1
|
Zhang J, Cheng L, Li H, Chen X, Zhang L, Shan T, Wang J, Chen D, Shen J, Zhou X, Gou L, Zhang L, Zhou X, Ren B. Challenges of quaternary ammonium antimicrobial agents: Mechanisms, resistance, persistence and impacts on the microecology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178020. [PMID: 39689472 DOI: 10.1016/j.scitotenv.2024.178020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Quaternary ammonium compounds (QACs) served as broad spectrum antimicrobial agents are widely applied for surface disinfection, skin and mucous disinfection, and mouthwash. The daily applications of QACs have significantly increased, especially during the COVID-19 pandemic. However, the environmental residues of QACs have demonstrated harmful impacts on the environment, leading to an increase in environmental contamination, resistant microbes and disruption of microecology. The actions of QACs were related to their cationic character, which can impact the negatively charged cell membranes, but the details are still unclear. Moreover, bacteria with lower sensitivity and resistant pathogens have been detected in clinics and environments, while QACs were also reported to induce the formation of bacterial persisters. Even worse, the resistant bacteria even showed co-resistance and cross-resistance with traditional antibiotics, decreasing therapeutic effectiveness, and disrupting the microecology homeostasis. Unfortunately, the resistance and persistence mechanisms of QACs and the effects of QACs on microecology are still not clear, which even neglected during their daily usages. Therefore, we summarized and discussed current understandings on the antimicrobial actions, resistance, persistence and impacts on the microecology to highlight the challenges in the QACs applications and discuss the possible strategies for overcoming their drawbacks.
Collapse
Affiliation(s)
- Jiaxin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tiantian Shan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiannan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ding Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiawei Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Yuan S, Shen Y, Quan Y, Gao S, Zuo J, Jin W, Li R, Yi L, Wang Y, Wang Y. Molecular mechanism and application of emerging technologies in study of bacterial persisters. BMC Microbiol 2024; 24:480. [PMID: 39548389 PMCID: PMC11568608 DOI: 10.1186/s12866-024-03628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Since the discovery of antibiotics, they have served as a potent weapon against bacterial infections; however, natural evolution has allowed bacteria to adapt and develop coping mechanisms, ultimately leading to the concerning escalation of multidrug resistance. Bacterial persisters are a subpopulation that can survive briefly under high concentrations of antibiotic treatment and resume growth after lethal stress. Importantly, bacterial persisters are thought to be a significant cause of ineffective antibiotic therapy and recurrent infections in clinical practice and are thought to contribute to the development of antibiotic resistance. Therefore, it is essential to elucidate the molecular mechanisms of persister formation and to develop precise medical strategies to combat persistent infections. However, there are many difficulties in studying persisters due to their small proportion in the microbiota and their non-heritable nature. In this review, we discuss the similarities and differences of antibiotic resistance, tolerance, persistence, and viable but non-culturable cells, summarize the molecular mechanisms that affect the formation of persisters, and outline the emerging technologies in the study of persisters.
Collapse
Affiliation(s)
- Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
3
|
Chen H, Xu M, Zhang B, Yu S, Weir MD, Melo MAS, Masri RM, Tang Y, Xu HHK, Yang D. Novel strategy of S. mutans gcrR gene over-expression plus antibacterial dimethylaminohexadecyl methacrylate suppresses biofilm acids and reduces dental caries in rats. Dent Mater 2024; 40:e41-e51. [PMID: 38942710 DOI: 10.1016/j.dental.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/09/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE Streptococcus mutans (S. mutans) is a major contributor to dental caries, with its ability to synthesize extracellular polysaccharides (EPS) and biofilms. The gcrR gene is a regulator of EPS synthesis and biofilm formation. The objectives of this study were to investigate a novel strategy of combining gcrR gene over-expression with dimethylaminohexadecyl methacrylate (DMAHDM), and to determine their in vivo efficacy in reducing caries in rats for the first time. METHODS Two types of S. mutans were tested: Parent S. mutans; and gcrR gene over-expressed S. mutans (gcrR OE S. mutans). Bacterial minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were measured with DMAHDM and chlorhexidine (CHX). Biofilm biomass, polysaccharide, lactic acid production, live/dead staining, colony-forming units (CFUs), and metabolic activity (MTT) were evaluated. A Sprague-Dawley rat model was used with parent S. mutans and gcrR OE S. mutans colonization to determine caries-inhibition in vivo. RESULTS Drug-susceptibility of gcrR OE S. mutans to DMAHDM or CHX was 2-fold higher than that of parent S. mutans. DMAHDM reduced biofilm CFU by 3-4 logs. Importantly, the combined gcrR OE S. mutans+ DMAHDM dual strategy reduced biofilm CFU by 5 logs. In the rat model, the parent S. mutans group had a higher cariogenicity in dentinal (Dm) and extensive dentinal (Dx) regions. The DMAHDM + gcrR OE group reduced the Dm and Dx caries to only 20 % and 0 %, those of parent S. mutans + PBS control group (p < 0.05). The total caries severity of gcrR OE + DMAHDM group was decreased to 51 % that of parent S. mutans control (p < 0.05). SIGNIFICANCE The strategy of combining S. mutans gcrR over-expression with antibacterial monomer reducing biofilm acids by 97 %, and reduced in vivo total caries in rats by 48 %. The gcrR over-expression + DMAHDM strategy is promising for a wide range of dental applications to inhibit caries and protect tooth structures.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Mengmeng Xu
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Bin Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuang Yu
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Michael D Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Mary Anne S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Radi M Masri
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yunhao Tang
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Deqin Yang
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China.
| |
Collapse
|
4
|
Yu S, Xu M, Wang Z, Deng Y, Xu HHK, Weir MD, Homayounfar N, Fay GG, Chen H, Yang D. S. mutans Antisense vicK RNA Over-Expression Plus Antibacterial Dimethylaminohexadecyl Methacrylate Suppresses Oral Biofilms and Protects Enamel Hardness in Extracted Human Teeth. Pathogens 2024; 13:707. [PMID: 39204307 PMCID: PMC11356802 DOI: 10.3390/pathogens13080707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Streptococcus mutans (S. mutans) antisense vicK RNA (ASvicK) is a non-coding RNA that regulates cariogenic virulence and metabolic activity. Dimethylaminohexadecyl methacrylate (DMAHDM), a quaternary ammonium methacrylate used in dental materials, has strong antibacterial activity. This study examined the effects of S. mutans ASvicK on DMAHDM susceptibility and their combined impact on inhibiting S. mutans biofilm formation and protecting enamel hardness. The parent S. mutans UA159 and ASvicK overexpressing S. mutans (ASvicK) were tested. The minimum inhibitory concentration (MIC) and minimum bactericidal concentrations for planktonic bacteria (MBC-P) and biofilms (MBC-B) were measured. As the ASvicK MBC-B was 175 μg/mL, live/dead staining, metabolic activity (MTT), colony-forming units (CFUs), biofilm biomass, polysaccharide, and lactic acid production were investigated at 175 μg/mL and 87.5 μg/mL. The MIC, MBC-P, and MBC-B values for DMAHDM for the ASvicK strain were half those of the UA159 strain. In addition, combining S. mutans ASvicK with DMAHDM resulted in a significant 4-log CFU reduction (p < 0.05), with notable decreases in polysaccharide levels and lactic acid production. In the in vitro cariogenic model, the combination achieved the highest enamel hardness at 67.1% of sound enamel, while UA159 without DMAHDM had the lowest at 16.4% (p < 0.05). Thus, S. mutans ASvicK enhanced DMAHDM susceptibility, and their combination effectively inhibited biofilm formation and minimized enamel demineralization. The S. mutans ASvicK + DMAHDM combination shows great potential for anti-caries dental applications.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Mengmeng Xu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Zheng Wang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Yang Deng
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Michael D. Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Negar Homayounfar
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Guadalupe Garcia Fay
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| |
Collapse
|
5
|
Liang X, Yu B, Ye L, Lin D, Zhang W, Zhong HJ, He J. Recent Advances in Quaternary Ammonium Monomers for Dental Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:345. [PMID: 38255513 PMCID: PMC10820831 DOI: 10.3390/ma17020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Resin-based dental materials have been one of the ideal choices among various materials in the treatment of dental caries. However, resin-based dental materials still have some drawbacks, such as the lack of inherent antibacterial activity. Extensive research has been conducted on the use of novel quaternary ammonium monomers (QAMs) to impart antibacterial activity to dental materials. This review provides a comprehensive overview of the recent advances in quaternary ammonium monomers (QAMs) for dental applications. The current progress and limitations of QAMs are discussed based on the evolution of their structures. The functional diversification and enhancement of QAMs are presented. QAMs have the potential to provide long-term antibacterial activity in dental resin composites, thereby prolonging their service life. However, there is a need to balance antibacterial performance with other material properties and the potential impact on the oral microbiome and general health. Finally, the necessity for further scientific progress in the development of novel quaternary ammonium monomers and the optimization of dental resin formulations is emphasized.
Collapse
Affiliation(s)
- Xiaoxu Liang
- Foundation Department, Guangzhou Maritime University, Guangzhou 510725, China;
| | - Biao Yu
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Liuqi Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Danlei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Wen Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Hai-Jing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Jingwei He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
6
|
Li Y, Li B, Guo X, Wang H, Cheng L. Applications of quaternary ammonium compounds in the prevention and treatment of oral diseases: State-of-the-art and future directions. J Dent 2023; 137:104678. [PMID: 37634613 DOI: 10.1016/j.jdent.2023.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVES The aim of this review is to comprehensively summarize the state-of-the-art developments of quaternary ammonium compounds (QACs) in the prevention and treatment of oral diseases. By discussing the structural diversity and the potential killing mechanism, we try to offer some insights for the future research of QACs. DATA, SOURCES & STUDY SELECTION A literature search was conducted in electronic databases (Web of Science, PubMed, Medline, and Scopus). Publications that involved the applications of QACs, especially those related to the prevention and treatment of oral diseases, are included. RESULTS We have reviewed the relevant research on QACs over the past two decades. The research results indicate that the current applications are mainly focused on dental material modification and direct pharmacological interventions. Concurrently, challenges such as potential risks to normal tissues and impediments in drug resistance and microbial persistence present certain application constraints. The latest studies have encompassed the exploration of smart materials and nanoparticle formulations. CONCLUSIONS The killing mechanism may possess a threshold related to charge density. However, the exact process remains enigmatic. The structural diversity and the exploration of intelligent materials and nanoparticle formulations provide directions in development of novel QACs. CLINICAL SIGNIFICANCE The intricate oral anatomy, combined with the multifaceted oral microbiome, necessitates specialized materials for the targeted prevention and treatment of oral pathologies. QACs represent a cohort of compounds distinguished by potent anti-infective and anti-tumor attributes. Innovations in intelligent materials and nanoparticle formulations amplify their potential in significantly advancing the prevention and therapeutic interventions for oral diseases.
Collapse
Affiliation(s)
- Yiling Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Guo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Alhussein A, Alsahafi R, Wang X, Mitwalli H, Filemban H, Hack GD, Oates TW, Sun J, Weir MD, Xu HHK. Novel Dental Low-Shrinkage-Stress Composite with Antibacterial Dimethylaminododecyl Methacrylate Monomer. J Funct Biomater 2023; 14:335. [PMID: 37504831 PMCID: PMC10381573 DOI: 10.3390/jfb14070335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVES Current dental resins exhibit polymerization shrinkage causing microleakage, which has the potential to cause recurrent caries. Our objectives were to create and characterize low-shrinkage-stress (LSS) composites with dimethylaminododecyl methacrylate (DMADDM) as an antibacterial agent to combat recurrent caries. METHODS Triethylene glycol divinylbenzyl ether and urethane dimethacrylate were used to reduce shrinkage stress. DMADDM was incorporated at different mass fractions (0%, 1.5%, 3%, and 5%). Flexural strength, elastic modulus, degree of conversion, polymerization stress, and antimicrobial activity were assessed. RESULTS The composite with 5% DMADDM demonstrated higher flexural strength than the commercial group (p < 0.05). The addition of DMADDM in BisGMA-TEGDMA resin and LSS resin achieved clinically acceptable degrees of conversion. However, LSS composites exhibited much lower polymerization shrinkage stress than BisGMA-TEGDMA composite groups (p < 0.05). The addition of 3% and 5% DMADDM showed a 6-log reduction in Streptococcus mutans (S. mutans) biofilm CFUs compared to commercial control (p < 0.001). Biofilm biomass and lactic acid were also substantially decreased via DMADDM (p < 0.05). CONCLUSIONS The novel LSS dental composite containing 3% DMADDM demonstrated potent antibacterial action against S. mutans biofilms and much lower polymerization shrinkage-stress, while maintaining excellent mechanical characteristics. The new composite is promising for dental applications to prevent secondary caries and increase restoration longevity.
Collapse
Affiliation(s)
- Abdullah Alhussein
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashed Alsahafi
- Department of Restorative Dental Sciences, Umm Al-Qura University, College of Dentistry, Makkah 24211, Saudi Arabia
| | - Xiaohong Wang
- American Dental Association Science and Research Institute, LLC., Gaithersburg, MD 20899, USA
| | - Heba Mitwalli
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hanan Filemban
- Department of Operative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gary D Hack
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jirun Sun
- The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA 02142, USA
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
- The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA 02142, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Ardila CM, Bedoya-García JA. Bacterial resistance to antiseptics used in dentistry: A systematic scoping review of randomized clinical trials. Int J Dent Hyg 2023; 21:141-148. [PMID: 36269218 DOI: 10.1111/idh.12629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 10/19/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVES To evaluate the prevalence and proportions of bacteria resistant to antiseptics used in dentistry. METHODS A review of randomized clinical trials (RCTs) was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for scoping reviews involving different databases. MeSH terms and keywords were provided to examine only RCTs with antiseptic-resistant results. RESULTS Five RCTs were included. These investigations analysed 442 patients. Concerning the prevalence and proportion of species resistant to antiseptics, it was found that the chlorhexidine group showed a statistically significant increase in Streptococcus mutans and Lactobacillus acidophilus counts indicating bacterial resistance (p < 0.001). Moreover, Veillonella species showed resistance to triclosan at the commencement and during the RCTs, and a slight increase in the proportion of resistant strains was observed. Porphyromonas gingivalis, Staphylococcus aureus, and Pseudomonas aeruginosa did not show resistance to cetylpyridinium chloride. Similarly, it was no observed resistance to medicinal herbal plant formulations. CONCLUSIONS Resistance of S. mutans and L. acidophilus to chlorhexidine was observed, this resistance increased during the follow-up period. Similarly, although in a slight proportion, an increase in the resistance of Veillonella spp. to triclosan during the study period was also described. No microorganisms resistance was observed to any of the other antiseptics studied.
Collapse
Affiliation(s)
- Carlos M Ardila
- Universidad de Antioquia U de A, Medellín, Colombia
- Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín, Colombia
| | - Jader Alexander Bedoya-García
- Universidad de Antioquia U de A, Medellín, Colombia
- Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín, Colombia
| |
Collapse
|
9
|
Pourhajibagher M, Parker S, Pourakbari B, Valian NK, Raoofian R, Bahador A. Enhancement of hypericin nanoparticle-mediated sonoinduced disruption of biofilm and persister cells of Streptococcus mutans by dermcidin-derived peptide DCD-1L. Photodiagnosis Photodyn Ther 2023; 41:103308. [PMID: 36709017 DOI: 10.1016/j.pdpdt.2023.103308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/28/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Streptococcus mutans is considered a major significant contributor to dental caries and its effective removal is difficult due to the formation of biofilm. Therefore, the development of adjuvant therapeutic strategies with anti-biofilm properties is a promising approach. In the present study, we examined the effect of dermcidin-derived peptide DCD-1 L on the antibacterial activity of hypericin nanoparticle (HypNP)-mediated antimicrobial sonodynamic therapy (aSDT) against persister cells growing- and biofilm cultures of S. mutans. MATERIALS AND METHODS Following synthesis and confirmation of HypNP, the fractional inhibitory concentration (FIC) index of HypNP and DCD-1 L was determined by checkerboard assay. Cellular uptake of HypNP-DCD-1 L and generation of endogenous reactive oxygen species (ROS) were assessed and followed by the determination of antimicrobial sonoactivity of HypNP-DCD-1 L against persister cells growing- and biofilm cultures of S. mutans. The water-insoluble extracellular polysaccharide (EPS) and expression of the gtfD, comDE, and smuT genes were then evaluated in persister cells growing- and biofilm cultures of S. mutans. RESULTS There was a synergistic activity in the combination of HypNP and DCD-1 L against S. mutans with an FIC index value of 0.37. The HypNP-DCD-1L-mediated aSDT also displayed the highest cellular uptake and endogenous ROS generation by bacterial cells. When biofilm and persister cells of S. mutans were treated with HypNP-DCD-1 L and subsequently exposed to ultrasound waves, 5.1 log and 3.8 log reductions, respectively, in bacterial numbers were observed (P<0.05). According to the data, EPS in both persister cells growing- and biofilm cultures of S. mutans were significantly decreased after exposure to the HypNP-DCD-1L-mediated aSDT (P<0.05). In addition, the quantitative real-time PCR data illustrated the high level of similarities in very low-expression profiles of the gtfD before and after all treated groups for persister cells. While, following HypNP-DCD-1L-mediated aSDT treatment, the expression levels of gtfD, comDE, and smuT were significantly lower in treated persister cells growing- and biofilm cultures of S. mutans in comparison with control groups (P<0.05). CONCLUSIONS Combined, the results of this study indicate that ultrasound waves-activated HypNP-DCD-1 L can sonoinactivate S. mutans biofilms and persister cells, as well as reduce effectively pathogenicity potency of S. mutans. Hence, HypNP-DCD-1L-mediated aSDT may be proposed as a promising adjunctive therapeutic approach for dental caries.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Steven Parker
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom.
| | - Babak Pourakbari
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran; Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nasrin Keshavarz Valian
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Raoofian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
10
|
Geerts N, De Vooght L, Passaris I, Delputte P, Van den Bergh B, Cos P. Antibiotic Tolerance Indicative of Persistence Is Pervasive among Clinical Streptococcus pneumoniae Isolates and Shows Strong Condition Dependence. Microbiol Spectr 2022; 10:e0270122. [PMID: 36374111 PMCID: PMC9769776 DOI: 10.1128/spectrum.02701-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen, being one of the most common causes of community-acquired pneumonia and otitis media. Antibiotic resistance in S. pneumoniae is an emerging problem, as it depletes our arsenal of effective drugs. In addition, persistence also contributes to the antibiotic crisis in many other pathogens, yet for S. pneumoniae, little is known about antibiotic-tolerant persisters and robust experimental means are lacking. Persister cells are phenotypic variants that exist as a subpopulation within a clonal culture. Being tolerant to lethal antibiotics, they underly the chronic nature of a variety of infections and even help in acquiring genetic resistance. In this study, we set out to identify and characterize persistence in S. pneumoniae. Specifically, we followed different strategies to overcome the self-limiting nature of S. pneumoniae as a confounding factor in the prolonged monitoring of antibiotic survival needed to study persistence. Under optimized conditions, we identified genuine persisters in various growth phases and for four relevant antibiotics through biphasic survival dynamics and heritability assays. Finally, we detected a high variety in antibiotic survival levels across a diverse collection of S. pneumoniae clinical isolates, which assumes that a high natural diversity in persistence is widely present in S. pneumoniae. Collectively, this proof of concept significantly progresses the understanding of the importance of antibiotic persistence in S. pneumoniae infections, which will set the stage for characterizing its relevance to clinical outcomes and advocates for increased attention to the phenotype in both fundamental and clinical research. IMPORTANCE S. pneumoniae is considered a serious threat by the Centers for Disease Control and Prevention because of rising antibiotic resistance. In addition to resistance, bacteria can also survive lethal antibiotic treatment by developing antibiotic tolerance, more specifically, antibiotic tolerance through persistence. This phenotypic variation seems omnipresent among bacterial life, is linked to therapy failure, and acts as a catalyst for resistance development. This study gives the first proof of the presence of persister cells in S. pneumoniae and shows a high variety in persistence levels among diverse strains, suggesting that persistence is a general trait in S. pneumoniae cultures. Our work advocates for higher interest for persistence in S. pneumoniae as a contributing factor for therapy failure and resistance development.
Collapse
Affiliation(s)
- Nele Geerts
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | | | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Bram Van den Bergh
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| |
Collapse
|
11
|
Abstract
Dental caries is a multifactorial biofilm- and sugar-dependent disease. This study investigated the influence of different agents on the induction of surviving Streptococcus mutans cells after successive treatment cycles and characterized the biofilms formed by these cells recovered posttreatment. The agents (with their main targets listed in parentheses) were compound 1771 (lipoteichoic acids), 4′ hydroxychalcone (exopolysaccharides), myricetin (exopolysaccharides), tt-farnesol (cytoplasmatic membrane), sodium fluoride (enolase—glycolysis), chlorhexidine (antimicrobial), and vehicle. Recovered cells from biofilms were generated from exposure to each agent during 10 cycles of consecutive treatments (modeled on a polystyrene plate bottom). The recovered cell counting was different for each agent. The recovered cells from each group were grown as biofilms on saliva-coated hydroxyapatite discs (culture medium with sucrose/starch). In S. mutans biofilms formed by cells recovered from biofilms previously exposed to compound 1771, 4′ hydroxychalcone, or myricetin, cells presented higher expression of the 16S rRNA, gyrA (DNA replication and transcription), gtfB (insoluble exopolysaccharides), and eno (enolase—glycolysis) genes and lower quantities of insoluble dry weight and insoluble exopolysaccharides than those derived from other agents. These findings were confirmed by the smaller biovolume of bacteria and/or exopolysaccharides and the biofilm distribution (coverage area). Moreover, preexposure to chlorhexidine increased exopolysaccharide production. Therefore, agents with different targets induce cells with distinct biofilm formation capacities, which is critical for developing formulations for biofilm control. IMPORTANCE This article addresses the effect of distinct agents with distinct targets in the bacterial cell (cytoplasmatic membrane and glycolysis), the cell’s extracellular synthesis of exopolysaccharides that are important for cariogenic extracellular matrix construction and biofilm buildup in the generation of cells that persisted after treatment, and how these cells form biofilms in vitro. For example, if preexposure to an agent augments the production of virulence determinants, such as exopolysaccharides, its clinical value may be inadequate. Modification of biofilm formation capacity after exposure to agents is critical for the development of formulations for biofilm control to prevent caries, a ubiquitous disease associated with biofilm and diet.
Collapse
|
12
|
AlSahafi R, Mitwalli H, Alhussein A, Melo MAS, Martinho F, Lynch CD, Oates TW, Xu HHK, Weir MD. Novel Rechargeable Nanostructured Calcium Phosphate Crown Cement with Long-Term Ion Release and Antibacterial Activity to Suppress Saliva Microcosm Biofilms. J Dent 2022; 122:104140. [PMID: 35490839 DOI: 10.1016/j.jdent.2022.104140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Resin cements with remineralizing and antibacterial properties are favorable for inhibition of caries. The objectives of this study were: (1) to investigate the capability of the novel dimethylaminohexadecyl-methacrylate (DMAHDM) and nano-sized amorphous calcium phosphate (NACP) containing cement to reduce saliva microcosm biofilm, and (2) to investigate the long-term ion release, recharge, and re-release of DMAHDM-NACP cement. METHODS Pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol-A-dimethacrylate (EBPADMA) were used to make PEHB monomer. Five cements were fabricated: (1) PEHB+0%NACP+0%DMAHDM (experimental control); (2) PEHB+25%NACP+0%DMAHDM, (3) PEHB+25%NACP+0%DMAHDM; (4) PEHB+25%NACP+3%DMAHDM; (5) PEHB+25%NACP+5%DMAHDM. RelyX luting cement was used as commercial control. Colony-forming units (CFU), lactic acid production, metabolic activities, and minimum inhibitory concentration (MIC) were performed. Long-term Calcium (Ca) and phosphate (P) ion release, recharge, and re-release were assessed. RESULTS Compared to experimental and commercial controls, the NACP-DMAHDM cement significantly reduced CFU biofilm by 2-3 orders of magnitude, metabolic activities from 0.24±0.06 A540/cm2 to 0.03±0.01 A540/cm2, and lactic acid production from 27.7±2.5 mmol/L to 5.4±2.1 mmol/L (n=6) (p<0.05). The DMAHDM showed an MIC value of 0.03 mg/L. However, when the DMAHDM was combined with PMGDM monomer, the MIC was greater than DMAHDM alone. The ion concentrations for the experimental groups significantly increased over time (1-84 days), indicating continuous ion release (n=3) (p<0.05). Increasing the DMAHDM mass fraction from 0% to 5% and 3% to 5% significantly enhanced ion recharge and re-release at the third cycle (p<0.05). CONCLUSIONS Incorporating DMAHDM and NACP into resin-based crown cement provides strong antibacterial action against saliva microcosm biofilm and presents a high level of Ca and P ion recharge abilities, exhibiting long-term Ca and P ion release and remineralization potential. CLINICAL SIGNIFICANCE Resin based cement containing NACP and DMAHDM were developed with remineralizing and potent antibacterial effects. This cement formulation showed ion release and remineralization potential and are promising formulations to inhibit the incidence of recurrent caries and could promote remineralization and be sustainable for the long term.
Collapse
Affiliation(s)
- Rashed AlSahafi
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Restorative Dental Sciences, Umm Al-Qura University, College of Dentistry, Makkah 24211, Saudi Arabia
| | - Heba Mitwalli
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alhussein
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mary Anne S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Frederico Martinho
- Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Christopher D Lynch
- Restorative Dentistry, University Dental School and Hospital, University College Cork, Wilton, Cork, Ireland
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA.
| |
Collapse
|
13
|
Regulatory Effect of Irresistin-16 on Competitive Dual-Species Biofilms Composed of Streptococcus mutans and Streptococcus sanguinis. Pathogens 2022; 11:pathogens11010070. [PMID: 35056018 PMCID: PMC8779588 DOI: 10.3390/pathogens11010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 02/04/2023] Open
Abstract
Based on the ecological plaque hypothesis, suppressing opportunistic pathogens within biofilms, rather than killing microbes indiscriminately, could be a biofilm control strategy for managing dental caries. The present study aimed to evaluate the effects of irresistin-16 (IRS-16) on competitive dual-species biofilms, which consisted of the conditional cariogenic agent Streptococcus mutans (S. mutans) and oral commensal bacteria Streptococcus sanguinis (S. sanguinis). Bacterial growth and biofilm formation were monitored using growth curve and crystal violet staining, respectively. The microbial proportion was determined using fluorescence in situ hybridization. A 2, 5-diphenyltetrazolium bromide assay was used to measure the metabolic activity of biofilms. Bacterial/extracellular polysaccharide (EPS) dyeing, together with water-insoluble EPS measurements, were used to estimate EPS synthesis. A lactic acid assay was performed to detect lactic acid generation in biofilms. The cytotoxicity of IRS-16 was evaluated in mouse fibroblast L929 cells using a live/dead cell viability assay and cell counting kit-8 assay. Our results showed that IRS-16 exhibited selective anti-biofilm activity, leading to a remarkable survival disadvantage of S. mutans within competitive dual-species biofilms. In addition, the metabolic activity, EPS synthesis, and acid generation of dual-species biofilms were significantly reduced by IRS-16. Moreover, IRS-16 showed minimal cytotoxicity against mouse fibroblast L929 cells. In conclusion, IRS-16 exhibited remarkable regulatory effects on dual-species biofilms composed of S. mutans and S. sanguinis with low cytotoxicity, suggesting that it may have potential for use in caries management through ecological biofilm control.
Collapse
|
14
|
Filemban H, Bhadila G, Wang X, Melo MAS, Oates TW, Weir MD, Sun J, Xu HH. Novel low-shrinkage-stress bioactive nanocomposite with anti-biofilm and remineralization capabilities to inhibit caries. J Dent Sci 2021; 17:811-821. [PMID: 35756812 PMCID: PMC9201927 DOI: 10.1016/j.jds.2021.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Background/purpose A common reason for dental composite restoration failure is recurrent caries at the margins. Our objectives were to: (1) develop a novel low-shrinkage-stress, antibacterial and remineralizing resin composite; (2) evaluate the effects of dimethylaminohexadecyl methacrylate (DMAHDM) on mechanical properties, biofilm inhibition, calcium (Ca) and phosphate (P) ion release, degree of conversion, and shrinkage stress on the new low-shrinkage-stress resin composite for the first time. Material and methods The resin consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE) with high resistance to salivary hydrolytic degradation. Composites were made with 0%–8% of DMAHDM for antibacterial activity, and 20% of nanoparticles of amorphous calcium phosphate (NACP) for remineralization. Mechanical properties and Streptococcus mutans biofilm growth on composites were assessed. Ca and P ion releases, degree of conversion and shrinkage stress were evaluated. Results Adding 2–5% DMAHDM and 20% NACP into the low-shrinkage-stress composite did not compromise the mechanical properties (p > 0.05). The incorporation of DMAHDM greatly reduced S. mutans biofilm colony-forming units by 2–5 log and lactic acid production by 7 folds, compared to a commercial composite (p < 0.05). Adding 5% DMAHDM did not compromise the Ca and P ion release. The low-shrinkage-stress composite maintained a high degree of conversion of approximately 70%, while reducing the shrinkage stress by 37%, compared to a commercial control (p < 0.05). Conclusion The bioactive low-shrinkage-stress composite reduced the polymerization shrinkage stress, without compromising other properties. Increasing the DMAHDM content increased the antibacterial effect in a dose-dependent manner.
Collapse
Affiliation(s)
- Hanan Filemban
- Ph.D. Program in Dental Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry, Baltimore, USA
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, USA
- Department of Operative Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Ghalia Bhadila
- Department of Pediatric Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
- Corresponding author.
| | - Xiaohong Wang
- American Dental Association Science and Research Institute, LLC., Gaithersburg, USA
| | - Mary Ann S. Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, USA
| | - Thomas W. Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, USA
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, USA
- Corresponding author. Biomaterials & Tissue Engineering Division. Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, 21201, MD, USA.
| | - Jirun Sun
- The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, USA
- Corresponding author. The Forsyth Institute, Harvard School of Dental Medicine Affiliate, 245 First Street, Cambridge, 02142, MA, USA.
| | - Hockin H.K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
15
|
Huang Y, Song B, Zhou X, Chen H, Wang H, Cheng L. Dental Restorative Materials for Elderly Populations. Polymers (Basel) 2021; 13:polym13050828. [PMID: 33800358 PMCID: PMC7962827 DOI: 10.3390/polym13050828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/26/2023] Open
Abstract
The incidence of dental caries, especially root caries, has risen in elderly populations in recent years. Specialized restorative materials are needed due to the specific site of root caries and the age-related changes in general and oral health in the elderly. Unfortunately, the restorative materials commonly used clinically cannot fully meet the requirements in this population. Specifically, the antibacterial, adhesive, remineralization, mechanical, and anti-aging properties of the materials need to be significantly improved for dental caries in the elderly. This review mainly discusses the strengths and weaknesses of currently available materials, including amalgam, glass ionomer cement, and light-cured composite resin, for root caries. It also reviews the studies on novel anti-caries materials divided into three groups, antimicrobial, remineralization, and self-healing materials, and explores their potential in the clinical use for caries in the elderly. Therefore, specific restorative materials for caries in the elderly, especially for root caries, need to be further developed and applied in clinical practice.
Collapse
Affiliation(s)
- Yuyao Huang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bingqing Song
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hui Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China;
| | - Haohao Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (H.W.); (L.C.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (H.W.); (L.C.)
| |
Collapse
|
16
|
Bhadila G, Wang X, Weir MD, Melo MAS, Martinho F, Fay GG, Oates TW, Sun J, Xu HHK. Low-shrinkage-stress nanocomposite: An insight into shrinkage stress, antibacterial, and ion release properties. J Biomed Mater Res B Appl Biomater 2021; 109:1124-1134. [PMID: 33386668 DOI: 10.1002/jbm.b.34775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 10/17/2020] [Accepted: 11/28/2020] [Indexed: 02/05/2023]
Abstract
The aims are: (a) To develop the first low-shrinkage-stress nanocomposite with antibacterial and remineralization capabilities through the incorporation of dimethylaminododecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP); (b) to investigate the effects of the new composite on biofilm inhibition, mechanical properties, shrinkage stress, and calcium (Ca) and phosphate (P) ion releases. The low-shrinkage-stress resin consisted of urethane dimethacrylate and triethylene glycol divinylbenzyl ether. Composite was formulated with 3% DMAHDM and 20% NACP. Mechanical properties, shrinkage stress, and degree of conversion were evaluated. Streptococcus mutans biofilm growth on composites was assessed. Ca and P ion releases were measured. The shrinkage stress of the low-shrinkage-stress composite containing 3% DMAHDM and 20% NACP was 36% lower than that of traditional composite control (p < 0.05), with similar degrees of conversion of 73.9%. The new composite decreased the biofilm colony-forming unit by 4 log orders and substantially reduced biofilm lactic acid production compared to control composite (p < 0.05). Incorporating DMAHDM to the low-shrinkage-stress composite did not adversely affect the Ca and P ion release. A novel bioactive nanocomposite was developed with low shrinkage stress, strong antibiofilm activity, and high levels of ion release for remineralization, without undermining the mechanical properties and degree of conversion.
Collapse
Affiliation(s)
- Ghalia Bhadila
- Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Pediatric Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Xiaohong Wang
- Volpe Research Center, American Dental Association Foundation, Frederick, Maryland, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Frederico Martinho
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Guadalupe Garcia Fay
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, Frederick, Maryland, USA
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Pfeifer CS, Kreth J, Koley D, Ferracane JL. Considerations for Designing Next-Generation Composite Dental Materials. ORAL BIOFILMS AND MODERN DENTAL MATERIALS 2021:99-114. [DOI: 10.1007/978-3-030-67388-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Khan AS, Ur Rehman S, AlMaimouni YK, Ahmad S, Khan M, Ashiq M. Bibliometric Analysis of Literature Published on Antibacterial Dental Adhesive from 1996-2020. Polymers (Basel) 2020; 12:E2848. [PMID: 33260410 PMCID: PMC7761276 DOI: 10.3390/polym12122848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate the current state of research on antibacterial dental adhesives. The interest in this field can be drawn from an increasing number of scholarly works in this area. However, there is still a lack of quantitative measurement of this topic. The main aim of this study was to consolidate the research published on the antibacterial adhesive from 1996 to 2020 in Web of Science indexed journals. The bibliometric method, a quantitative study of investigating publishing trends and patterns, was used for this study. The result has shown that a gradual increase in research was found, whereby a substantial increase was observed from 2013. A total of 248 documents were published in 84 journals with total citations of 5107. The highly cited articles were published mainly in Q1 category journals. Most of the published articles were from the USA, China, and other developed countries; however, some developing countries contributed as well. The authorship pattern showed an interdisciplinary and collaborative approach among researchers. The thematic evaluation of keywords along with a three-factor analysis showed that 'antibacterial adhesives' and 'quaternary ammonium' have been used commonly. This bibliometric analysis can provide direction not only to researchers but also to funding organizations and policymakers.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shafiq Ur Rehman
- Deanship of Library Affairs, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Yara Khalid AlMaimouni
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shakil Ahmad
- Central Library, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54000, Pakistan;
| | - Murtaza Ashiq
- Islamabad Model College for Boys, H-9, Islamabad 44000, Pakistan;
| |
Collapse
|
19
|
Kreth J, Merritt J, Pfeifer C, Khajotia S, Ferracane J. Interaction between the Oral Microbiome and Dental Composite Biomaterials: Where We Are and Where We Should Go. J Dent Res 2020; 99:1140-1149. [PMID: 32479134 PMCID: PMC7443996 DOI: 10.1177/0022034520927690] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dental composites are routinely placed as part of tooth restoration procedures. The integrity of the restoration is constantly challenged by the metabolic activities of the oral microbiome. This activity directly contributes to a less-than-desirable half-life for the dental composite formulations currently in use. Therefore, many new antimicrobial dental composites are being developed to counteract the microbial challenge. To ensure that these materials will resist microbiome-derived degradation, the model systems used for testing antimicrobial activities should be relevant to the in vivo environment. Here, we summarize the key steps in oral microbial colonization that should be considered in clinically relevant model systems. Oral microbial colonization is a clearly defined developmental process that starts with the formation of the acquired salivary pellicle on the tooth surface, a conditioned film that provides the critical attachment sites for the initial colonizers. Further development includes the integration of additional species and the formation of a diverse, polymicrobial mature biofilm. Biofilm development is discussed in the context of dental composites, and recent research is highlighted regarding the effect of antimicrobial composites on the composition of the oral microbiome. Future challenges are addressed, including the potential of antimicrobial resistance development and how this could be counteracted by detailed studies of microbiome composition and gene expression on dental composites. Ultimately, progress in this area will require interdisciplinary approaches to effectively mitigate the inevitable challenges that arise as new experimental bioactive composites are evaluated for potential clinical efficacy. Success in this area could have the added benefit of inspiring other fields in medically relevant materials research, since microbial colonization of medical implants and devices is a ubiquitous problem in the field.
Collapse
Affiliation(s)
- J. Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - J. Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - C.S. Pfeifer
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - S. Khajotia
- Department of Restorative Sciences, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J.L. Ferracane
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
20
|
Bhadila G, Wang X, Zhou W, Menon D, Melo MAS, Montaner S, Oates TW, Weir MD, Sun J, Xu HHK. Novel low-shrinkage-stress nanocomposite with remineralization and antibacterial abilities to protect marginal enamel under biofilm. J Dent 2020; 99:103406. [PMID: 32526346 DOI: 10.1016/j.jdent.2020.103406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Polymerization shrinkage stress may lead to marginal damage, microleakage and failure of composite restorations. The objectives of this study were to : (1) develop a novel nanocomposite with low-shrinkage-stress, antibacterial and remineralization properties to reduce marginal enamel demineralization under biofilms; (2) evaluate the mechanical properties of the composite and calcium (Ca) and phosphate (P) ion release; and (3) investigate the cytotoxicity of the new low-shrinkage-stress monomer in vitro. METHODS The low-shrinkage-stress resin consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE), and 3 % dimethylaminohexadecyl methacrylate (DMAHDM) and 20 % calcium phosphate nanoparticles (NACP) were added. Mechanical properties, polymerization shrinkage stress, and degree of conversion were evaluated. The growth of Streptococcus mutans (S. mutans) on enamel slabs with different composites was assessed. Ca and P ion releases and monomer cytotoxicity were measured. RESULTS Composite with DMAHDM and NACP had flexural strength of 84.9 ± 10.3 MPa (n = 6), matching that of a commercial control composite. Adding 3 % DMAHDM did not negatively affect the composite ion release. Under S. mutans biofilm, the marginal enamel hardness was 1.2 ± 0.1 GPa for the remineralizing and antibacterial group, more than 2-fold the 0.5 ± 0.07 GPa for control (p < 0.05). The polymerization shrinkage stress of the new composite was 40 % lower than that of traditional composite control (p < 0.05). The new monomers had fibroblast viability similar to that of traditional monomer control (p > 0.1). CONCLUSION A novel low-shrinkage-stress nanocomposite was developed with remineralizing and antibacterial properties. This new composite is promising to inhibit recurrent caries at the restoration margins by reducing polymerization stress and protecting enamel hardness.
Collapse
Affiliation(s)
- Ghalia Bhadila
- Ph.D. Program in Dental Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Pediatric Dentistry, Faculty of Dentistry, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Xiaohong Wang
- Volpe Research Center, American Dental Association Foundation, Frederick, MD 21704, USA
| | - Wen Zhou
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Deepak Menon
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, Frederick, MD 21704, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
21
|
Bhadila G, Baras BH, Weir MD, Wang H, Melo MAS, Hack GD, Bai Y, Xu HHK. Novel antibacterial calcium phosphate nanocomposite with long-term ion recharge and re-release to inhibit caries. Dent Mater J 2020; 39:678-689. [PMID: 32295987 DOI: 10.4012/dmj.2019-203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Short-term studies on calcium-phosphate (CaP) ion-rechargeable composites were reported. The long-term rechargeability is important but unknown. The objectives of this study were to investigate nanocomposite with strong antibacterial and ion-recharge capabilities containing dimethylaminododecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP), and evaluate long-term ion-recharge by testing for 12 cycles (taking 6 months to complete) for the first time. Three groups were tested: (1) Heliomolar control; (2) Resin+20%NACP+50%glass; (3) Resin+3%DMAHDM+20%NACP+50%glass. Biofilm acid and colony-forming units (CFU) were measured. Ion-recharge was tested for 12 cycles. NACP-DMAHDM composite reduced biofilm acid, and reduced CFU by 4 logs. High levels of ion releases were maintained throughout 12 cycles of recharge, maintaining steady-state releases without reduction in 6 months (p>0.1), representing long-term remineralization potential. Bioactive nanocomposite demonstrated long-term ion-rechargeability for the first time, showed remineralization and potent anti-biofilm functions, with promise for tooth restorations to combat caries.
Collapse
Affiliation(s)
- Ghalia Bhadila
- Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,Department of Pediatric Dentistry, Faculty of Dentistry, King AbdulAziz University
| | - Bashayer H Baras
- Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,Department of Restorative Dental Science, College of Dentistry, King Saud University
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Haohao Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry
| | - Gary D Hack
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine
| |
Collapse
|
22
|
Tolerance and Persister Formation in Oral Streptococci. Antibiotics (Basel) 2020; 9:antibiotics9040167. [PMID: 32276310 PMCID: PMC7235787 DOI: 10.3390/antibiotics9040167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to analyze the potential influence of long-term exposure in subinhibitory concentrations of chlorhexidine on the emergence of tolerant and/or persistent cells in oral streptococci. The two oral streptococcal isolates S. mutans ATCC25175 and S. sobrinus ATCC33402 were incubated, after long-term subinhibitory exposure to chlorhexidine, in liquid growth media containing high concentrations of chlorhexidine. A distinct subpopulation of more chlorhexidine-tolerant cells could be detected in streptococci that had been previously exposed to subinhibitory concentrations of chlorhexidine but not in the control strains. These more biocide-tolerant and persisting microbial subpopulations might also arise in vivo. Therefore, the rational and proper use of antimicrobials in dentistry, especially when used over a long period of time, is crucial.
Collapse
|
23
|
Chen H, Zhang B, Weir MD, Homayounfar N, Fay GG, Martinho F, Lei L, Bai Y, Hu T, Xu HH. S. mutans gene-modification and antibacterial resin composite as dual strategy to suppress biofilm acid production and inhibit caries. J Dent 2020; 93:103278. [DOI: 10.1016/j.jdent.2020.103278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
|
24
|
A Novel Dental Sealant Containing Dimethylaminohexadecyl Methacrylate Suppresses the Cariogenic Pathogenicity of Streptococcus mutans Biofilms. Int J Mol Sci 2019; 20:ijms20143491. [PMID: 31315225 PMCID: PMC6679354 DOI: 10.3390/ijms20143491] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Cariogenic oral biofilms are strongly linked to dental caries around dental sealants. Quaternary ammonium monomers copolymerized with dental resin systems have been increasingly explored for modulation of biofilm growth. Here, we investigated the effect of dimethylaminohexadecyl methacrylate (DMAHDM) on the cariogenic pathogenicity of Streptococcus mutans (S. mutans) biofilms. DMAHDM at 5 mass% was incorporated into a parental formulation containing 20 mass% nanoparticles of amorphous calcium phosphate (NACP). S. mutans biofilms were grown on the formulations, and biofilm inhibition and virulence properties were assessed. The tolerances to acid stress and hydrogen peroxide stress were also evaluated. Our findings suggest that incorporating 5% DMAHDM into 20% NACP-containing sealants (1) imparts a detrimental biological effect on S. mutans by reducing colony-forming unit counts, metabolic activity and exopolysaccharide synthesis; and (2) reduces overall acid production and tolerance to oxygen stress, two major virulence factors of this microorganism. These results provide a perspective on the value of integrating bioactive restorative materials with traditional caries management approaches in clinical practice. Contact-killing strategies via dental materials aiming to prevent or at least reduce high numbers of cariogenic bacteria may be a promising approach to decrease caries in patients at high risk.
Collapse
|
25
|
Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A. Resistance Toward Chlorhexidine in Oral Bacteria - Is There Cause for Concern? Front Microbiol 2019; 10:587. [PMID: 30967854 PMCID: PMC6439480 DOI: 10.3389/fmicb.2019.00587] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
The threat of antibiotic resistance has attracted strong interest during the last two decades, thus stimulating stewardship programs and research on alternative antimicrobial therapies. Conversely, much less attention has been given to the directly related problem of resistance toward antiseptics and biocides. While bacterial resistances toward triclosan or quaternary ammonium compounds have been considered in this context, the bis-biguanide chlorhexidine (CHX) has been put into focus only very recently when its use was associated with emergence of stable resistance to the last-resort antibiotic colistin. The antimicrobial effect of CHX is based on damaging the bacterial cytoplasmic membrane and subsequent leakage of cytoplasmic material. Consequently, mechanisms conferring resistance toward CHX include multidrug efflux pumps and cell membrane changes. For instance, in staphylococci it has been shown that plasmid-borne qac ("quaternary ammonium compound") genes encode Qac efflux proteins that recognize cationic antiseptics as substrates. In Pseudomonas stutzeri, changes in the outer membrane protein and lipopolysaccharide profiles have been implicated in CHX resistance. However, little is known about the risk of resistance toward CHX in oral bacteria and potential mechanisms conferring this resistance or even cross-resistances toward antibiotics. Interestingly, there is also little awareness about the risk of CHX resistance in the dental community even though CHX has been widely used in dental practice as the gold-standard antiseptic for more than 40 years and is also included in a wide range of oral care consumer products. This review provides an overview of general resistance mechanisms toward CHX and the evidence for CHX resistance in oral bacteria. Furthermore, this work aims to raise awareness among the dental community about the risk of resistance toward CHX and accompanying cross-resistance to antibiotics. We propose new research directions related to the effects of CHX on bacteria in oral biofilms.
Collapse
Affiliation(s)
- Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Nicholas S Jakubovics
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Tim Maisch
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
26
|
Wang S, Wang H, Ren B, Li X, Wang L, Zhou H, Weir MD, Zhou X, Masri RM, Oates TW, Cheng L, Xu HHK. Drug resistance of oral bacteria to new antibacterial dental monomer dimethylaminohexadecyl methacrylate. Sci Rep 2018; 8:5509. [PMID: 29615732 PMCID: PMC5882658 DOI: 10.1038/s41598-018-23831-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/21/2018] [Indexed: 02/05/2023] Open
Abstract
Only two reports exist on drug-resistance of quaternary ammonium monomers against oral bacteria; both studies tested planktonic bacteria for 10 passages, and neither study tested biofilms or resins. The objectives of this study were to investigate the drug-resistance of Streptococcus mutans, Streptococcus sanguinis and Streptococcus gordonii against dimethylaminohexadecyl methacrylate (DMAHDM), and to evaluate biofilms on resins with repeated exposures for 20 passages for the first time. DMAHDM, dimethylaminododecyl methacrylate (DMADDM) and chlorhexidine (CHX) were tested with planktonic bacteria. Biofilms were grown on a resin containing 3% DMAHDM. Minimum-inhibitory concentrations were measured. To detect drug-resistance, the survived bacteria from the previous passage were used as inoculum for the next passage for repeated exposures. S. gordonii developed drug-resistance against DMADDM and CHX, but not against DMAHDM. Biofilm colony-forming units (CFU) on DMAHDM-resin was reduced by 3–4 log; there was no difference from passages 1 to 20 (p > 0.1). No drug-resistance to DMAHDM was detected for all three bacterial species. In conclusion, this study showed that DMAHDM induced no drug-resistance, and DMAHDM-resin reduced biofilm CFU by 3–4 log, with no significant change from 1 to 20 passages. DMAHDM with potent antibacterial activities and no drug-resistance is promising for dental applications.
Collapse
Affiliation(s)
- Suping Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Haohao Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Li
- Department of Oral Medicine, School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Wang
- VIP Integrated Department, Stomatological Hospital of Jilin University, Changchun, China
| | - Han Zhou
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.,Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Radi M Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA. .,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore County, MD, 21250, USA. .,Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|