1
|
Thapliyal D, Verros GD, Arya RK. Nanoparticle-Doped Antibacterial and Antifungal Coatings. Polymers (Basel) 2025; 17:247. [PMID: 39861318 PMCID: PMC11768809 DOI: 10.3390/polym17020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs. Copper NPs and silver NPs exhibit antibacterial and antifungal properties. So, when present in coatings, they will release metal ions with the combined effect of having bacteriostatic/bactericidal properties, preventing the growth of pathogens on surfaces covered by these nano-enhanced films. In addition, metal oxide NPs such as titanium dioxide NPs (TiO2 NPs) and zinc oxide NPs (ZnONPs) are used as NPs in antimicrobial polymeric coatings. Under UV irradiation, these NPs show photocatalytic properties that lead to the production of reactive oxygen species (ROS) when exposed to UV radiation. After various forms of nano-carbon materials were successfully developed over the past decade, they and their derivatives from graphite/nanotubes, and composite sheets have been receiving more attention because they share an extremely large surface area, excellent mechanical strength, etc. These NPs not only show the ability to cause oxidative stress but also have the ability to release antimicrobial chemicals under control, resulting in long-lasting antibacterial action. The effectiveness and life spans of the antifouling performance of a variety of polymeric materials have been improved by adding nano-sized particles to those coatings.
Collapse
Affiliation(s)
- Devyani Thapliyal
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India;
| | - George D. Verros
- Department of Chemistry, Aristotle University of Thessaloniki, Plagiari Thes., P.O. Box 454, 57500 Epanomi, Greece;
| | - Raj Kumar Arya
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India;
| |
Collapse
|
2
|
Mohammadi A, Kerdabadi ZG, Ayati Najafabadi SA, Pourali A, Nejaddehbashi F, Azarbarz N, Kahkesh KH, Ebrahimibagha M. A high-efficient antibacterial and biocompatible polyurethane film with Ag@rGO nanostructures prepared by microwave-assisted method: Physicochemical and dermal wound healing evaluation. Heliyon 2023; 9:e21783. [PMID: 38027980 PMCID: PMC10660042 DOI: 10.1016/j.heliyon.2023.e21783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Wound infections are a significant issue that can hinder the wound healing process. One way to address this problem is by enhancing the antibacterial activity of wound dressings. Accordingly, this work focuses on developing a castor-oil-based antibacterial polyurethane nanocomposite film impregnated with silver nanoparticles (AgNPs) decorated on the surface of reduced graphene oxide (rGO) nanostructures (Ag@rGO). To this aim, rGOs act as a platform to stabilize AgNPs and improve their bioavailability and dispersion quality within the PU film. The microwave-assisted synthesis of Ag@rGO nanohybrids was proved by FTIR, XRD, TGA, FE-SEM, EDS, and TEM analyses. Compared to PU/GO, the effect of Ag@rGO nanohybrids on thermo-mechanical features, morphology, antibacterial activity, cytocompatibility, and in vivo wound healing was assessed. SEM photomicrographs revealed the enhanced dispersion of Ag@rGO nanohybrids compared to GO nanosheets. Besides, according to XRD results, PU/Ag@rGO nanocomposite film demonstrated higher microphase mixing, which could be due to the finely dispersed Ag@rGO nanostructures interrupting the hydrogen bonding interactions in the hard segments. Moreover, PU/Ag@rGO nanocomposite showed excellent antibacterial behavior with completely killing E. coli and S. aureus bacteria. In vitro and in vivo wound healing studies displayed PU/Ag@rGO film effectively stimulated fibroblast cells proliferation, migration and re-epithelialization. However, the prepared antibacterial PU/Ag@rGO nanocomposite film has the potential to be used as a biomaterial for dermal wound healing applications.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, I.R. Iran
| | | | - Seyed Ahmad Ayati Najafabadi
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Pourali
- School of Chemistry, Damghan University, 36716-41167 Damghan, Iran
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Azarbarz
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kaveh Hatami Kahkesh
- Department of Basic Medical Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Mehrnoosh Ebrahimibagha
- Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Chen CF, Chen SH, Chen RF, Liu KF, Kuo YR, Wang CK, Lee TM, Wang YH. A Multifunctional Polyethylene Glycol/Triethoxysilane-Modified Polyurethane Foam Dressing with High Absorbency and Antiadhesion Properties Promotes Diabetic Wound Healing. Int J Mol Sci 2023; 24:12506. [PMID: 37569881 PMCID: PMC10419382 DOI: 10.3390/ijms241512506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The delayed healing of chronic wounds, such as diabetic foot ulcers (DFUs), is a clinical problem. Few dressings can promote wound healing by satisfying the demands of chronic wound exudate management and tissue granulation. Therefore, the aim of this study was to prepare a high-absorption polyurethane (PU) foam dressing modified by polyethylene glycol (PEG) and triethoxysilane (APTES) to promote wound healing. PEG-modified (PUE) and PEG/APTES-modified (PUESi) dressings were prepared by self-foaming reactions. Gauze and PolyMem were used as controls. Next, Fourier transform-infrared spectroscopy, thermomechanical analyses, scanning electron microscopy and tensile strength, water absorption, anti-protein absorption, surface dryness and biocompatibility tests were performed for in vitro characterization. Wound healing effects were further investigated in nondiabetic (non-DM) and diabetes mellitus (DM) rat models. The PUE and PUESi groups exhibited better physicochemical properties than the gauze and PolyMem groups. Moreover, PUESi dressing showed better anti-adhesion properties and absorption capacity with deformation. Furthermore, the PUESi dressing shortened the inflammatory phase and enhanced collagen deposition in both the non-DM and DM animal models. To conclude, the PUESi dressing not only was fabricated with a simple and effective strategy but also enhanced wound healing via micronegative-pressure generation by its high absorption compacity with deformation.
Collapse
Affiliation(s)
- Chiu-Fang Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan;
| | - Szu-Hsien Chen
- Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei 106216, Taiwan;
| | - Rong-Fu Chen
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (R.-F.C.); (K.-F.L.); (Y.-R.K.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Keng-Fan Liu
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (R.-F.C.); (K.-F.L.); (Y.-R.K.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yur-Ren Kuo
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (R.-F.C.); (K.-F.L.); (Y.-R.K.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Academic Clinical Programme for Musculoskeletal Sciences, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Chih-Kuang Wang
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzer-Min Lee
- Institute of Oral Medicine, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
- School of Dentistry, National Cheng Kung University, Tainan 701, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan
| | - Yan-Hsiung Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
4
|
Shankar K, Agarwal S, Mishra S, Bhatnagar P, Siddiqui S, Abrar I. A review on antimicrobial mechanism and applications of graphene-based materials. BIOMATERIALS ADVANCES 2023; 150:213440. [PMID: 37119697 DOI: 10.1016/j.bioadv.2023.213440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
In recent years, graphene and its derivatives, owing to their phenomenal surface, and mechanical, electrical, and chemical properties, have emerged as advantageous materials, especially in terms of their potential for antimicrobial applications. Particularly important among graphene's derivatives is graphene oxide (GO) due to the ease with which its surface can be modified, as well as the oxidative and membrane stress that it exerts on microbes. This review encapsulates all aspects regarding the functionalization of graphene-based materials (GBMs) into composites that are highly potent against bacterial, viral, and fungal activities. Governing factors, such as lateral size (LS), number of graphene layers, solvent and GBMs' concentration, microbial shape and size, aggregation ability of GBMs, and especially the mechanisms of interaction between composites and microbes are discussed in detail. The current and potential applications of these antimicrobial materials, especially in dentistry, osseointegration, and food packaging, have been described. This knowledge can further drive research that aims to look for the most suitable components for antimicrobial composites. The need for antimicrobial materials has seldom been more felt than during the COVID-19 pandemic, which has also been highlighted here. Possible future research areas include the exploration of GBMs' ability against algae.
Collapse
Affiliation(s)
- Krishna Shankar
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Satakshi Agarwal
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Subham Mishra
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Pranshul Bhatnagar
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Sufiyan Siddiqui
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Iyman Abrar
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India.
| |
Collapse
|
5
|
Van Hecke M, Van Hoof L, Sikole M, Mufty H, Claus P, Verbrugghe P, Ely J, Berg GA, Roskams T, Meuris B. A Large-Diameter Vascular Graft Replacing Animal-Derived Sealants With an Elastomeric Polymer. J Surg Res 2023; 284:6-16. [PMID: 36527768 DOI: 10.1016/j.jss.2022.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/25/2022] [Accepted: 11/20/2022] [Indexed: 12/16/2022]
Abstract
INTRODUCTION To assess the safety and efficacy of an experimental large-diameter vascular graft externally sealed with an elastomeric polymer when used as an interposition graft in the descending aorta of sheep. METHODS The experimental vascular grafts as well as control gelatin sealed interposition grafts were inserted into the descending aorta of juvenile sheep. The grafts were assessed by time to hemostasis and blood loss during surgery and hematology and biochemistry panels at distinct time points. Magnetic resonance imaging (MRI) was performed at 3 and at 6 mo after surgery, after which the animals were euthanized and necropsies were carried out including macroscopic and microscopic examination of the grafts, anastomoses, and distal organs. RESULTS All animals survived the study period. There was no perceivable difference in the surgical handling of the grafts. The median intraoperative blood loss was 27.5 mL (range 10.0-125.0 mL) in the experimental group and 50.0 mL (range 10.0-75.0 mL) in the control group. The median time to hemostasis was 5.0 min (range 2.0-16.0 min) minutes in the experimental group versus 6.0 min (range 4.0-6.0 min) in the control group. MRI showed normal flow and graft patency in both groups. Healing and perianastomotic endothelialization was similar in both groups. CONCLUSIONS The experimental graft has a similar safety and performance profile and largely comparable necropsy results, in comparison to a commonly used prosthetic vascular graft, with the experimental grafts eliciting a nonadherent external fibrous capsule as the major difference compared to the control grafts that were incorporated into the periadventitia. Survival, hemostatic sealing, and hematologic and radiologic results were comparable between the study groups.
Collapse
Affiliation(s)
- Manon Van Hecke
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Lucas Van Hoof
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Magdalena Sikole
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Hozan Mufty
- Department of Vascular Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Piet Claus
- KU Leuven, Department of Cardiovascular Sciences, Cardiovascular Imaging and Dynamics, Leuven, Belgium
| | - Peter Verbrugghe
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - John Ely
- RUA Life Sciences, Irvine, United Kingdom
| | | | - Tania Roskams
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Meuris
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Shariati A, Hosseini SM, Chegini Z, Seifalian A, Arabestani MR. Graphene-Based Materials for Inhibition of Wound Infection and Accelerating Wound Healing. Biomed Pharmacother 2023; 158:114184. [PMID: 36587554 DOI: 10.1016/j.biopha.2022.114184] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Bacterial infection of the wound could potentially cause serious complications and an enormous medical and financial cost to the rapid emergence of drug-resistant bacteria. Nanomaterials are an emerging technology, that has been researched as possible antimicrobial nanomaterials for the inhibition of wound infection and enhancement of wound healing. Graphene is 2-dimensional (2D) sheet of sp2 carbon atoms in a honeycomb structure. It has superior properties, strength, conductivity, antimicrobial, and molecular carrier abilities. Graphene and its derivatives, Graphene oxide (GO) and reduced GO (rGO), have antibacterial activity and could damage bacterial morphology and lead to the leakage of intracellular substances. Besides, for wound infection management, Graphene-platforms could be functionalized by different antibacterial agents such as metal-nanoparticles, natural compounds, and antibiotics. The Graphene structure can absorb near-infrared wavelengths, allowing it to be used as antimicrobial photodynamic therapy. Therefore, Graphene-based material could be used to inhibit pathogens that cause serious skin infections and destroy their biofilm community, which is one of the biggest challenges in treating wound infection. Due to its agglomerated structure, GO hydrogel could entrap and stack the bacteria; thus, it prevents their initial attachment and biofilm formation. The sharp edges of GO could destroy the extracellular polymeric substance surrounding the biofilm and ruin the biofilm biomass structure. As well as, Chitosan and different natural and synthetic polymers such as collagen and polyvinyl alcohol (PVA) also have attracted a great deal of attention for use with GO as wound dressing material. To this end, multi-functional polymers based on Graphene and blends of synthetic and natural polymers can be considered valid non-antibiotic compounds useful against wound infection and improvement of wound healing. Finally, the global wound care market size was valued at USD 20.8 billion in 2022 and is expected to expand at a compound annual growth rate (CAGR) of 5.4% from 2022 to 2027 (USD 27.2 billion). This will encourage academic as well as pharmaceutical and medical device industries to investigate any new materials such as graphene and its derivatives for the treatment of wound healing.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amelia Seifalian
- Department of Urogynaecology and Surgery, Imperial College London, London, United Kingdom
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Homem NC, Miranda C, Teixeira MA, Teixeira MO, Domingues JM, Seibert D, Antunes JC, Amorim MTP, Felgueiras HP. Graphene oxide-based platforms for wound dressings and drug delivery systems: A 10 year overview. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Ren R, Lim C, Li S, Wang Y, Song J, Lin TW, Muir BW, Hsu HY, Shen HH. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3855. [PMID: 36364631 PMCID: PMC9658259 DOI: 10.3390/nano12213855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 05/29/2023]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation.
Collapse
Affiliation(s)
- Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Chiaxin Lim
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiangning Song
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | | | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 518057, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
9
|
Various Approaches to Studying the Phase Transition in an Octamethylcyclotetrasiloxane Crystal: From X-ray Structural Analysis to Metadynamics. Int J Mol Sci 2022; 23:ijms23169073. [PMID: 36012340 PMCID: PMC9408834 DOI: 10.3390/ijms23169073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The structure, thermodynamic parameters, and the character of thermal motion in octamethylcyclotetrasiloxane (D4) were investigated using the combination of experimental (single-crystal X-ray diffraction, thermochemistry) and theoretical (density functional theory calculations, ab initio molecular dynamics and metadynamics) methods. Single crystals of D4 were grown in a glass capillary in situ and the structures of high- (238–270 K) and low-temperature (100–230 K) phases were studied in detail. In the temperature interval 230–238 K, a phase transition with rather low enthalpy (−1.04(7) kcal/mol) was detected. It was found that phase transition is accompanied by change of conformation of cyclosiloxane moiety from boat-saddle (cradle) to chair. According to PBE0/6-311G(d,p) calculation of isolated D4, such conformation changes are characterized by a low barrier (0.07 kcal/mol). The character of molecular thermal motion and the path of phase transition were established with combination of periodic DFT calculations, including molecular dynamics and metadynamics. The effect of crystal field led to an increase in the calculated phase transition barrier (4.27 kcal/mol from low- to high-temperature phase and 3.20 kcal/mol in opposite direction).
Collapse
|
10
|
Du T, Huang B, Cao J, Li C, Jiao J, Xiao Z, Wei L, Ma J, Du X, Wang S. Ni Nanocrystals Supported on Graphene Oxide: Antibacterial Agents for Synergistic Treatment of Bacterial Infections. ACS OMEGA 2022; 7:18339-18349. [PMID: 35694481 PMCID: PMC9178720 DOI: 10.1021/acsomega.2c00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
The effects of antibiotics on bacterial infections are gradually weakened, leading to the wide development of nanoparticle-based antibacterial agents with unique physical and chemical properties and antibacterial mechanisms different from antibiotics. In this study, we fabricated the uniform and stable graphene oxide (GO)/Ni colloidal nanocrystal cluster (NCNC) nanocomposite by electrostatic self-assembly and investigated its synergistic antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro. The GO/NCNC nanocomposite was shown to possess higher inhibition efficiency than a pure NCNC or GO suspension, with 99.5 and 100% inhibition against S. aureus and E. coli at a 125 μg/mL concentration, respectively. Antibacterial mechanism analysis revealed that (i) NCNCs decorated on GO can further enhance the antibacterial properties of GO by binding and capturing bacteria, (ii) the leaching of Ni2+ was detected during the interaction of GO/NCNCs and bacteria, resulting in a decrease in the number of bacteria, and (iii) the GO/NCNC nanocomposite can synergistically destroy the bacterial membrane through physical action and induce the reactive oxygen species generation, so as to further damage the cell membrane and affect ATPase, leakage of intercellular contents, and ultimately bacterial growth inhibition. Meanwhile, cell culture experiments demonstrated no adverse effect of GO/NCNCs on cell growth. These preliminary results indicate the high antibacterial efficiency of the GO/NCNC nanocomposite, suggesting the possibility to develop it into an effective antibacterial agent in the future against bacterial infections.
Collapse
Affiliation(s)
- Ting Du
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Baojia Huang
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Jiangli Cao
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Chunqiao Li
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Jingbo Jiao
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Zehui Xiao
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Lifei Wei
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Jing Ma
- College
of Life Science, Yangtze University, Jingzhou, 434023 Hubei, PR China
| | - Xinjun Du
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Shuo Wang
- Tianjin
Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
11
|
Raja IS, Hong SW, Han DW. Reflections and Outlook on Multifaceted Biomedical Applications of Graphene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:253-264. [DOI: 10.1007/978-981-16-4923-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Raja IS, Jang HJ, Kang MS, Kim KS, Choi YS, Jeon JR, Lee JH, Han DW. Role of Graphene Family Nanomaterials in Skin Wound Healing and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:89-105. [DOI: 10.1007/978-981-16-4923-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Current advances of Polyurethane/Graphene composites and its prospects in synthetic leather: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Abstract
Graphene-based materials are found as excellent resources and employed as efficient anti-microbial agents, and they have been receiving significant attention from scientists and researchers in this regard. By giving special attention to recent applications of graphene-based materials, the current review is dedicated to unveiling the antimicrobial properties of graphene and its hybrid composites and their preparation methods. Different factors like the number of layers, concentration, size, and shape of the antibacterial activity are thoroughly discussed. Graphene-based materials could damage the bacteria physically by directly contacting the cell membrane or wrapping the bacterial cell. It can also chemically react to bacteria through oxidative stress and charge transfer mechanisms. This review explains such mechanisms thoroughly and summarizes the antibacterial applications (wound bandages, coatings, food packaging, etc.) of graphene and its hybrid materials.
Collapse
|
15
|
Díez-Pascual AM. State of the Art in the Antibacterial and Antiviral Applications of Carbon-Based Polymeric Nanocomposites. Int J Mol Sci 2021; 22:10511. [PMID: 34638851 PMCID: PMC8509077 DOI: 10.3390/ijms221910511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
The development of novel approaches to prevent bacterial infection is essential for enhancing everyday life. Carbon nanomaterials display exceptional optical, thermal, and mechanical properties combined with antibacterial ones, which make them suitable for diverse fields, including biomedical and food applications. Nonetheless, their practical applications as antimicrobial agents have not been fully explored yet, owing to their relatively poor dispersibility, expensiveness, and scalability changes. To solve these issues, they can be integrated within polymeric matrices, which also exhibit antimicrobial activity in some cases. This review describes the state of the art in the antibacterial applications of polymeric nanocomposites reinforced with 0D fullerenes, 1D carbon nanotubes (CNTs), and 2D graphene (G) and its derivatives such as graphene oxide (GO) and reduced graphene oxide (rGO). Given that a large number of such nanocomposites are available, only the most illustrative examples are described, and their mechanisms of antimicrobial activity are discussed. Finally, some applications of these antimicrobial polymeric nanocomposites are reviewed.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
16
|
Fatima N, Qazi UY, Mansha A, Bhatti IA, Javaid R, Abbas Q, Nadeem N, Rehan ZA, Noreen S, Zahid M. Recent developments for antimicrobial applications of graphene-based polymeric composites: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
De Maio F, Palmieri V, Babini G, Augello A, Palucci I, Perini G, Salustri A, Spilman P, De Spirito M, Sanguinetti M, Delogu G, Rizzi LG, Cesareo G, Soon-Shiong P, Sali M, Papi M. Graphene nanoplatelet and graphene oxide functionalization of face mask materials inhibits infectivity of trapped SARS-CoV-2. iScience 2021; 24:102788. [PMID: 34222841 PMCID: PMC8233064 DOI: 10.1016/j.isci.2021.102788] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advancements in bidimensional nanoparticles production such as graphene (G) and graphene oxide (GO) have the potential to meet the need for highly functional personal protective equipment (PPE) against SARS-CoV-2 infection. The ability of G and GO to interact with microorganisms provides an opportunity to develop engineered textiles for use in PPE and limit the spread of COVID-19. PPE in current use in high-risk settings for COVID transmission provides only a physical barrier that decreases infection likelihood and does not inactivate the virus. Here, we show that virus pre-incubation with soluble GO inhibits SARS-CoV-2 infection of VERO cells. Furthermore, when G/GO-functionalized polyurethane or cotton was in contact SARS-CoV-2, the infectivity of the fabric was nearly completely inhibited. The findings presented here constitute an important innovative nanomaterial-based strategy to significantly increase PPE efficacy in protection against the SARS-CoV-2 virus that may implement water filtration, air purification, and diagnostics methods.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Valentina Palmieri
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Gabriele Babini
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario "A. Gemelli", Largo A. Gemelli, 8 00168 Rome, Italy
| | - Alberto Augello
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Alessandro Salustri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Patricia Spilman
- ImmunityBio, LLC, Culver City, 440 Duley Road, El Segundo, California, CA 90245, USA
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Mater Olbia Hospital, Strada Statale 125 Orientale Sarda, 07026 Olbia SS, Italy
| | - Laura Giorgia Rizzi
- Directa Plus S.p.A. c/o ComoNExT - Science and Technology Park, 22074 Lomazzo, Como, Italy
| | - Giulio Cesareo
- Directa Plus S.p.A. c/o ComoNExT - Science and Technology Park, 22074 Lomazzo, Como, Italy
| | - Patrick Soon-Shiong
- Nantworks LLC, Culver City, 9920 Jefferson Boulevard, California, CA 90230, USA
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| |
Collapse
|
18
|
Díez-Pascual AM, Luceño-Sánchez JA. Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives: A State of Art. Polymers (Basel) 2021; 13:2105. [PMID: 34206821 PMCID: PMC8271513 DOI: 10.3390/polym13132105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
The incorporation of carbon-based nanostructures into polymer matrices is a relevant strategy for producing novel antimicrobial materials. By using nanofillers of different shapes and sizes, and polymers with different characteristics, novel antimicrobial nanocomposites with synergistic properties can be obtained. This article describes the state of art in the field of antimicrobial polymeric nanocomposites reinforced with graphene and its derivatives such as graphene oxide and reduced graphene oxide. Taking into account the vast number of articles published, only some representative examples are provided. A classification of the different nanocomposites is carried out, dividing them into acrylic and methacrylic matrices, biodegradable synthetic polymers and natural polymers. The mechanisms of antimicrobial activity of graphene and its derivatives are also reviewed. Finally, some applications of these antimicrobial nanocomposites are discussed. We aim to enhance understanding in the field and promote further work on the development of polymer-based antimicrobial nanocomposites incorporating graphene-based nanomaterials.
Collapse
Affiliation(s)
- Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain;
| | | |
Collapse
|
19
|
Serrano-Aroca Á, Takayama K, Tuñón-Molina A, Seyran M, Hassan SS, Pal Choudhury P, Uversky VN, Lundstrom K, Adadi P, Palù G, Aljabali AAA, Chauhan G, Kandimalla R, Tambuwala MM, Lal A, Abd El-Aziz TM, Sherchan S, Barh D, Redwan EM, Bazan NG, Mishra YK, Uhal BD, Brufsky A. Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial-Resistant Era. ACS NANO 2021; 15:8069-8086. [PMID: 33826850 PMCID: PMC8043205 DOI: 10.1021/acsnano.1c00629] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 05/04/2023]
Abstract
Therapeutic options for the highly pathogenic human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the current pandemic coronavirus disease (COVID-19) are urgently needed. COVID-19 is associated with viral pneumonia and acute respiratory distress syndrome causing significant morbidity and mortality. The proposed treatments for COVID-19 have shown little or no effect in the clinic so far. Additionally, bacterial and fungal pathogens contribute to the SARS-CoV-2-mediated pneumonia disease complex. The antibiotic resistance in pneumonia treatment is increasing at an alarming rate. Therefore, carbon-based nanomaterials (CBNs), such as fullerene, carbon dots, graphene, and their derivatives constitute a promising alternative due to their wide-spectrum antimicrobial activity, biocompatibility, biodegradability, and capacity to induce tissue regeneration. Furthermore, the antimicrobial mode of action is mainly physical (e.g., membrane distortion), characterized by a low risk of antimicrobial resistance. In this Review, we evaluated the literature on the antiviral activity and broad-spectrum antimicrobial properties of CBNs. CBNs had antiviral activity against 13 enveloped positive-sense single-stranded RNA viruses, including SARS-CoV-2. CBNs with low or no toxicity to humans are promising therapeutics against the COVID-19 pneumonia complex with other viruses, bacteria, and fungi, including those that are multidrug-resistant.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Kazuo Takayama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8397, Japan
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Murat Seyran
- Doctoral studies in natural and technical sciences (SPL 44), University of Vienna, Währinger Straße, A-1090 Vienna, Austria
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India
| | - Pabitra Pal Choudhury
- Applied Statistics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | | | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University-Faculty of Pharmacy, Irbid 21163, Jordan
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India
- Department of Biochemistry, Kakatiya Medical College, Warangal-506007, Telangana State, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, U.K
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, United States
| | - Samendra Sherchan
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University of Louisiana, New Orleans, Louisiana 70112, United States
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB-721172, India
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21934, Egypt
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, LSU Heath New Orleans, New Orleans, Louisiana 70112, United States
| | - Yogendra Kumar Mishra
- University of Southern Denmark, Mads Clausen Institute, NanoSYD, Alsion 2, 6400 Sønderborg, Denmark
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Adam Brufsky
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| |
Collapse
|
20
|
Zeng D, Shen S, Fan D. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Rezapour-Lactoee A, Yeganeh H, Gharibi R, Milan PB. Enhanced healing of a full-thickness wound by a thermoresponsive dressing utilized for simultaneous transfer and protection of adipose-derived mesenchymal stem cells sheet. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:101. [PMID: 33140201 DOI: 10.1007/s10856-020-06433-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
To boost the healing process in a full-thickness wound, a simple and efficient strategy based on adipose-derived mesenchymal stem cells (ADSCs) transplantation is described in this work. To increase the chance of ADSCs immobilization in the wound bed and prevent its migration, these cells are fully grown on the surface of a thermoresponsive dressing membrane under in vitro condition. Then, the cells sheet with their secreted extracellular matrix (ECM) is transferred to the damaged skin with the help of this dressing membrane. This membrane remains on wound bed and acts both as a cell sheet transfer vehicle, after external reduction of temperature, and protect wound during the healing process like a common wound dressing. The visual inspection of wounded skin (rat animal model) at selected time intervals shows a higher wound closure rate for ADSCs treated group. For this group of rats, the better quality of reconstructed tissue is approved by results of histological and immunohistochemical analysis since the higher length of the new epidermis, the higher thickness of re-epithelialization layer, a higher level of neovascularization and capillary density, and the least collagen deposition are detected in the healed tissue.
Collapse
Affiliation(s)
- Alireza Rezapour-Lactoee
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Tissue Engineering, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, Tehran, P.O. Box:14965/115, Iran.
| | - Reza Gharibi
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| | - Peiman Brouki Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Nowroozi N, Faraji S, Nouralishahi A, Shahrousvand M. Biological and structural properties of graphene oxide/curcumin nanocomposite incorporated chitosan as a scaffold for wound healing application. Life Sci 2020; 264:118640. [PMID: 33172598 DOI: 10.1016/j.lfs.2020.118640] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
AIMS The purpose of this research is to fabricate chitosan (CS)/graphene oxide (GO)/curcumin (Cur) 3D scaffolds through the freeze-drying method for wound dressing applications. MAIN METHODS GO is produced by Hammer's method; then, it is characterized by X-ray diffraction and TEM analysis. Fabricated scaffolds are characterized by FTIR, FESEM, AFM, water vapor transmission rate, PBS absorption, contact angle, tensile strength, porosity measurement, biodegradability, and drug release methods. The cell viability and morphology of NIH/3 T3 cells are investigated by WST assay kit and FESEM analysis, and the antibacterial activity of scaffolds is determined by the optical density (OD) method. The photothermal antibacterial activity is characterized by NIR irradiation, too. KEY FINDINGS The mean pore diameter of scaffolds adjusted by the incorporation of about 0-1.5%wt. of GO/Cur nanocomposite into CS matrix, decreasing from 87 to 40 μm that can be attributed to the intermolecular bonds between CS and GO/Cur nanocomposite. Besides, the PBS absorption of scaffolds enhances by the addition of GO/Cur, especially 1% of it. Furthermore, the overall average of cell viability of nanocomposite scaffolds is about 95%, and the FESEM images show that NIH/3T3 fibroblasts well spread on the nanocomposite scaffolds. GO/Cur has a significant influence on the antibacterial activity of CS scaffolds as CS/GO/Cur 0.5 scaffold diminishes the bacterial growth to about 52% of the control sample's growth. SIGNIFICANCE The results evidence the antibacterial CS/GO/Cur scaffolds are excellent supports for cell growth and proliferation, and they could be promising candidates for wound dressing applications.
Collapse
Affiliation(s)
- Nona Nowroozi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Iran; Energy, Environment, and Nanostructure material laboratory, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran.
| | - Soraya Faraji
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Iran; Energy, Environment, and Nanostructure material laboratory, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran.
| | - Amideddin Nouralishahi
- Energy, Environment, and Nanostructure material laboratory, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran.
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshahr, P.O. Box: 43841-119, Guilan, Iran.
| |
Collapse
|
23
|
Wang C, Mu C, Lin W, Xiao H. Functional-modified polyurethanes for rendering surfaces antimicrobial: An overview. Adv Colloid Interface Sci 2020; 283:102235. [PMID: 32858408 DOI: 10.1016/j.cis.2020.102235] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Antimicrobial surfaces and coatings are rapidly emerging as primary components in functional modification of materials and play an important role in addressing the problems associated with biofouling and microbial infection. Polyurethane (PU) consisting of alternating soft and hard segments has been one of the most important coating materials that have been widely applied in many fields due to its versatile properties. This review attempts to provide insight into the recent advances in antimicrobial polyurethane coatings or surfaces. According to different classes of antimicrobial components along with their antimicrobial mechanism, the synthesis pathways are presented systematically herein to afford polyurethane with antimicrobial properties. Also, the challenges and opportunities of antimicrobial PU coatings and surfaces are also discussed. This review will be beneficial to the exploitation and the further studies of antimicrobial polyurethane materials for a variety of applications.
Collapse
|
24
|
Abbasi AR, Sohail M, Minhas MU, Khaliq T, Kousar M, Khan S, Hussain Z, Munir A. Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing. Int J Biol Macromol 2020; 155:751-765. [DOI: 10.1016/j.ijbiomac.2020.03.248] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
|
25
|
Jian Z, Wang H, Liu M, Chen S, Wang Z, Qian W, Luo G, Xia H. Polyurethane-modified graphene oxide composite bilayer wound dressing with long-lasting antibacterial effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110833. [DOI: 10.1016/j.msec.2020.110833] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/14/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
|
26
|
Borges I, Henriques PC, Gomes RN, Pinto AM, Pestana M, Magalhães FD, Gonçalves IC. Exposure of Smaller and Oxidized Graphene on Polyurethane Surface Improves its Antimicrobial Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E349. [PMID: 32085467 PMCID: PMC7075169 DOI: 10.3390/nano10020349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 12/12/2022]
Abstract
Catheter-related infections are a common worldwide health problem, highlighting the need for antimicrobial catheters. Here, antibacterial potential of graphene nanoplatelets (GNP) incorporated in the commonly used polymer for catheter manufacture-polyurethane (PU)-is investigated. Two strategies are explored: melt-blending, producing a composite, and dip coating, where a composite layer is deposited on top of PU. GNP with different lateral sizes and oxidation degrees-GNP-M5, GNP-M15, GNP-M5ox, GNP-M15ox-are applied in both strategies, and the antimicrobial potential towards Staphylococcus epidermidis of GNP dispersions and GNP-containing PU evaluated. As dispersions, oxidized and smaller GNP powders (GNP-M5ox) inhibit 74% bacteria growth at 128 µg/mL. As surfaces, GNP exposure strongly impacts their antimicrobial profile: GNP absence at the surface of composites yields no significant effects on bacteria, while by varying GNP: PU ratio and GNP concentration, coatings enhance GNP exposure, depicting an antimicrobial profile. Oxidized GNP-containing coatings induce higher antibacterial effect than non-oxidized forms, particularly with smaller GNPox, where a homogeneous layer of fused platelets is formed on PU, leading to 70% reduction in bacterial adhesion and 70% bacterial death. This pioneering work unravels how to turn a polymer clinically used to produce catheters into an antimicrobial surface, crucial to reducing risk of infection associated with catheterization.
Collapse
Affiliation(s)
- Inês Borges
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (I.B.); (P.C.H.); (R.N.G.); (M.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Patrícia C. Henriques
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (I.B.); (P.C.H.); (R.N.G.); (M.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Rita N. Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (I.B.); (P.C.H.); (R.N.G.); (M.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Artur M. Pinto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (I.B.); (P.C.H.); (R.N.G.); (M.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Manuel Pestana
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (I.B.); (P.C.H.); (R.N.G.); (M.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Department of Nephrology, São João Hospital Center, EPE, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Inês C. Gonçalves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (I.B.); (P.C.H.); (R.N.G.); (M.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
27
|
Yang C, Yan Z, Lian Y, Wang J, Zhang K. Graphene oxide coated shell-core structured chitosan/PLLA nanofibrous scaffolds for wound dressing. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:622-641. [PMID: 31852372 DOI: 10.1080/09205063.2019.1706149] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Graphite oxide (GO) and chitosan (CS) nanofibers have aroused intense interest as wound dressing due to their physicochemical, antimicrobial properties and nanotopography. In this study, GO nanosheets were coated on shell (chitosan, CS)-core (L-polylactic acid, PLLA) structured nanofibrous scaffolds to create a synergistic microenvironment for wound healing. Through scanning electron microscopy (SEM) and atomic force microscopy (AFM) tests, results showed that the surface of GO-coated CS/PLLA nanofibers presented corrugated wrinkles and rougher than that of CS/PLLA nanofibers, and the GO nanosheets did not destroy the structure of nanofibers. X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) demonstrated that GO nanosheets were successfully coated on CS/PLLA nanofibrous scaffolds. Furthermore, the coatings of GO nanosheets significantly improved the hydrophilicity of CS/PLLA nanofibrous scaffolds. GO-coated CS/PLLA nanofibrous scaffolds revealed more excellent antimicrobial activity to Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) than that of CS/PLLA nanofibrous scaffolds, meanwhile, they promoted the proliferation of pig iliac endothelial cells (PIECs). Rats wounds covered by GO-coated CS/PLLA nanofibrous scaffolds were healed better than other groups on pathological section. This type of nanofibrous scaffolds with GO nanosheets would possess an excellent potential in wound healing process.
Collapse
Affiliation(s)
- Chengwei Yang
- Department of Spinal Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Zhiyong Yan
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Yuan Lian
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Jiayan Wang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Kuihua Zhang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
28
|
Utilizing dextran to improve hemocompatibility of antimicrobial wound dressings with embedded quaternary ammonium salts. Int J Biol Macromol 2019; 131:1044-1056. [DOI: 10.1016/j.ijbiomac.2019.03.185] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 11/21/2022]
|
29
|
Rabiee T, Yeganeh H, Gharibi R. Antimicrobial wound dressings with high mechanical conformability prepared through thiol-yne click photopolymerization reaction. ACTA ACUST UNITED AC 2019; 14:045007. [PMID: 30952142 DOI: 10.1088/1748-605x/ab16b8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radical mediated photochemical thiol-yne click polymerization of thiol-terminated polyurethane prepolymers, with poly(ethylene glycol) soft segment at two different molecular weights, a propargyl terminated urethane crosslinker and silver salt was utilized to prepare versatile wound dressings containing well-dispersed Ag° nanoparticles produced via in situ reduction of Ag+ ions. The dressings with optimized chemical structure showed desirable fluid handling capacity (up to 4.84 g/10 cm2 d-1) to provide moist environment over damaged tissue. They were permeable to oxygen and carbon dioxide, therefore, the processes related to tissue regeneration of wound bed could be continued without problem. Their appropriate tensile strength (up to 3.87 MPa) and suitable conformability (less than 0.1% permanent set) enabled protection of damaged skin tissue from external physical forces during the healing process, even for wounds present at organs with a high degree of freedom. The proper cytocompatibility of the prepared dressings and their ability to support growth and proliferation of fibroblast cells as determined by wound scratch healing assay showed the potential utility of the dressings to motivate wound healing progression by migration of cells to the damaged area. In addition, these dressings with in situ formed silver nanoparticles exhibited promising antimicrobial activity against different bacterial and fungal strains, and consequently could encourage wound healing process by prevention from infection in the wound site.
Collapse
Affiliation(s)
- Tina Rabiee
- Iran Polymer and Petrochemical Institute, PO Box: 14965/115, Tehran, Iran
| | | | | |
Collapse
|
30
|
Ghorbani F, Zamanian A, Aidun A. Bioinspired polydopamine coating‐assisted electrospun polyurethane‐graphene oxide nanofibers for bone tissue engineering application. J Appl Polym Sci 2019. [DOI: 10.1002/app.47656] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Farnaz Ghorbani
- Department of Biomedical EngineeringTehran Science and Research Branch, Islamic Azad University Tehran Iran
- Biomaterials Research Group, Department of Nanotechnology and Advanced MaterialsMaterials and Energy Research Center Tehran Iran
- Department of BiomaterialsAprin Advanced Technologies Development Company Tehran Iran
| | - Ali Zamanian
- Biomaterials Research Group, Department of Nanotechnology and Advanced MaterialsMaterials and Energy Research Center Tehran Iran
- Department of BiomaterialsAprin Advanced Technologies Development Company Tehran Iran
| | - Amir Aidun
- National Cell Bank of Iran, Pasteur Institute of Iran Tehran Iran
- Tissues and Biomaterial Research Group (TBRG)Universal Scientific Education and Research Network (USERN) Tehran Iran
| |
Collapse
|
31
|
Shahmoradi S, Golzar H, Hashemi M, Mansouri V, Omidi M, Yazdian F, Yadegari A, Tayebi L. Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. NANOTECHNOLOGY 2018; 29:475101. [PMID: 30179859 DOI: 10.1088/1361-6528/aadedc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, we introduce a novel graphene oxide/silver/arginine (GO/Ag/Arg) nanohybrid structure, which can act as an angiogenesis promoter and provide antibacterial nanostructure for improving the wound healing process. GO/Ag nanostructure has been optimized in terms of the GO/Ag mass ratio and pH values using central composite design and the response surface method to increase the Ag loading efficiency. Then, Arg was chemically introduced to the surface of GO/Ag nanostructure. Electrospun polycaprolactone (PCL)-GO/Ag/Arg nanocomposite was successfully fabricated and characterized. The synthesized nanocomposite demonstrated not only a great antibacterial effect on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacterial species, but appropriate biocompatibility against L929 fibroblastic cell lines. The results demonstrated that the preparation of the PCL-GO/Ag/Arg nanocomposite at a concentration of 1.0 wt% GO/Ag/Arg possessed the best biological and mechanical features. In vivo experiments also revealed that the use of optimized PCL-GO/Ag/Arg nanocomposite, after 12 d of treatment, led to significant increase in the healing process and also regeneration of the wound via reconstruction of a thickened epidermis layer on the wound surface, which was confirmed by histological analysis. In conclusion, the proposed approach can introduce a novel notion for preparing antibacterial material that significantly promotes angiogenesis.
Collapse
Affiliation(s)
- Saleheh Shahmoradi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem Rev 2018; 118:6766-6843. [DOI: 10.1021/acs.chemrev.6b00275] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Toktam Nezakati
- Google Inc.., Mountain View, California 94043, United States
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Amelia Seifalian
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Aaron Tan
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Alexander M. Seifalian
- NanoRegMed Ltd. (Nanotechnology and Regenerative Medicine Commercialization Centre), The London Innovation BioScience Centre, London NW1 0NH, United Kingdom
| |
Collapse
|
33
|
Karahan HE, Wiraja C, Xu C, Wei J, Wang Y, Wang L, Liu F, Chen Y. Graphene Materials in Antimicrobial Nanomedicine: Current Status and Future Perspectives. Adv Healthc Mater 2018; 7:e1701406. [PMID: 29504283 DOI: 10.1002/adhm.201701406] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Graphene materials (GMs), such as graphene, graphene oxide (GO), reduced GO (rGO), and graphene quantum dots (GQDs), are rapidly emerging as a new class of broad-spectrum antimicrobial agents. This report describes their state-of-the-art and potential future covering both fundamental aspects and biomedical applications. First, the current understanding of the antimicrobial mechanisms of GMs is illustrated, and the complex picture of underlying structure-property-activity relationships is sketched. Next, the different modes of utilization of antimicrobial GMs are explained, which include their use as colloidal dispersions, surface coatings, and photothermal/photodynamic therapy agents. Due to their practical relevance, the examples where GMs function as synergistic agents or release platforms for metal ions and/or antibiotic drugs are also discussed. Later, the applicability of GMs in the design of wound dressings, infection-protective coatings, and antibiotic-like formulations ("nanoantibiotics") is assessed. Notably, to support our assessments, the existing clinical applications of conventional carbon materials are also evaluated. Finally, the key hurdles of the field are highlighted, and several possible directions for future investigations are proposed. We hope that the roadmap provided here will encourage researchers to tackle remaining challenges toward clinical translation of promising research findings and help realize the potential of GMs in antimicrobial nanomedicine.
Collapse
Affiliation(s)
- Hüseyin Enis Karahan
- School of Chemical and Biomolecular Engineering The University of Sydney NSW 2006 Australia
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637459 Singapore
- Singapore Institute of Manufacturing Technology Singapore 638075 Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637459 Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637459 Singapore
- NTU‐Northwestern Institute of Nanomedicine Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Jun Wei
- Singapore Institute of Manufacturing Technology Singapore 638075 Singapore
| | - Yilei Wang
- School of Chemistry & Chemical Engineering Tianjin University of Technology 391 Binshui, Xidao, Xiqing District Tianjin 300384 China
| | - Liang Wang
- School of Chemistry & Chemical Engineering Tianjin University of Technology 391 Binshui, Xidao, Xiqing District Tianjin 300384 China
| | - Fei Liu
- State Key Laboratory of Applied Microbiology Southern China Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application Guangdong Institute of Microbiology 100 Central Xianlie Road Guangzhou 510070 China
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering The University of Sydney NSW 2006 Australia
| |
Collapse
|
34
|
Temperature-Sensitive Poly(N-isopropylacrylamide)/Konjac Glucomannan/Graphene Oxide Composite Membranes with Improved Mechanical Property, Swelling Capability, and Degradability. INT J POLYM SCI 2018. [DOI: 10.1155/2018/7906747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Temperature-sensitive poly(N-isopropylacrylamide)/konjac glucomannan/graphene oxide (PNIPAM/KGM/GO) composite membranes were prepared by solution blending using calcium ions as a cross-linker. The composite membranes were characterized by Fourier-transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), and differential scanning calorimetry (DSC). The swelling, mechanical property, phase transformation behaviors, and enzymatic degradation activities were also determined. Results revealed that the phase transition temperatures of all the composite membranes were approximately 35°C. The PNIPAM/KGM/GO composite membranes showed enhanced mechanical property. The swelling behavior and enzymatic degradation of the PNIPAM/KGM/GO composite membranes improved compared with those of conventional PNIPAM hydrogel and PNIPAM/KGM composite membranes. Thus, the PNIPAM/KGM/GO composite membranes have potential applications in the biomedical field as skin dressings.
Collapse
|
35
|
Zarrintaj P, Moghaddam AS, Manouchehri S, Atoufi Z, Amiri A, Amirkhani MA, Nilforoushzadeh MA, Saeb MR, Hamblin MR, Mozafari M. Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine (Lond) 2017; 12:2403-2422. [PMID: 28868968 DOI: 10.2217/nnm-2017-0173] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Skin is the outermost covering of the human body and at the same time the largest organ comprising 15% of body weight and 2 m2 surface area. Skin plays a key role as a barrier against the outer environment depending on its thickness, color and structure, which differ from one site to another. The four major types of problematic wounds include ulcers (diabetic, venous, pressure) and burn wounds. Developing novel dressings helps us to improve the wound healing process in difficult patients. Recent advances in regenerative medicine and nanotechnology are revolutionizing the field of wound healing. Antimicrobial activity, exogenous cell therapy, growth factor delivery, biodegradable and biocompatible matrix construction, all play a role in hi-tech dressing design. In the present review, we discuss how the principles of regenerative medicine and nanotechnology can be combined in innovative wound dressings.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Saeed Manouchehri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zhaleh Atoufi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Anahita Amiri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | | | - Mohammad Reza Saeb
- Department of Resin & Additives, Institute for Color Science & Technology, P.O. Box 16765-654, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| | - Masoud Mozafari
- Nanotechnology & Advanced Materials Department, Materials & Energy Research Center (MERC), Tehran, Iran
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|