phase. On another hand, the controlled bulk precipitation of CaF2 crystals, in the F-containing glass, was associated with a reduced cytotoxicity. The new oxyfluorophosphate glass-ceramic developed is promising for application in the biomedical field.
Collapse
Affiliation(s)
- A Nommeots-Nomm
- Tampere University, Faculty of Medicine and Health Technology, Laboratory of Biomaterials and Tissue Engineering, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - A Houaoui
- Biomaterials for Health Research Group, ERRMECe, Equipe de recherche sur les Relations Matrice Extracellulaire-Cellules (EA1391), Institut des matériaux I-MAT (FD4122), CY Tech, CY Cergy Paris University, Maison Internationale de la Recherche (MIR), rue Descartes, 95001 Neuville sur Oise cedex, France
| | - A Pradeepan Packiyanathar
- Biomaterials for Health Research Group, ERRMECe, Equipe de recherche sur les Relations Matrice Extracellulaire-Cellules (EA1391), Institut des matériaux I-MAT (FD4122), CY Tech, CY Cergy Paris University, Maison Internationale de la Recherche (MIR), rue Descartes, 95001 Neuville sur Oise cedex, France
| | - X Chen
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - M Hokka
- Tampere University of Technology, Laboratory of Material Sciences, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - R Hill
- Dental Physical Sciences, Institute of Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - E Pauthe
- Biomaterials for Health Research Group, ERRMECe, Equipe de recherche sur les Relations Matrice Extracellulaire-Cellules (EA1391), Institut des matériaux I-MAT (FD4122), CY Tech, CY Cergy Paris University, Maison Internationale de la Recherche (MIR), rue Descartes, 95001 Neuville sur Oise cedex, France
| | - L Petit
- Tampere University of Technology, Laboratory of Photonics, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - M Boissière
- Biomaterials for Health Research Group, ERRMECe, Equipe de recherche sur les Relations Matrice Extracellulaire-Cellules (EA1391), Institut des matériaux I-MAT (FD4122), CY Tech, CY Cergy Paris University, Maison Internationale de la Recherche (MIR), rue Descartes, 95001 Neuville sur Oise cedex, France
| | - J Massera
- Tampere University, Faculty of Medicine and Health Technology, Laboratory of Biomaterials and Tissue Engineering, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| |
Collapse
|
17
|
Faqhiri H, Hannula M, Kellomäki M, Calejo MT, Massera J. Effect of Melt-Derived Bioactive Glass Particles on the Properties of Chitosan Scaffolds. J Funct Biomater 2019; 10:E38. [PMID: 31412615 PMCID: PMC6787686 DOI: 10.3390/jfb10030038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/16/2022] Open
Abstract
This study reports on the processing of three-dimensional (3D) chitosan/bioactive glass composite scaffolds. On the one hand, chitosan, as a natural polymer, has suitable properties for tissue engineering applications but lacks bioactivity. On the other hand, bioactive glasses are known to be bioactive and to promote a higher level of bone formation than any other biomaterial type. However, bioactive glasses are hard, brittle, and cannot be shaped easily. Therefore, in the past years, researchers have focused on the processing of new composites. Difficulties in reaching composite materials made of polymer (synthetic or natural) and bioactive glass include: (i) The high glass density, often resulting in glass segregation, and (ii) the fast bioactive glass reaction when exposed to moisture, leading to changes in the glass reactivity and/or change in the polymeric matrix. Samples were prepared with 5, 15, and 30 wt% of bioactive glass S53P4 (BonAlive ®), as confirmed using thermogravimetric analysis. MicrO-Computed tomography and optical microscopy revealed a flaky structure with porosity over 80%. The pore size decreased when increasing the glass content up to 15 wt%, but increased back when the glass content was 30 wt%. Similarly, the mechanical properties (in compression) of the scaffolds increased for glass content up to 15%, but decreased at higher loading. Ions released from the scaffolds were found to lead to precipitation of a calcium phosphate reactive layer at the scaffold surface. This is a first indication of the potential bioactivity of these materials. Overall, chitosan/bioactive glass composite scaffolds were successfully produced with pore size, machinability, and ability to promote a calcium phosphate layer, showing promise for bone tissue engineering and the mechanical properties can justify their use in non-load bearing applications.
Collapse
Affiliation(s)
- Hamasa Faqhiri
- Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Markus Hannula
- Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Minna Kellomäki
- Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Maria Teresa Calejo
- Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Jonathan Massera
- Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland.
| |
Collapse
|
18
|
Mouriño V, Vidotto R, Cattalini J, Boccaccini A. Enhancing biological activity of bioactive glass scaffolds by inorganic ion delivery for bone tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Mishra A, Ojansivu M, Autio R, Vanhatupa S, Miettinen S, Massera J. In-vitro dissolution characteristics and human adipose stem cell response to novel borophosphate glasses. J Biomed Mater Res A 2019; 107:2099-2114. [PMID: 31087776 DOI: 10.1002/jbm.a.36722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/06/2022]
Abstract
The main drawbacks of traditional silicate bioactive glasses are their narrow hot forming domain and noncongruent dissolution. In this article, we report on new borophosphate glasses [xMn Om + (100 - x) (47.5P2 O5 + 2.5B2 O3 + 10Na2 O + 20CaO + 20SrO)], Mn Om being CuO, Ag2 O, and CeO2 , having high thermal processability, hence suitable for fiber drawing and sintering into scaffolds. Furthermore, the glasses dissolve congruently in simulated body fluid (SBF) and TRIS buffer solution, eventually leading to the precipitation of a reactive layer. Human adipose stem cells (hASC) were cultured in media enriched with glass extract at different dilutions, to investigate the optimal ion concentration for cell survival. Cells grew in all the extracts, except in the undiluted Cu-doped glass extract. At dilution 1:10, the lactate dehydrogenase (LDH) activity and cell proliferation were comparable to the control, while at 1:100, the cells proliferated faster than the control. Thus, the reference (undoped), Ag and Ce-doped glasses were found to be suitable for cell viability and proliferation. Cytotoxicity assessments using the LDH assay indeed revealed the high cytotoxicity of the Cu extract. This raises questions about the use of Cu in bioactive glasses and its optimal concentration as a dopant.
Collapse
Affiliation(s)
- Ayush Mishra
- Laboratory of Biomaterials and Tissue Engineering, Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, Finland
| | - Miina Ojansivu
- Adult Stem Cell Group, Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Finland
| | - Reija Autio
- Faculty of Social Sciences and BioMediTech, Tampere University, Tampere, Finland
| | - Sari Vanhatupa
- Adult Stem Cell Group, Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Jonathan Massera
- Laboratory of Biomaterials and Tissue Engineering, Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, Finland
| |
Collapse
|
20
|
Fabrication of strontium-releasable inorganic cement by incorporation of bioactive glass. Dent Mater 2019; 35:780-788. [DOI: 10.1016/j.dental.2019.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
|
21
|
Tripathi H, Rath C, Kumar AS, Manna PP, Singh SP. Structural, physico-mechanical and in-vitro bioactivity studies on SiO 2-CaO-P 2O 5-SrO-Al 2O 3 bioactive glasses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:279-290. [PMID: 30423710 DOI: 10.1016/j.msec.2018.09.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022]
Abstract
Strontium based bioactive glasses have shown a better biocompatibility than calcia based bioactive glasses. In this report, we have shown that the bioactivity is found to be even more when we incorporate Al2O3 upto 1.5 mol% in SiO2-CaO-P2O5-SrO bioactive glass. We have studied the structural, physico-mechanical and bioactive properties in these glasses with varying alumina concentration from 0.5 to 2.5 mol%. The bioactivity of the glasses is evaluated by in vitro test in simulated body fluid (SBF). The formation of hydroxy carbonated apatite layer (HCA) on the surface of glasses after immersion in SBF is identified by the XRD, FTIR and SEM. The substitution of Al2O3 for SrO in these glasses demonstrates a significant enhancement in compressive strength and elastic modulus. However cytotoxicity and cell viability assessed using human osteosarcoma U2-OS cell lines show the growth of the cells without causing any significant loss of viability and cell death upto 1.5 mol% addition of Al2O3. Osteosarcoma cells grow on the surface of bioglasses which make them biocompatible and fit for use in clinical trials.
Collapse
Affiliation(s)
- Himanshu Tripathi
- Department of Ceramic Engineering, IIT (BHU), Varanasi 221005, India; School of Materials Science & Technology, IIT (BHU), Varanasi 221005, India..
| | - Chandana Rath
- School of Materials Science & Technology, IIT (BHU), Varanasi 221005, India..
| | | | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - S P Singh
- Department of Ceramic Engineering, IIT (BHU), Varanasi 221005, India.
| |
Collapse
|
22
|
Ojansivu M, Mishra A, Vanhatupa S, Juntunen M, Larionova A, Massera J, Miettinen S. The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells. PLoS One 2018; 13:e0202740. [PMID: 30153295 PMCID: PMC6112657 DOI: 10.1371/journal.pone.0202740] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/07/2018] [Indexed: 01/09/2023] Open
Abstract
Despite the good performance of silicate bioactive glasses in bone regeneration, there is considerable potential to enhance their properties by chemical modifications. In this study, S53P4-based borosilicate glasses were synthesized and their dissolution profile was studied in simulated body fluid by assessing pH change, ion release and conversion to hydroxyapatite. The viability, proliferation, attachment, osteogenesis and endothelial marker expression of human adipose stem cells (hASCs) was evaluated upon direct culture on glass discs and in the extract medium. This is the first study evaluating cell behavior in response to borosilicate glasses based on S53P4 (commercially available as BonAlive®). Replacing silicate with borate in S53P4 increased the glass reactivity. Despite the good viability of hASCs under all conditions, direct culture of cells on borosilicate discs and in undiluted extract medium reduced cell proliferation. This was accompanied with changes in cell morphology. Regarding osteogenic commitment, alkaline phosphatase activity was significantly reduced by the borosilicate glass discs and extracts, whereas the expression of osteogenic markers RUNX2a, OSTERIX, DLX5 and OSTEOPONTIN was upregulated. There was also a borosilicate glass-induced increase in osteocalcin protein production. Moreover, osteogenic supplements containing borosilicate extracts significantly increased the mineral production in comparison to the osteogenic medium control. Interestingly, borosilicate glasses stimulated the expression of endothelial markers vWF and PECAM-1. To conclude, our results reveal that despite reducing hASC proliferation, S53P4-based borosilicate glasses and their dissolution products stimulate osteogenic commitment and upregulate endothelial markers, thus supporting their further evaluation for regenerative medicine.
Collapse
Affiliation(s)
- Miina Ojansivu
- Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, Finland
- Science Center, Tampere University Hospital, Tampere, Finland
| | - Ayush Mishra
- Faculty of Biomedical Science and Engineering and BioMediTech Institute, Tampere University of Technology, Tampere, Finland
| | - Sari Vanhatupa
- Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, Finland
- Science Center, Tampere University Hospital, Tampere, Finland
| | - Miia Juntunen
- Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, Finland
- Science Center, Tampere University Hospital, Tampere, Finland
| | - Antonina Larionova
- Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, Finland
- Science Center, Tampere University Hospital, Tampere, Finland
| | - Jonathan Massera
- Faculty of Biomedical Science and Engineering and BioMediTech Institute, Tampere University of Technology, Tampere, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, Finland
- Science Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
23
|
In vitro osteogenesis by intracellular uptake of strontium containing bioactive glass nanoparticles. Acta Biomater 2018; 66:67-80. [PMID: 29129790 DOI: 10.1016/j.actbio.2017.11.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/05/2017] [Accepted: 11/07/2017] [Indexed: 02/02/2023]
Abstract
Monodispersed strontium containing bioactive glass nanoparticles (Sr-BGNPs) with two compositions were synthesised, through a modified sol-gel Stöber process, wherein silica nanoparticles (SiO2-NPs) were formed prior to incorporation of calcium and strontium, with diameters of 90 ± 10 nm. The osteogenic response of a murine preosteoblast cell line, MC3T3-E1, was investigated in vitro for a nanoparticle concentration of 250 µg/mL with compositions of 87 mol% SiO2, 7 mol% CaO, 6 mol% SrO and 83 mol% SiO2, 3 mol% CaO, 14 mol% SrO. Dissolution studies in minimum essential media (α-MEM) at pH 7.4 and artificial lysosomal fluid (ALF) at pH 4.5 showed that the particles dissolved and that Sr2+ ions were released from Sr-BGNPs in both environments. Both particle compositions and their ionic dissolution products enhanced the alkaline phosphatase (ALP) activity of the cells and calcium deposition. Immunohistochemistry (IHC) staining of Col1a1, osteocalcin (OSC) and osteopontin (OSP) showed that these proteins were expressed in the MC3T3-E1 cells following three weeks of culture. In the basal condition, the late osteogenic differentiation markers, OSC and OSP, were more overtly expressed by cells cultured with Sr-BGNPs with 14 mol% SrO and their ionic release products than in the control condition. Col1a1 expression was only slightly enhanced in the basal condition, but was enhanced further by the osteogenic supplements. These data demonstrate that Sr-BGNPs accelerate mineralisation without osteogenic supplements. Sr-BGNPs were internalised into MC3T3-E1 cells by endocytosis and stimulated osteogenic differentiation of the pre-osteoblast cell line. Sr-BGNPs are likely to be beneficial for bone regeneration and the observed osteogenic effects of these particles can be attributed to their ionic release products. STATEMENT OF SIGNIFICANCE We report, for the first time, that monodispersed bioactive glass nanoparticles (∼90 nm) are internalised into preosteoblast cells by endocytosis but by unspecific mechanisms. The bioactive nanoparticles and their dissolution products (without the particles present) stimulated the expression of osteogenic markers from preosteoblast cells without the addition of other osteogenic supplements. Incorporating Sr into the bioactive glass nanoparticle composition, in addition to Ca, increased the total cation content (and therefore dissolution rate) of the nanoparticles, even though nominal total cation addition was constant, without changing size or morphology. Increasing Sr content in the nanoparticles and in their dissolution products enhanced osteogenesis in vitro. The particles therefore have great potential as an injectable therapeutic for bone regeneration, particularly in patients with osteoporosis, for which Sr is known to be therapeutic agent.
Collapse
|
24
|
Tainio J, Paakinaho K, Ahola N, Hannula M, Hyttinen J, Kellomäki M, Massera J. In Vitro Degradation of Borosilicate Bioactive Glass and Poly(l-lactide-co-ε-caprolactone) Composite Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1274. [PMID: 29113141 PMCID: PMC5706221 DOI: 10.3390/ma10111274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/03/2022]
Abstract
Composite scaffolds were obtained by mixing various amounts (10, 30 and 50 weight % [wt %]) of borosilicate bioactive glass and poly(l-lactide-co-ε-caprolactone) (PLCL) copolymer. The composites were foamed using supercritical CO₂. An increase in the glass content led to a decrease in the pore size and density. In vitro dissolution/reaction test was performed in simulated body fluid. As a function of immersion time, the solution pH increased due to the glass dissolution. This was further supported by the increasing amount of Ca in the immersing solution with increasing immersion time and glass content. Furthermore, the change in scaffold mass was significantly greater with increasing the glass content in the scaffold. However, only the scaffolds containing 30 and 50 wt % of glasses exhibited significant hydroxyapatite (HA) formation at 72 h of immersion. The compression strength of the samples was also measured. The Young's modulus was similar for the 10 and 30 wt % glass-containing scaffolds whereas it increased to 90 MPa for the 50 wt % glass containing scaffold. Upon immersion up to 72 h, the Young's modulus increased and then remained constant for longer immersion times. The scaffold prepared could have great potential for bone and cartilage regeneration.
Collapse
Affiliation(s)
- Jenna Tainio
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Kaarlo Paakinaho
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Niina Ahola
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Markus Hannula
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Jari Hyttinen
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Minna Kellomäki
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Jonathan Massera
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| |
Collapse
|
25
|
Erasmus EP, Johnson OT, Sigalas I, Massera J. Effects of Sintering Temperature on Crystallization and Fabrication of Porous Bioactive Glass Scaffolds for Bone Regeneration. Sci Rep 2017; 7:6046. [PMID: 28729613 PMCID: PMC5519766 DOI: 10.1038/s41598-017-06337-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/12/2017] [Indexed: 11/14/2022] Open
Abstract
In this work the sintering ability of borosilicate (S53B50), borophosphate (P40B10) and phosphate (Sr) bioactive glasses was investigated. The glass powders were crushed and sintered in air at a heating rate of 10 °C/min for 2 hours at sintering temperatures between 480 °C-600 °C. The aim was to define the optimum sintering temperature prior to glass crystallization. The density of the samples was found to decrease when the temperature was increased up to 580 °C; probably due to the inhibition of the viscous flow of the particles during sintering thereby reducing the densification of the material. Such low porosity is not suitable in tissue engineering. To process highly porous scaffolds with porosity required for scaffold applicable to tissue engineering, the powders were further mixed with 60 vol.% and 70 vol.% of NH4(HCO3) foaming agent. Meanwhile, the density of the samples sintered with NH4(HCO3) was found to decrease with an increase in NH4(HCO3) content. This indicates an increase in porosity of the samples. The glass compositions reached an open porosity of more than 60% at the addition of 70 vol.% NH4(HCO3). In addition, SEM micrograph revealed large pores with good interconnection between the pores.
Collapse
Affiliation(s)
- E P Erasmus
- African Material Science and Engineering Network A Carnegie-IAS RISE Network, University of the Witwatersrand, Johannesburg, South Africa.
- University of the Witwatersrand, School of Chemical and Metallurgical Engineering, Johannesburg, South Africa.
- DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Johannesburg, South Africa.
| | - O T Johnson
- African Material Science and Engineering Network A Carnegie-IAS RISE Network, University of the Witwatersrand, Johannesburg, South Africa.
- University of Namibia, Department of Mining and Metallurgical Engineering, Ongwediva, Namibia.
| | - I Sigalas
- African Material Science and Engineering Network A Carnegie-IAS RISE Network, University of the Witwatersrand, Johannesburg, South Africa
- University of the Witwatersrand, School of Chemical and Metallurgical Engineering, Johannesburg, South Africa
- DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Johannesburg, South Africa
| | - J Massera
- Tampere University of Technology, BioMediTech and Faculty of Biomedical Sciences and Engineering, Tampere, Finland
| |
Collapse
|
26
|
Farag MM, Abd-Allah WM, Ahmed HYA. Study of the dual effect of gamma irradiation and strontium substitution on bioactivity, cytotoxicity, and antimicrobial properties of 45S5 bioglass. J Biomed Mater Res A 2017; 105:1646-1655. [PMID: 28187505 DOI: 10.1002/jbm.a.36035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/05/2017] [Accepted: 02/08/2017] [Indexed: 02/04/2023]
Abstract
In this work, we studied simultaneous effect of gamma irradiation and SrO substitution for Na2 O on bioactivity, cytotoxicity and antimicrobial properties of 45S5 glass. Gamma irradiation was mainly introduced in this work as an effective sterilizing technique, improvement of bulk properties and surface modification of glass. Where, gamma irradiation is considered a modifier for glass network due to generation of defects resulted from this irradiation. Furthermore, SrO was introduced into the glass structure in place of Na2 O in order to reduce a probable toxic effect of Na2 O for surrounding tissue by decreasing its percentage. Where, Sr2+ is characterized by its antibacterial properties, as well as, it induces formation of bone tissue and inhibits its resorption. The cell viability was studied for selected samples using Vero cells. As well as, antimicrobial activity was evaluated against Bacillus subtilis, Staphylococcus pneumonia, and Escherichia coli and Pseudomonas aeruginosa bacteria. The results showed that substitution of Na2 O by SrO in glass composition decreased the glass dissolution in SBF. However, the glass dissolution increased after irradiation of such glass due to generation of nonbridgingoxygens (NBOs) throughout glass network by gamma irradiation, and this effect was more obvious for Sr-contained glass. On the other hand, two selected Sr-containing glasses (gamma irradiated at 0 and 25 kGy) showed a good ability to stimulate cell proliferation of normal fibroblast cells, as well as, they represented a potential ability to inhibit the growth of or kill bacteria, which is considered an important issue commonly found in a clinical situation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1646-1655, 2017.
Collapse
Affiliation(s)
- M M Farag
- Glass Research Department, National Research Center, 33 El-Bohooth St, Dokki, Giza, 1262, Egypt
| | - W M Abd-Allah
- Radiation Chemistry Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Hanaa Y A Ahmed
- The Regional Center of Mycology and Biotechnology- Al-Azhar University, Egypt
| |
Collapse
|
27
|
Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds. Sci Rep 2016; 6:32964. [PMID: 27604654 PMCID: PMC5015095 DOI: 10.1038/srep32964] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/15/2016] [Indexed: 11/08/2022] Open
Abstract
Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering.
Collapse
|
28
|
Placek LM, Keenan TJ, Wren AW. Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O glass-ceramics. J Biomater Appl 2016; 31:165-80. [DOI: 10.1177/0885328216651392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The bioactivity of yttrium and cerium are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24 -xNa2O- xMO glass-ceramics (where x = 0.08 and MO = Y2O3 or CeO2). Bioactivity is monitored through pH and inductively coupled plasma-optical emission spectrometry where pH of simulated body fluid ranged from 7.5 to 7.6 and increased between 8.2 and 10.0 after 14-day incubation with the glass-ceramic disks. Calcium (Ca) and phosphorus (P) levels in simulated body fluid after incubation with yttrium and cerium containing disks show a continual decline over the 14-day period. In contrast, Con disks (not containing yttrium or cerium) caused the elimination of Ca in solution after 1 day and throughout the incubation period, and initially showed a decline in P levels followed by an increase at 14 days. Scanning electron microscopy and energy dispersive spectroscopy confirmed the presence of Ca and P on the surface of the simulated body fluid-incubated disks and showed precipitates on Con and HCe (8 mol% cerium) samples. Cell viability of MC3T3 osteoblasts was not significantly affected at a 9% extract concentration. Optical microscopy after 24 h cell incubation with disks showed that Con samples do not support osteoblast or Schwann cell growth, while all yttrium and cerium containing disks have direct contact with osteoblasts spread across the wells. Schwann cells attached in all wells, but only showed spreading with the HY-S (8 mol% yttrium, heated to sintering temperature) and YCe (4 mol% yttrium and cerium) disks. Scanning electron microscopy of the compatible disks shows osteoblast and sNF96.2 Schwann cells attachment and spreading directly on the disk surfaces.
Collapse
Affiliation(s)
- LM Placek
- Inamori School of Engineering, Alfred University, Alfred, NY, USA
| | - TJ Keenan
- Inamori School of Engineering, Alfred University, Alfred, NY, USA
| | - AW Wren
- Inamori School of Engineering, Alfred University, Alfred, NY, USA
| |
Collapse
|
29
|
Czarnobaj K. The Role of Polydimethylsiloxane in the Molecular Structure of Silica Xerogels Intended for Drug Carriers. Sci Pharm 2016; 83:519-34. [PMID: 26839836 PMCID: PMC4727759 DOI: 10.3797/scipharm.1409-08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 07/01/2015] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to prepare and examine polymer/oxide xerogels with metronidazole (MT) as delivery systems for the local application of a drug to a bone. The nanoporous SiO2-CaO and PDMS-modified SiO2-CaO xerogel materials with different amounts of the polymer, polydimethylsiloxane (PDMS), were prepared by the sol-gel method. Characterization assays comprised the analysis of the composite materials by using Fourier transform infrared spectroscopy (FTIR), determining the specific surface area of solids (BET), using X-ray powder diffraction (XRD) and scanning electron microscope (SEM) techniques, and further monitoring in the ultraviolet and visible light regions (UV-Vis) of the in vitro release of the drug (metronidazole) over time. According to these results, the bioactive character and chemical stability of PDMS-modified silica xerogels have been proven. The release of MT from xerogels was strongly correlated with the composition of the matrix. In comparison with the pure oxide matrix, PDMS-modified matrices accelerated the release of the drug through its bigger pores, and additionally, on account of weaker interactions with the drug. The obtained results for the xerogel composites suggest that the metronidazole-loaded xerogels could be promising candidates for formulations in local delivery systems particularly to bone.
Collapse
Affiliation(s)
- Katarzyna Czarnobaj
- Department of Physical Chemistry, Medical University of Gdańsk, al. gen. J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
30
|
Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects. Dent Mater 2016; 32:412-22. [PMID: 26777094 DOI: 10.1016/j.dental.2015.12.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Bioactive glass forms a bone mineral apatite interface and can be engineered to promote optimal bone regeneration. Strontium (Sr(2+)) stimulates osteoblast and inhibits osteoclast activities in vitro, and is used clinically as a treatment for osteoporosis. Dental bone defect repair requires rapid bone formation for early osseointegration but, can be subject to infection. The aim of this study was to investigate the osteogenic and antibacterial effects of strontium-substituted bioactive glasses in vitro. METHODS Strontium-substituted bioactive glasses were designed and produced. Then the osteogenic potential and antibacterial effects of bioactive glass particulates were explored. RESULTS Alkaline phosphatase activity, cell number, Type I collagen and mineral nodule formation of MC3T3-E1 cells were significantly promoted by the 5% strontium-substituted glass (5Sr). Furthermore, after incubation with 0.001g and 0.01g glass particulates, the growth of sub-gingival bacteria, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis was significantly inhibited; the antibacterial activity being dependent on the percentage of strontium in the glasses. SIGNIFICANCE These results show that strontium-substituted bioactive glasses significantly promote osteogenic responses of MC3T3-E1 osteoblast-like cells and inhibit the growth of A. actinomycetemcomitans and P. gingivalis.
Collapse
|
31
|
Massera J, Kokkari A, Närhi T, Hupa L. The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:196. [PMID: 26099346 DOI: 10.1007/s10856-015-5528-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
In this paper, we investigate the effect of substituting SrO for CaO in silicate and phosphate bioactive glasses on the human gingival fibroblast activity. In both materials the presence of SrO led to the formation of a CaP layer with partial Sr substitution for Ca. The layer at the surface of the silicate glass consisted of HAP whereas at the phosphate glasses it was close to the DCPD composition. In silicate glasses, SrO gave a faster initial dissolution and a thinner reaction layer probably allowing for a continuous ion release into the solution. In phosphate glasses, SrO decreased the dissolution process and gave a more strongly bonded reaction layer. Overall, the SrO-containing silicate glass led to a slight enhancement in the activity of the gingival fibroblasts cells when compared to the SrO-free reference glass, S53P4. The cell activity decreased up to 3 days of culturing for all phosphate glasses containing SrO. Whereas culturing together with the SrO-free phosphate glass led to complete cell death at 7 days. The glasses containing SrO showed rapid cell proliferation and growth between 7 and 14 days, reaching similar activity than glass S53P4. The addition of SrO in both silicate and phosphate glasses was assumed beneficial for proliferation and growth of human gingival fibroblasts due to Sr incorporation in the reaction layer at the glass surface and released in the cell culture medium.
Collapse
Affiliation(s)
- J Massera
- Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, 20500, Turku, Finland,
| | | | | | | |
Collapse
|
32
|
Kohda N, Iijima M, Kawaguchi K, Toshima H, Muguruma T, Endo K, Mizoguchi I. Inhibition of enamel demineralization and bond-strength properties of bioactive glass containing 4-META/MMA-TBB-based resin adhesive. Eur J Oral Sci 2015; 123:202-7. [DOI: 10.1111/eos.12187] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Naohisa Kohda
- Division of Orthodontics and Dentofacial Orthopedics; Department of Oral Growth and Development; School of Dentistry; Health Sciences University of Hokkaido; Ishikari-Tobetsu Japan
| | - Masahiro Iijima
- Division of Orthodontics and Dentofacial Orthopedics; Department of Oral Growth and Development; School of Dentistry; Health Sciences University of Hokkaido; Ishikari-Tobetsu Japan
| | - Kyotaro Kawaguchi
- Division of Orthodontics and Dentofacial Orthopedics; Department of Oral Growth and Development; School of Dentistry; Health Sciences University of Hokkaido; Ishikari-Tobetsu Japan
| | - Hirokazu Toshima
- Division of Biomaterials and Bioengineering; Department of Oral Rehabilitation; School of Dentistry; Health Sciences University of Hokkaido; Ishikari-Tobetsu Japan
| | - Takeshi Muguruma
- Division of Orthodontics and Dentofacial Orthopedics; Department of Oral Growth and Development; School of Dentistry; Health Sciences University of Hokkaido; Ishikari-Tobetsu Japan
| | - Kazuhiko Endo
- Division of Biomaterials and Bioengineering; Department of Oral Rehabilitation; School of Dentistry; Health Sciences University of Hokkaido; Ishikari-Tobetsu Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics; Department of Oral Growth and Development; School of Dentistry; Health Sciences University of Hokkaido; Ishikari-Tobetsu Japan
| |
Collapse
|
33
|
Placek LM, Keenan TJ, Laffir F, Coughlan A, Wren AW. Characterization of Y2O3 and CeO2 doped SiO2-SrO-Na2O glasses. BIOMEDICAL GLASSES 2015. [DOI: 10.1515/bglass-2015-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe structural effects of yttrium (Y) and cerium (Ce) are investigated when substituted for sodium (Na) in a 0.52SiO2–0.24SrO–(0.24−x)Na2O–xMO (where x = 0.08; MO = Y2O3 and CeO2) glass series. Network connectivity (NC) was calculated assuming both Y and Ce can act as a network modifier (NC = 2.2) or as a network former (NC up to 2.9). Thermal analysis showed an increase in glass transition temperature (Tg) with increasing Y and Ce content, Y causing the greater increase from the control (Con) at 493∘C to 8 mol% Y (HY) at 660∘C. Vickers hardness (HV) was not significantly different between glasses. 29Si Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR) did not show peak shift with addition of Y, however Ce produced peak broadening and a negative shift in ppm. The addition of 4 mol% Ce in the YCe and LCe glasses shifted the peak from Con at −81.3 ppm to −82.8 ppm and −82.7 ppm respectively; while the HCe glass produced a much broader peak and a shift to −84.8 ppm. High resolution X-ray Photoelectron Spectroscopy for the O 1s spectral line showed the ratio of bridging (BO) to non-bridging oxygens (NBO), BO:NBO,was altered,where Con had a ratio of 0.7, HY decreased to 0.4 and HCe to 0.5.
Collapse
|