1
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
2
|
Kong Y, Zhang X, Ma X, Wu L, Chen D, Su B, Liu D, Wang X. Silicon-substituted calcium phosphate promotes osteogenic-angiogenic coupling by activating the TLR4/PI3K/AKT signaling axis. J Biomater Appl 2022; 37:459-473. [PMID: 35623361 DOI: 10.1177/08853282221105303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Silicon-substituted calcium phosphate (Si-CaP) is a promising bioactive material for bone tissue engineering. The mechanism of Si-CaP regulates osteogenic-angiogenic coupling during bone regeneration has not been fully elucidated. In this study, we screened the targets of Si-CaP and osteogenic-angiogenic coupling. 83 common genes were regarded as key targets for Si-CaP regulation of the osteogenic-angiogenic coupling. Then, we performed protein-protein interaction analysis, GO and KEGG enrichment analysis of these 83 targets to further predict their molecular mechanism. Our results showed that Si-CaP treatment could regulate the osteogenic-angiogenic coupling by up-regulating the expression of Toll-like receptor 4 (TLR4), and the phosphorylation of AKT which in turn activating the PI3K/AKT signaling pathway, promoting the expression of RUNX2, OPN, VEGF. In addition, we also found that TLR4 siRNA treatment could block the PI3K/AKT signaling pathway, while inhibiting the promoting effect of Si-CaP. However, although LY294002 can achieve the same inhibitory effect as TLR4 siRNA by blocking the PI3K/AKT signaling pathway, it could not affect the expression of TLR4. This indicates that TLR4 is an upstream activator of PI3K/AKT signaling pathway. These results are highly consistent with the prediction of bioinformatics. In conclusion, we have elucidated the role of TLR4/PI3K/AKT signaling axis in Si-CaP mediated osteogenic-angiogenic coupling for the first time. This study provides new data onto the regulatory role and molecular mechanism of Si-CaP in the process of osteogenic-angiogenic coupling, which strongly supports its wide application for bone tissue engineering.
Collapse
Affiliation(s)
- Yuanhang Kong
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Xin Zhang
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Xinnan Ma
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Leilei Wu
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dechun Chen
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Su
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daqian Liu
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintao Wang
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Hegedűs C, Czibulya Z, Tóth F, Dezső B, Hegedűs V, Boda R, Horváth D, Csík A, Fábián I, Tóth-Győri E, Sajtos Z, Lázár I. The Effect of Heat Treatment of β-Tricalcium Phosphate-Containing Silica-Based Bioactive Aerogels on the Cellular Metabolism and Proliferation of MG63 Cells. Biomedicines 2022; 10:662. [PMID: 35327463 PMCID: PMC8945762 DOI: 10.3390/biomedicines10030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
β-Tricalcium phosphate was combined with silica aerogel in composites prepared using the sol-gel technique and supercritical drying. The materials were used in this study to check their biological activity and bone regeneration potential with MG63 cell experiments. The composites were sintered in 100 °C steps in the range of 500-1000 °C. Their mechanical properties, porosities, and solubility were determined as a function of sintering temperature. Dissolution studies revealed that the released Ca-/P molar ratios appeared to be in the optimal range to support bone tissue induction. Cell viability, ALP activity, and type I collagen gene expression results all suggested that the sintering of the compound at approximately 700-800 °C as a scaffold could be more powerful in vivo to facilitate bone formation within a bone defect, compared to that documented previously by our research team. We did not observe any detrimental effect on cell viability. Both the alkaline phosphatase enzyme activity and the type I collagen gene expression were significantly higher compared with the control and the other aerogels heat-treated at different temperatures. The mesoporous silica-based aerogel composites containing β-tricalcium phosphate particles treated at temperatures lower than 1000 °C produced a positive effect on the osteoblastic activity of MG63 cells. An in vivo 6 month-long follow-up study of the mechanically strongest 1000 °C sample in rat calvaria experiments provided proof of a complete remodeling of the bone.
Collapse
Affiliation(s)
- Csaba Hegedűs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (Z.C.); (F.T.)
| | - Zsuzsanna Czibulya
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (Z.C.); (F.T.)
| | - Ferenc Tóth
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (Z.C.); (F.T.)
| | - Balázs Dezső
- Department of Oral Pathology and Microbiology, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary;
| | - Viktória Hegedűs
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary;
| | - Róbert Boda
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (R.B.); (D.H.)
| | - Dóra Horváth
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (R.B.); (D.H.)
| | - Attila Csík
- Laboratory of Materials Science, Institute for Nuclear Research, Eötvös Loránd Research Network, 4026 Debrecen, Hungary;
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (I.F.); (E.T.-G.); (Z.S.)
| | - Enikő Tóth-Győri
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (I.F.); (E.T.-G.); (Z.S.)
| | - Zsófi Sajtos
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (I.F.); (E.T.-G.); (Z.S.)
| | - István Lázár
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (I.F.); (E.T.-G.); (Z.S.)
| |
Collapse
|
4
|
Litak J, Grochowski C, Rysak A, Mazurek M, Blicharski T, Kamieniak P, Wolszczak P, Rahnama-Hezavah M, Litak G. New Horizons for Hydroxyapatite Supported by DXA Assessment-A Preliminary Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:942. [PMID: 35160888 PMCID: PMC8839981 DOI: 10.3390/ma15030942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 12/10/2022]
Abstract
Dual Energy X-ray Absorptiometry (DXA) is a tool that allows the assessment of bone density. It was first presented by Cameron and Sorenson in 1963 and was approved by the Food and Drug Administration. Misplacing the femoral neck box, placing a trochanteric line below the midland and improper placement of boundary lines are the most common errors made during a DXA diagnostic test made by auto analysis. Hydroxyapatite is the most important inorganic component of teeth and bone tissue. It is estimated to constitute up to 70% of human bone weight and up to 50% of its volume. Calcium phosphate comes in many forms; however, studies have shown that only tricalcium phosphate and hydroxyapatite have the characteristics that allow their use as bone-substituted materials. The purpose of this study is aimed at analyzing the results of hip densitometry and hydorxyapatite distribution in order to better assess the structure and mineral density of the femoral neck. However, a detailed analysis of the individual density curves shows some qualitative differences that may be important in assessing bone strength in the area under study. To draw more specific conclusions on the therapy applied for individual patients, we need to determine the correct orientation of the bone from the resulting density and document the trends in the density distribution change. The average results presented with the DXA method are insufficient.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (C.G.); (M.M.); (P.K.)
- Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; (A.R.); (P.W.); (G.L.)
| | - Cezary Grochowski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (C.G.); (M.M.); (P.K.)
- Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; (A.R.); (P.W.); (G.L.)
| | - Andrzej Rysak
- Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; (A.R.); (P.W.); (G.L.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (C.G.); (M.M.); (P.K.)
| | - Tomasz Blicharski
- Department of Rehabilitation and Orthopedics, Medical University of Lublin, ul. Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (C.G.); (M.M.); (P.K.)
| | - Piotr Wolszczak
- Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; (A.R.); (P.W.); (G.L.)
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Grzegorz Litak
- Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; (A.R.); (P.W.); (G.L.)
| |
Collapse
|
5
|
Conway JC, Oliver RA, Wang T, Wills DJ, Herbert J, Buckland T, Walsh WR, Gibson IR. The efficacy of a nanosynthetic bone graft substitute as a bone graft extender in rabbit posterolateral fusion. Spine J 2021; 21:1925-1937. [PMID: 34033931 DOI: 10.1016/j.spinee.2021.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Synthetic bone graft substitutes are commonly used in spinal fusion surgery. Preclinical data in a model of spinal fusion to support their efficacy is an important component in clinical adoption to understand how these materials provide a biological and mechanical role in spinal fusion. PURPOSE To evaluate the in vivo response of a nanosynthetic silicated calcium phosphate putty (OstP) combined with autograft compared to autograft alone or a collagen-biphasic calcium phosphate putty (MasP) combined with autograft in a rabbit spinal fusion model. STUDY DESIGN Efficacy of a nanosynthetic silicated calcium phosphate putty as an extender to autograft was studied in an experimental animal model of posterolateral spinal fusion at 6, 9, 12 and 26 weeks, compared to a predicate device. METHODS Skeletally mature female New Zealand White rabbits (70) underwent single level bilateral posterolateral intertransverse process lumbar fusion, using either autograft alone (AG), a nanosynthetic silicated calcium phosphate putty (OstP) combined with autograft (1:1), or a collagen-biphasic calcium phosphate putty (MasP) combined with autograft (1:1). Iliac crest autograft was harvested for each group, and a total of 2 cc of graft material was implanted in the posterolateral gutters per side. Fusion success was assessed at all time points by manual palpation, radiographic assessment, micro-CT and at 12 weeks only using non-destructive range of motion testing. Tissue response, bone formation and graft resorption were assessed by decalcified paraffin histology and by histomorphometry of PMMA embedded sections. RESULTS Assessment of fusion by manual palpation at the 12 week endpoint showed 7 out of 8 (87.5%) bilateral fusions in the OstP extender group, 4 out of 8 (50%) fusions in the MasP extender group, and 6 out of 8 (75%) fusions in the autograft alone group. Similar trends were observed with fusion scores of radiographic and micro-CT data. Histology showed a normal healing response in all groups, and increased bone formation in the OstP extender group at all timepoints compared to the MasP extender group. New bone formed directly on the OstP granule surface within the fusion mass while this was not a feature of the Collagen-Biphasic CaP material. After 26 weeks the OstP extender group exhibited 100% fusions (5 out of 5) by all measures, whereas the MasP extender group resulted in bilateral fusions in 3 out of 5 (60%), assessed by manual palpation, and fusion of only 20 and 0% by radiograph and micro-CT scoring, respectively. Histology at 26 weeks showed consistent bridging of bone between the transverse processes in the Ost P extender group, but this was not observed in the MasP extender group. CONCLUSIONS The nanosynthetic bone graft substituted studied here, used as an extender to autograft, showed a progression to fusion between 6 and 12 weeks that was similar to that observed with autograft alone, and showed excellent fusion outcomes, bone formation and graft resorption at 26 weeks. CLINICAL SIGNIFICANCE This preclinical study showed that the novel nanosynthetic silicated CaP putty, when combined with autograft, achieved equivalent fusion outcomes to autograft. The development of synthetic bone grafts that demonstrate efficacy in such models can eliminate the need for excessive autograft harvest and results from this preclinical study supports their effective use in spinal fusion surgery.
Collapse
Affiliation(s)
- Jordan C Conway
- Sirakoss Ltd., Polwarth Building, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Rema A Oliver
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Level 1, Clinical Sciences Building, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Tian Wang
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Level 1, Clinical Sciences Building, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Daniel J Wills
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Level 1, Clinical Sciences Building, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Joe Herbert
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Level 1, Clinical Sciences Building, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Tom Buckland
- Sirakoss Ltd., Polwarth Building, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - William R Walsh
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Level 1, Clinical Sciences Building, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Iain R Gibson
- Sirakoss Ltd., Polwarth Building, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK; Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK.
| |
Collapse
|
6
|
Genasan K, Mehrali M, Veerappan T, Talebian S, Malliga Raman M, Singh S, Swamiappan S, Mehrali M, Kamarul T, Balaji Raghavendran HR. Calcium-Silicate-Incorporated Gellan-Chitosan Induced Osteogenic Differentiation in Mesenchymal Stromal Cells. Polymers (Basel) 2021; 13:3211. [PMID: 34641027 PMCID: PMC8512901 DOI: 10.3390/polym13193211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
Gellan-chitosan (GC) incorporated with CS: 0% (GC-0 CS), 10% (GC-10 CS), 20% (GC-20 CS) or 40% (GC-40 CS) w/w was prepared using freeze-drying method to investigate its physicochemical, biocompatible, and osteoinductive properties in human bone-marrow mesenchymal stromal cells (hBMSCs). The composition of different groups was reflected in physicochemical analyses performed using BET, FTIR, and XRD. The SEM micrographs revealed excellent hBMSCs attachment in GC-40 CS. The Alamar Blue assay indicated an increased proliferation and viability of seeded hBMSCs in all groups on day 21 as compared with day 0. The hBMSCs seeded in GC-40 CS indicated osteogenic differentiation based on an amplified alkaline-phosphatase release on day 7 and 14 as compared with day 0. These cells supported bone mineralization on GC-40 CS based on Alizarin-Red assay on day 21 as compared with day 7 and increased their osteogenic gene expression (RUNX2, ALP, BGLAP, BMP, and Osteonectin) on day 21. The GC-40 CS-seeded hBMSCs initiated their osteogenic differentiation on day 7 as compared with counterparts based on an increased expression of type-1 collagen and BMP2 in immunocytochemistry analysis. In conclusion, the incorporation of 40% (w/w) calcium silicate in gellan-chitosan showed osteoinduction potential in hBMSCs, making it a potential biomaterial to treat critical bone defects.
Collapse
Affiliation(s)
- Krishnamurithy Genasan
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.G.); (T.V.); (M.M.R.); (S.S.)
| | - Mohammad Mehrali
- Faculty of Engineering Technology, Department of Thermal and Fluid Engineering (TFE), University of Twente, 7500 AE Enschede, The Netherlands;
| | - Tarini Veerappan
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.G.); (T.V.); (M.M.R.); (S.S.)
| | - Sepehr Talebian
- Faculty of Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
- Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| | - Murali Malliga Raman
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.G.); (T.V.); (M.M.R.); (S.S.)
| | - Simmrat Singh
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.G.); (T.V.); (M.M.R.); (S.S.)
| | - Sasikumar Swamiappan
- Materials Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India;
| | - Mehdi Mehrali
- Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark;
| | - Tunku Kamarul
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.G.); (T.V.); (M.M.R.); (S.S.)
- Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia
| | - Hanumantha Rao Balaji Raghavendran
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.G.); (T.V.); (M.M.R.); (S.S.)
- Faculty of Clinical Research, Central Research Facility, Sri Ramachandra Institute of Higher Education and Research Porur, Chennai 600116, Tamil Nadu, India
| |
Collapse
|
7
|
Vahabzadeh S, Robertson S, Bose S. Beta-phase Stabilization and Increased Osteogenic Differentiation of Stem Cells by Solid-State Synthesized Magnesium Tricalcium Phosphate. JOURNAL OF MATERIALS RESEARCH 2021; 36:3041-3049. [PMID: 35757291 PMCID: PMC9231631 DOI: 10.1557/s43578-021-00311-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/13/2021] [Indexed: 06/15/2023]
Abstract
In this study, magnesium and strontium-doped β-tricalcium phosphates were synthesized to understand dopant impact on substrate chemistry and morphology, and proliferation and osteogenic differentiation of mesenchymal stem cells. Under solid-state synthesis, magnesium doping stabilized the β-phase in tricalcium phosphate, with 22% less α-phase content than control. Strontium doping increased α-phase formation by 17%, and also resulted in greater surface porosity, leading to greater crystal precipitation in vitro. Magnesium also significantly enhanced the proliferation of stem cells (P < 0.05) and differentiation into osteoblasts with increased alkaline phosphatase production (P < 0.05) at all time points. These results indicated that magnesium stabilizes β-tricalcium phosphate in vitro and enhanced early and late-time-point osteoconduction and osteoinduction of mesenchymal stem cells.
Collapse
Affiliation(s)
| | | | - Susmita Bose
- Corresponding author , Phone: (509) 335-7461, Fax: (509) 335-4662
| |
Collapse
|
8
|
Yin S, Zhang W, Tang Y, Yang G, Wu X, Lin S, Liu X, Cao H, Jiang X. Preservation of alveolar ridge height through mechanical memory: A novel dental implant design. Bioact Mater 2021; 6:75-83. [PMID: 32817915 PMCID: PMC7419257 DOI: 10.1016/j.bioactmat.2020.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/26/2022] Open
Abstract
Irreversible marginal bone loss can hinder recovery around dental implants. Insufficient alveolar osteogenesis and stress concentration during chewing contribute to marginal bone resorption and can result in implant failure. A biomaterial with a micropore-channel structure was developed using 3D printing technology. This design facilitated bony ingrowth and provided similar mechanical stimulation at the implant neck during mastication to a natural tooth. The micropore channels provided a guiding structure for bone mesenchymal stem cell proliferation and differentiation without the need for growth factors. Specifically, this was achieved through mechanical transduction by F-actin remodeling and the activation of Yes-associated protein (YAP). The implants were verified in a canine dental implant surgery model, which demonstrated the promising use of biomaterial-based dental implants in future clinical applications.
Collapse
Affiliation(s)
- Shi Yin
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yanmei Tang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiaolin Wu
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Sihan Lin
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Huiliang Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| |
Collapse
|
9
|
Chimene D, Miller L, Cross LM, Jaiswal MK, Singh I, Gaharwar AK. Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15976-15988. [PMID: 32091189 DOI: 10.1021/acsami.9b19037] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bioprinting is an emerging additive manufacturing approach to the fabrication of patient-specific, implantable three-dimensional (3D) constructs for regenerative medicine. However, developing cell-compatible bioinks with high printability, structural stability, biodegradability, and bioactive characteristics is still a primary challenge for translating 3D bioprinting technology to preclinical and clinal models. To overcome this challenge, we developed a nanoengineered ionic covalent entanglement (NICE) bioink formulation for 3D bone bioprinting. The NICE bioinks allow precise control over printability, mechanical properties, and degradation characteristics, enabling custom 3D fabrication of mechanically resilient, cellularized structures. We demonstrate cell-induced remodeling of 3D bioprinted scaffolds over 60 days, demonstrating deposition of nascent extracellular matrix proteins. Interestingly, the bioprinted constructs induce endochondral differentiation of encapsulated human mesenchymal stem cells (hMSCs) in the absence of osteoinducing agent. Using next-generation transcriptome sequencing (RNA-seq) technology, we establish the role of nanosilicates, a bioactive component of NICE bioink, to stimulate endochondral differentiation at the transcriptome level. Overall, the osteoinductive bioink has the ability to induce formation of osteo-related mineralized extracellular matrix by encapsulated hMSCs in growth factor-free conditions. Furthermore, we demonstrate the ability of NICE bioink to fabricate patient-specific, implantable 3D scaffolds for repair of craniomaxillofacial bone defects. We envision development of this NICE bioink technology toward a realistic clinical process for 3D bioprinting patient-specific bone tissue for regenerative medicine.
Collapse
Affiliation(s)
- David Chimene
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Logan Miller
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren M Cross
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Manish K Jaiswal
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Irtisha Singh
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807, United States
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Lehman LFC, de Noronha MS, Diniz IMA, da Costa E Silva RMF, Andrade ÂL, de Sousa Lima LF, de Alcântara CEP, Domingues R, Ferreira AJ, da Silva TA, Mesquita RA. Bioactive glass containing 90% SiO 2 in hard tissue engineering: An in vitro and in vivo characterization study. J Tissue Eng Regen Med 2019; 13:1651-1663. [PMID: 31218837 DOI: 10.1002/term.2919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/07/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023]
Abstract
Bioactive glass has been proved to have many applications in bioengineering due to its bone regenerative properties. In this work, an innovative, highly resorbable bioactive glass containing 90% SiO2 (BG90) to be used as a bone substitute was developed. The BG90 was synthetized by the sol-gel process with the dry step at room temperature. The biomaterial showed in vitro and in vivo bioactivities even with silica content up to 90%. Moreover, the BG90 presented high porosity and surface area due to its homogenously interconnected porous network. In vitro, it was observed to have high cell viability and marked osteoblastic differentiation of rat bone marrow-derived cells when in contact with BG90 ion extracts. The BG90 transplantation into rat tibia defects was analysed at 1, 2, 3, 4, 7, and 10 weeks post-operatively and compared with the defects of negative (no graft) and positive (autogenous bone graft) controls. After 4 weeks of grafting, the BG90 was totally resorbed and induced higher bone formation than did the positive control. Bone morphogenetic protein 2 (BMP-2) expression at the grafting site peaked at 1 week and decreased similarly after 7 weeks for all groups. Only the BG90 group was still exhibiting BMP-2 expression in the last experimental time. Our data demonstrated that the BG90 could be an attractive candidate to provide useful approaches in hard-tissue bioengineering.
Collapse
Affiliation(s)
- Luiz Felipe Cardoso Lehman
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Saturnino de Noronha
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ângela Leão Andrade
- Department of Chemistry, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | | | - Rosana Domingues
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson José Ferreira
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tarcília Aparecida da Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Götz W, Tobiasch E, Witzleben S, Schulze M. Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation. Pharmaceutics 2019; 11:E117. [PMID: 30871062 PMCID: PMC6471146 DOI: 10.3390/pharmaceutics11030117] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022] Open
Abstract
Bioinspired stem cell-based hard tissue engineering includes numerous aspects: The synthesis and fabrication of appropriate scaffold materials, their analytical characterization, and guided osteogenesis using the sustained release of osteoinducing and/or osteoconducting drugs for mesenchymal stem cell differentiation, growth, and proliferation. Here, the effect of silicon- and silicate-containing materials on osteogenesis at the molecular level has been a particular focus within the last decade. This review summarizes recently published scientific results, including material developments and analysis, with a special focus on silicon hybrid bone composites. First, the sources, bioavailability, and functions of silicon on various tissues are discussed. The second focus is on the effects of calcium-silicate biomineralization and corresponding analytical methods in investigating osteogenesis and bone formation. Finally, recent developments in the manufacturing of Si-containing scaffolds are discussed, including in vitro and in vivo studies, as well as recently filed patents that focus on the influence of silicon on hard tissue formation.
Collapse
Affiliation(s)
- Werner Götz
- Department of Orthodontics, Oral Biology Laboratory, School of Dentistry, Rheinische Wilhelms University of Bonn, Welschnonnenstr. 17, D-53111 Bonn, Germany.
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Steffen Witzleben
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| |
Collapse
|
12
|
Bolger C, Jones D, Czop S. Evaluation of an increased strut porosity silicate-substituted calcium phosphate, SiCaP EP, as a synthetic bone graft substitute in spinal fusion surgery: a prospective, open-label study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:1733-1742. [DOI: 10.1007/s00586-019-05926-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
Abstract
Purpose
Silicate-substituted calcium phosphate-enhanced porosity (SiCaP EP, Inductigraft™, Altapore) is a synthetic bone graft material with enhanced strut porosity of 31–47%. SiCaP EP remains to be fully clinically evaluated in patients undergoing instrumented posterolateral fusion (PLF) surgery. We conducted a prospective, open-label, non-randomised, multicentre clinical study to evaluate efficacy of SiCaP EP as bone grafting material in PLF surgery with instrumentation for treatment of spinal disorders.
Methods
Patients with degenerative disc disease, spondylolisthesis or spinal stenosis underwent PLF surgery with SiCaP EP. The primary endpoint was evaluated in the per protocol population (N = 102) as solid fusion at postoperative month 12 assessed using computed tomography scans, with motion assessed using flexion–extension radiographs. Clinical outcomes included the Oswestry Disability Index, 36-item short-form health survey for quality-of-life, visual analog scale for pain scores and neurological assessments. Adverse events were recorded.
Results
Successful fusion was achieved in 59/89 (66.3%) patients at month 6, 88/102 patients (86.3%) at month 12 (primary endpoint) and 87/96 (90.6%) patients at month 24. Disability and pain reduced following surgery. Quality-of-life improved and neurological function was maintained postoperatively. Forty-three (33.3%) of the 129 patients who underwent surgery experienced adverse events; back pain was most frequent (n = 10); nine and 14 patients experienced serious adverse events judged related to device and procedure, respectively.
Conclusions
Enhanced strut porosity SiCaP EP provided high (month 12: 86.3%) spinal fusion success rates in PLF surgery. Fusion success was associated with improved clinical outcomes in patients within 12 months, relative to baseline.
ClinicalTrials.gov identifier
NCT01452022
Graphical abstract
These slides can be retrieved under Electronic Supplementary Material.
Collapse
|
13
|
Lee JH, Mandakhbayar N, El-Fiqi A, Kim HW. Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization. Acta Biomater 2017; 60:93-108. [PMID: 28713017 DOI: 10.1016/j.actbio.2017.07.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/09/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Inducing differentiation and maturation of resident multipotent stem cells (MSCs) is an important strategy to regenerate hard tissues in mal-calcification conditions. Here we explore a co-delivery approach of therapeutic molecules comprised of ion and drug through a mesoporous bioglass nanoparticle (MBN) for this purpose. Recently, MBN has offered unique potential as a nanocarrier for hard tissues, in terms of high mesoporosity, bone bioactivity (and possibly degradability), tunable delivery of biomolecules, and ionic modification. Herein Sr ion is structurally doped to MBN while drug Phenamil is externally loaded as a small molecule activator of BMP signaling, for the stimulation of osteo/odontogenesis and mineralization of human MSCs derived from dental pulp. The Sr-doped MBN (85Si:10Ca:5Sr) sol-gel processed presents a high mesoporosity with a pore size of ∼6nm. In particular, Sr ion is released slowly at a daily rate of ∼3ppm per mg nanoparticles for up to 7days, a level therapeutically effective for cellular stimulation. The Sr-MBN is internalized to most MSCs via an ATP dependent macropinocytosis within hours, increasing the intracellular levels of Sr, Ca and Si ions. Phenamil is loaded maximally ∼30% into Sr-MBN and then released slowly for up to 7days. The co-delivered molecules (Sr ion and Phenamil drug) have profound effects on the differentiation and maturation of cells, i.e., significantly enhancing expression of osteo/odontogenic genes, alkaline phosphatase activity, and mineralization of cells. Of note, the stimulation is a result of a synergism of Sr and Phenamil, through a Trb3-dependent BMP signaling pathway. This biological synergism is further evidenced in vivo in a mal-calcification condition involving an extracted tooth implantation in dorsal subcutaneous tissues of rats. Six weeks post operation evidences the osseous-dentinal hard tissue formation, which is significantly stimulated by the Sr/Phenamil delivery, based on histomorphometric and micro-computed tomographic analyses. The bioactive nanoparticles releasing both Sr ion and Phenamil drug are considered to be a promising therapeutic nanocarrier platform for hard tissue regeneration. Furthermore, this novel ion/drug co-delivery concept through nanoparticles can be extensively used for other tissues that require different therapeutic treatment. STATEMENT OF SIGNIFICANCE This study reports a novel design concept in inorganic nanoparticle delivery system for hard tissues - the co-delivery of therapeutic molecules comprised of ion (Sr) and drug (Phenamil) through a unique nanoparticle of mesoporous bioactive glass (MBN). The physico-chemical and biological properties of MBN enabled an effective loading of both therapeutic molecules and a subsequently sustained/controlled release. The co-delivered Sr and Phenamil demonstrated significant stimulation of adult stem cell differentiation in vitro and osseous/dentinal regeneration in vivo, through BMP signaling pathways. We consider the current combination of Sr ion with Phenamil is suited for the osteo/odontogenesis of stem cells for hard tissue regeneration, and further, this ion/drug co-delivery concept can extend the applications to other areas that require specific cellular and tissue functions.
Collapse
|
14
|
Tian B, Chen W, Yu D, Lei Y, Ke Q, Guo Y, Zhu Z. Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity. J Mech Behav Biomed Mater 2016; 61:345-359. [DOI: 10.1016/j.jmbbm.2016.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 12/24/2022]
|
15
|
Kim TH, Singh RK, Kang MS, Kim JH, Kim HW. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. NANOSCALE 2016; 8:8300-8311. [PMID: 27035682 DOI: 10.1039/c5nr07933k] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The recent development of bioactive glasses with nanoscale morphologies has spurred their specific applications in bone regeneration, for example as drug and gene delivery carriers. Bone engineering with stem cells genetically modified with this unique class of nanocarriers thus holds great promise in this avenue. Here we report the potential of the bioactive glass nanoparticle (BGN) system for the gene delivery of mesenchymal stem cells (MSCs) targeting bone. The composition of 15% Ca-added silica, proven to be bone-bioactive, was formulated into surface aminated mesoporous nanospheres with enlarged pore sizes, to effectively load and deliver bone morphogenetic protein-2 (BMP2) plasmid DNA. The enlarged mesopores were highly effective in loading BMP2-pDNA with an efficiency as high as 3.5 wt% (pDNA w.r.t. BGN), a level more than twice than for small-sized mesopores. The BGN nanocarriers released the genetic molecules in a highly sustained manner (for as long as 2 weeks). The BMP2-pDNA/BGN complexes were effectively internalized to rat MSCs with a cell uptake level of ∼73%, and the majority of cells were transfected to express the BMP2 protein. Subsequent osteogenesis of the transfected MSCs was demonstrated by the expression of bone-related genes, including bone sialoprotein, osteopontin, and osteocalcin. The MSCs transfected with BMP2-pDNA/BGN were locally delivered inside a collagen gel to the target calvarium defects. The results showed significantly improved bone regeneration, as evidenced by the micro-computed tomographic, histomorphometric and immunohistochemical analyses. This study supports the excellent capacity of the BGN system as a pDNA-delivery nanocarrier in MSCs, and the engineered system, BMP2-pDNA/BGN with MSCs, may be considered a new promising candidate to advance the therapeutic potential of stem cells through genetic modification, targeting bone defects and diseases.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea. and Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330-714, Republic of Korea
| | - Rajendra K Singh
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea. and Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330-714, Republic of Korea
| | - Min Sil Kang
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea. and Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330-714, Republic of Korea
| | - Joong-Hyun Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea. and Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea. and Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330-714, Republic of Korea and Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
16
|
Hutchens SA, Campion C, Assad M, Chagnon M, Hing KA. Efficacy of silicate-substituted calcium phosphate with enhanced strut porosity as a standalone bone graft substitute and autograft extender in an ovine distal femoral critical defect model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:20. [PMID: 26684617 DOI: 10.1007/s10856-015-5559-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
A synthetic bone graft substitute consisting of silicate-substituted calcium phosphate with increased strut porosity (SiCaP EP) was evaluated in an ovine distal femoral critical sized metaphyseal defect as a standalone bone graft, as an autologous iliac crest bone graft (ICBG) extender (SiCaP EP/ICBG), and when mixed with bone marrow aspirate (SiCaP EP/BMA). Defects were evaluated after 4, 8, and 12 weeks with radiography, decalcified paraffin-embedded histopathology, non-decalcified resin-embedded histomorphometry, and mechanical indentation testing. All test groups exhibited excellent biocompatibility and osseous healing as evidenced by an initial mild inflammatory response followed by neovascularization, bone growth, and marrow infiltration throughout all SiCaP EP-treated defects. SiCaP EP/ICBG produced more bone at early time points, while all groups produced similar amounts of bone at later time points. SiCaP EP/ICBG likewise showed more favorable mechanical properties at early time points, but was equivalent to SiCaP EP and SiCaP EP/BMA at later time points. This study demonstrates that SiCaP EP is efficacious as a standalone bone graft substitute, mixed with BMA, and as an autograft extender.
Collapse
Affiliation(s)
- Stacy A Hutchens
- Baxter Healthcare Corporation, One Baxter Pkwy, Deerfield, IL, 60015, USA.
| | - Charlie Campion
- Baxter Healthcare Corporation, One Baxter Pkwy, Deerfield, IL, 60015, USA
| | - Michel Assad
- Orthopedics and Biomaterials Laboratory, AccelLAB Inc., Boisbriand, QC, Canada
| | - Madeleine Chagnon
- Orthopedics and Biomaterials Laboratory, AccelLAB Inc., Boisbriand, QC, Canada
| | - Karin A Hing
- Institute of Bioengineering, School of Engineering and Materials Science at Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
17
|
|