1
|
Raszewski Z, Chojnacka K, Ponto-Wolska M, Mikulewicz M. Ion Release from Endodontic and Restorative Dental Materials: Effects of pH and Time. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1901. [PMID: 40363405 PMCID: PMC12072344 DOI: 10.3390/ma18091901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Root canal sealers remain in long-term contact with dental tissues, raising concerns about their potential adverse effects. METHODS This study evaluates the physicochemical properties and ion-release profiles of three dental materials: zinc oxide/eugenol-based sealer, zinc phosphate cement (luting agent), and glass-ionomer cement (restorative material) under acidic (pH 4) and neutral (pH 7) conditions over 24 h and 30 days to determine their behavior and bioactivity in vitro. The materials were evaluated for their setting time, consistency, film thickness, solubility, and ion release using atomic emission spectrometry. The influence of pH and exposure time on ion release was analyzed using multiple regression analysis. RESULTS All tested materials met the ISO standards for their respective categories. The zinc oxide/eugenol and zinc phosphate cements released increased levels of zinc in acidic environments (pH 4), suggesting potential antimicrobial properties. The glass-ionomer cement exhibited higher silicon and strontium release under a neutral pH (pH 7), indicating potential remineralization effects. Silver from the zinc oxide/eugenol material was below the detection limit of the applied method, suggesting minimal ion release under the tested conditions. Maximum zinc release from root canal sealer occurred after 30 days at pH 4 (1.39 ± 0.26 mg), while the highest silicon release from glass-ionomer cement was observed at pH 7 after 30 days (1.03 ± 0.21 mg). CONCLUSIONS Zinc oxide/eugenol materials exhibited increased zinc release under acidic conditions. In contrast, the restorative and luting materials demonstrated distinct ion-release patterns, aligning with their respective intended applications rather than endodontic purposes.
Collapse
Affiliation(s)
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland;
| | - Małgorzata Ponto-Wolska
- Department of Dental Propaedeutics and Prophylaxis, Warsaw Medical University, Nowogrodzka 59, 02-006 Warsaw, Poland;
| | - Marcin Mikulewicz
- Department of Dentofacial Orthopedics and Orthodontics, Division of Facial Abnormalities, Medical University of Wroclaw, Krakowska 26, 50-425 Wroclaw, Poland
| |
Collapse
|
2
|
Ionescu AC, Nicita F, Zambelli V, Bellani G, Degli Esposti L, Iafisco M, Brambilla E. Ion-releasing resin composites prevent demineralization around restorations in an in-vitro biofilm model. J Dent 2025; 154:105600. [PMID: 39914517 DOI: 10.1016/j.jdent.2025.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
OBJECTIVE This study aimed to evaluate the effectiveness of two ion-releasing, resin-based composites (RBCs), ACTIVA BioACTIVE-Restorative (BIO1) and ACTIVA Presto (BIO2), in preventing demineralization around restorations. METHODS Class I and II cavities were prepared on bovine (n = 4) and human teeth (n = 8) and restored with BIO1, BIO2, a conventional composite (RBC, Filtek Supreme XTE), and a resin-modified glass ionomer cement (RMGIC, Ionolux). Following restorations (class I, n= 16/material; class II, n= 8/material), the specimens were exposed to Streptococcus mutans biofilm in a continuous-flow bioreactor over two weeks. Micro-computed tomography (micro-CT) assessed demineralization depths at restoration margins, and supernatant pH changes were measured after a 24-h acidic challenge. Statistical analyses included one and two-way ANOVA and Tukey's test (p < 0.05). RESULTS On enamel surfaces, RMGIC showed no demineralization, followed by BIO1 (≈50 μm), BIO2 (≈125 μm), and RBC (≈150 μm). No difference between human or bovine enamel was observed. In dentin, RMGIC showed the least demineralization (≈190 μm), followed by BIO1 (≈230 μm), BIO2 (≈280 μm), and RBC (≈400 μm). pH buffering was highest in RMGIC (+ 0.24 pH), while BIO1, BIO2, and RBC showed similar buffering capacities (∼ +0.1 pH). Gaps were found at several interfaces for BIO1 and RMGIC. CONCLUSIONS Ion-releasing RBCs varied in effectiveness for reducing demineralization of surrounding tissues, with limited pH buffering capacity. RMGIC exhibited better performance. Gaps between cavity walls and BIO1/RMGIC raised concerns about long-term adhesion. CLINICAL SIGNIFICANCE ACTIVA BioACTIVE Restorative (BIO1) and ACTIVA Presto (BIO2) resin-based composites promoted slight inhibition of demineralization in an in-vitro biofilm model, suggesting that further modifications in their chemical composition are necessary.
Collapse
Affiliation(s)
- Andrei C Ionescu
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Fabiana Nicita
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy; Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Vanessa Zambelli
- School of Medicine and Surgery, Università Degli Studi di Milano Bicocca, Monza, Italy
| | - Giacomo Bellani
- Centre for Medical Sciences-CISMed, University of Trento, Trento, Italy; Department of Anesthesia and Intensive Care, Santa Chiara Hospital, APSS Trento Largo Medaglie d'Oro Trento, Italy
| | | | - Michele Iafisco
- Institute of Science, Technology, and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Faenza, (RA), Italy
| | - Eugenio Brambilla
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Saad Bin Qasim S, Bmuajdad A. The effect of mesoporous silica doped with silver nanoparticles on glass ionomer cements; physiochemical, mechanical and ion release analysis. BMC Oral Health 2024; 24:1269. [PMID: 39443914 PMCID: PMC11515535 DOI: 10.1186/s12903-024-05056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The purpose of the study was to evaluate the effect of adding mesoporous silica with silver nanoparticles to conventional glass ionomer cements (GIC) on its, physical, chemical, mechanical properties and ion release analysis. METHODS Synthesized mesoporous silica with silver nanoparticles were added in 1, 3 and 5% by weight to the liquid component of GIC forming three experimental groups and compared with plain GIC as control group. Physical and chemical characterization were conducted using nano-computerized tomography (NanoCT) and Fourier transform infrared spectroscopy. Surface microhardness, water sorption and solubility were analyzed. Ion release was investigated using Inductive Coupled Plasma-Optical Emission Spectroscopy and High Performance Liquid Chromatography. Statistical analysis between different groups for the set parameters using parametric and non-parametric tests. The results were analysed using one way analysis of variance (p < 0.05). RESULTS Synthesized mesoporous silica with silver nanoparticles were of 7.28 ± 5.0 nm in diameter with a spherical morphology. NanoCT revealed less porosities for 3 wt %. Microhardness showed a statistically significant difference for 5 wt% at day 1 and 21 ( p < 0.0001). Water sorption values decreased significantly on day 14 compared to day 7 for control, 1, 3 and 5 wt%. Control specimens showed highest concentration of fluoride release followed by 5, 3 and 1 wt%. CONCLUSION Mesoporous silica with silver nanoparticles modified glass ionomer cements showed comparable microhardness to conventional GIC. Ion release was evident from the modified specimens. Silver remained within the GIC for atleast four weeks following incorporation.
Collapse
Affiliation(s)
- Syed Saad Bin Qasim
- Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Safat, Kwait City, 13110, Kuwait.
| | - Ali Bmuajdad
- Department of Chemistry, College of Science, Kuwait University, Safat, P.O. Box 5969, 13060, Kwait City, Kuwait
| |
Collapse
|
4
|
Phull S, Marx D, Akens MK, Ghert M, Towler MR. In vitroassessment of a gallium-doped glass polyalkenoate cement: chemotherapeutic potential, cytotoxicity and osteogenic effects. Biomed Mater 2024; 19:055006. [PMID: 38917820 DOI: 10.1088/1748-605x/ad5ba5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Metastatic bone lesions are often osteolytic, which causes advanced-stage cancer sufferers to experience severe pain and an increased risk of developing a pathological fracture. Gallium (Ga) ion possesses antineoplastic and anti-bone resorption properties, suggesting the potential for its local administration to impede the growth of metastatic bone lesions. This study investigated the chemotherapeutic potential, cytotoxicity, and osteogenic effects of a Ga-doped glass polyalkenoate cement (GPC) (C-TA2) compared to its non-gallium (C-TA0) counterpart. Ion release profiles revealed a biphasic pattern characterized by an initial burst followed by a gradually declining release of ions. C-TA2 continued to release Ga steadily throughout the experimentation period (7 d) and exhibited prolonged zinc (Zn) release compared to C-TA0. Interestingly, the Zn release from both GPCs appeared to cause a chemotherapeutic effect against H1092 lung cancer cellsin vitro, with the prolonged Zn release from C-TA2 extending this effect. Unfortunately, both GPCs enhanced the viability of HCC2218 breast cancer cells, suggesting that the chemotherapeutic effects of Zn could be tied to cellular differences in preferred Zn concentrations. The utilization of SAOS-2 and MC3T3 cell lines as bone cell models yielded conflicting results, with the substantial decline in MC3T3 viability closely associated with silicon (Si) release, indicating cellular variations in Si toxicity. Despite this ambiguity, both GPCs exhibited harmful effects on the osteogenesis of primary rat osteoblasts, raising concerns about excessive burst Zn release. While Ga/Zn-doped GPCs hold promise for treating metastatic bone lesions caused by lung cancers, further optimization is required to mitigate cytotoxicity on healthy bone.
Collapse
Affiliation(s)
- Sunjeev Phull
- Department of Mechanical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Daniella Marx
- Department of Mechanical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Margarete K Akens
- University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Michelle Ghert
- Department of Surgery, McMaster University, Hamilton L8V 5C2, ON, Canada
| | - Mark R Towler
- Department of Chemical & Biochemical Engineering, Missouri S&T, Rolla, MO, United States of America
| |
Collapse
|
5
|
Trinca RB, Vela BF, Dos Santos Vilela H, Braga RR. Ion release mechanisms in composites containing CaP particles and hydrophilic monomers. Dent Mater 2024; 40:1047-1055. [PMID: 38772841 DOI: 10.1016/j.dental.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVE To investigate the effect of hydrophilic/permeable polymer matrices on water sorption/solubility (WS/SL), Ca2+ release, mechanical properties and hydrolytic degradation of composites containing dicalcium phosphate dihydrate (DCPD) particles. METHODS Six composites were tested, all with 10 vol% of glass particles and either 30 vol% or 40 vol% DCPD. Composites containing 1BisGMA:1TEGDMA in mols (at both inorganic levels) were considered controls. Four materials were formulated where 0.25 or 0.5 of the BisGMA/TEGDMA was replaced by pyromellitic dianhydride glycerol dimethacrylate (PMGDM)/ polyethylene glycol dimethacrylate (PEGDMA). Composites were tested for degree of conversion (FTIR spectroscopy), WS/SL (ISO 4049) and Ca2+ release (inductively coupled plasma optical emission spectroscopy). Fracture toughness (FT) and biaxial flexural strength/modulus (BFS/FM) were determined after 24 h and 60 days in water. The contributions of diffusional and relaxational mechanisms to Ca2+ release kinetics were analyzed using the semi-empirical Salim-Peppas model. Data were analysed by ANOVA/Tukey test (alpha: 0.05). RESULTS WS/SL was higher for composites containing PMGDM/PEGDMA compared to the controls (p < 0.001). Only at 40% DCPD the 0.5 PMGDM/PEGDMA composite showed statistically higher Ca2+ release than the control. Relaxation diffusion was the main release mechanism. Initial FT was not negatively affected by matrix composition. BFS (both DCPD fractions) and FM (30% DCPD) were lower for composites with hydrophilic/permeable networks (p < 0.01). After 60 days in water, composites with PMGDM/PEGDMA presented significant reductions in FT, while all composites had reductions in BFS/FM. SIGNIFICANCE Increasing matrix hydrophilicity/permeability significantly increased Ca2+ release only at a high DCPD fraction.
Collapse
Affiliation(s)
- Rafael Bergamo Trinca
- University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP 05508-000, Brazil
| | - Beatriz Fonseca Vela
- University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP 05508-000, Brazil
| | - Handially Dos Santos Vilela
- University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP 05508-000, Brazil
| | - Roberto Ruggiero Braga
- University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
6
|
Leenutaphong N, Phantumvanit P, Young AM, Panpisut P. Evaluation of setting kinetics, mechanical strength, ion release, and cytotoxicity of high-strength glass ionomer cement contained elastomeric micelles. BMC Oral Health 2024; 24:713. [PMID: 38902666 PMCID: PMC11191184 DOI: 10.1186/s12903-024-04468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Low mechanical properties are the main limitation of glass ionomer cements (GICs). The incorporation of elastomeric micelles is expected to enhance the strength of GICs without detrimentally affecting their physical properties and biocompatibility. This study compared the chemical and mechanical properties, as well as the cytotoxicity, of elastomeric micelles-containing glass ionomer cement (DeltaFil, DT) with commonly used materials, including EQUIA Forte Fil (EF), Fuji IX GP Extra (F9), and Ketac Molar (KT). METHOD Powder particles of GICs were examined with SEM-EDX. Setting kinetics were assessed using ATR-FTIR. Biaxial flexural strength/modulus and Vickers surface microhardness were measured after immersion in water for 24 h and 4 weeks. The release of F, Al, Sr, and P in water over 8 weeks was analyzed using a fluoride-specific electrode and ICP-OES. The toxicity of the material extract on mouse fibroblasts was also evaluated. RESULTS High fluoride levels in the powder were detected with EF and F9. DT demonstrated an initial delay followed by a faster acid reaction compared to other cements, suggesting an improved snap set. DT also exhibited superior flexural strength than other materials at both 24 h and 4 weeks but lower surface microhardness (p < 0.05). EF and F9 showed higher release of F, Al, and P than DT and KT. There was no statistically significant difference in fibroblast viability among the tested materials (p > 0.05). CONCLUSIONS Elastomeric micelles-containing glass ionomer cement (DT) exhibited satisfactory mechanical properties and cytocompatibility compared with other materials. DT could, therefore, potentially be considered an alternative high-strength GIC for load-bearing restorations.
Collapse
Affiliation(s)
| | | | - Anne M Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani, 12120, Thailand.
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
7
|
Cvjeticanin M, Ramic B, Milanović M, Veljović D, Andjelkovic A, Maletic S, Jevrosimov I, Bajkin B, Guduric V. Cell viability assessment and ion release profiles of GICs modified with TiO 2- and Mg-doped hydroxyapatite nanoparticles. J Dent 2024; 145:105015. [PMID: 38657726 DOI: 10.1016/j.jdent.2024.105015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES To assess and compare the cell viability and ion release profiles of two conventional glass ionomer cements (GICs), Fuji IX and Ketac Molar EasyMix, modified with TiO2 and Mg-doped-HAp nanoparticles (NPs). METHODS TiO2 NPs, synthesized via a sol-gel method, and Mg-doped hydroxyapatite, synthesized via a hydrothermal process, were incorporated into GICs at a concentration of 5 wt.%. The biocompatibility of prepared materials was assessed by evaluating their effects on the viability of dental pulp stem cells (DPSCs), together with monitoring ion release profiles. Statistical analysis was performed using One-way analysis of variance, with significance level p < 0.05. RESULTS The addition of NPs did not significantly affect the biocompatibility of GICs, as evidenced by comparable decreased levels in cell viability to their original formulations. Distinct variations in cell viability were observed among Fuji IX and Ketac Molar, including their respective modifications. FUJI IX and its modification with TiO2 exhibited moderate decrease in cell viability, while other groups exhibited severe negative effects. While slight differences in ion release profiles were observed among the groups, significant variations compared to original cements were not achieved. Fluoride release exhibited an initial "burst release" within the initial 24 h in all samples, stabilizing over subsequent days. CONCLUSIONS The addition of NPs did not compromise biocompatibility, nor anticariogenic potential of tested GICs. However, observed differences among FUJI IX and Ketac Molar, including their respective modifications, as well as induced low viability of DPSC by all tested groups, suggest the need for careful consideration of cement composition in their biological assessments. CLINICAL SIGNIFICANCE The findings contribute to understanding the complex interaction between NPs and GIC matrices. However, the results should be interpreted recognizing the inherent limitations associated with in vitro studies. Further research avenues could explore long-term effects, in vivo performance, and potential clinical applications.
Collapse
Affiliation(s)
- Milica Cvjeticanin
- University of Novi Sad, Faculty of Medicine, Department of Dental Medicine, Novi Sad, Hajduk Veljkova 3, Serbia
| | - Bojana Ramic
- University of Novi Sad, Faculty of Medicine, Department of Dental Medicine, Novi Sad, Hajduk Veljkova 3, Serbia.
| | - Marija Milanović
- University of Novi Sad, Faculty of Technology, Department of Materials Engineering, Novi Sad, Bulevar cara Lazara 1, Serbia
| | - Djordje Veljović
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Karnegijeva 4, Serbia
| | - Aleksandar Andjelkovic
- University of Novi Sad, Faculty of Medicine, Department of Dental Medicine, Novi Sad, Hajduk Veljkova 3, Serbia
| | - Snezana Maletic
- University of Novi Sad, Faculty of Sciences, Novi Sad, Trg Dositeja Obradovic 3, Serbia
| | - Irina Jevrosimov
- University of Novi Sad, Faculty of Sciences, Novi Sad, Trg Dositeja Obradovic 3, Serbia
| | - Branislav Bajkin
- University of Novi Sad, Faculty of Medicine, Department of Dental Medicine, Novi Sad, Hajduk Veljkova 3, Serbia
| | - Vera Guduric
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Clinic Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
8
|
Nicholson JW, Sidhu SK, Czarnecka B. Can glass polyalkenoate (glass-ionomer) dental cements be considered bioactive? A review. Heliyon 2024; 10:e25239. [PMID: 38352767 PMCID: PMC10862525 DOI: 10.1016/j.heliyon.2024.e25239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Objectives This paper reviews the chemical behaviour of glass polyalkenoate (glass-ionomer) dental cements, both conventional and resin-modified, in contact with natural tissues, with the aim of determining whether these materials can be considered to be bioactive. Data Relevant papers describing the behaviour of bioactive glasses and ceramics, and glass-ionomer (glass polyalkenoate) cements have been identified using PubMed and Science Direct. This has allowed a comparison to be made between the behaviour of glass-ionomers and the speciality glasses and ceramics that are widely classified as bioactive, a designation considered valid for over fifty years. More recent papers concerning bioactive metals and polymers have also been studied and both in vitro and in vivo studies are included. Sources Have included general papers on the chemistry and biological behaviour of bioactive glasses and ceramics, as well as papers on glass-ionomers dealing with (i) ion release, (ii) bonding to the surface of teeth, (iii) influence on surrounding pH and (iv) interaction with bone. Conclusion The literature shows that glass-ionomers (glass polyalkenoates) have three types of behaviour that are similar to those of bioactive glasses as follows: Formation of direct bonds to living tissue (teeth and bones) without fibrous capsule; release of biologically beneficial ions; and change of the local pH. However, in in vitro tests, they do not cause calcium phosphate to precipitate from solutions of simulated body fluid, SBF. Despite this, studies show that, in patients, glass-ionomers interact chemically with hard tissues and this suggests that may indeed be considered bioactive.
Collapse
Affiliation(s)
- John W. Nicholson
- Bluefield Centre for Biomaterials, 152-160 City Road, London EC1V 2NX, UK and Dental Physical Sciences, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Sharanbir K. Sidhu
- Centre for Oral Bioengineering, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK
| | - Beata Czarnecka
- Department of Biomaterials and Experimental Dentistry, Poznań University of Medical Sciences, Ul. Bukowska 70, 60-812 Poznań, Poland
| |
Collapse
|
9
|
Tuygunov N, Khairunnisa Z, Yahya NA, Aziz AA, Zakaria MN, Israilova NA, Cahyanto A. Bioactivity and remineralization potential of modified glass ionomer cement: A systematic review of the impact of calcium and phosphate ion release. Dent Mater J 2024; 43:1-10. [PMID: 38220163 DOI: 10.4012/dmj.2023-132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This systematic review investigates the effectiveness of calcium and phosphate ions release on the bioactivity and remineralization potential of glass ionomer cement (GIC). Electronic databases, including PubMed-MEDLINE, Scopus, and Web of Science, were systematically searched according to PRISMA guidelines. This review was registered in the PROSPERO database. Five eligible studies on modifying GIC with calcium and phosphate ions were included. The risk of bias was assessed using the RoBDEMAT tool. The incorporation of these ions into GIC enhanced its bioactivity and remineralization properties. It promoted hydroxyapatite formation, which is crucial for remineralization, increased pH and inhibited cariogenic bacteria growth. This finding has implications for the development of more effective dental materials. This can contribute to improved oral health outcomes and the management of dental caries, addressing a prevalent and costly oral health issue. Nevertheless, comprehensive longitudinal investigations are needed to evaluate the clinical efficacy of this GIC's modification.
Collapse
Affiliation(s)
- Nozimjon Tuygunov
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
| | - Zahra Khairunnisa
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
| | - Noor Azlin Yahya
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| | - Azwatee Abdul Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| | - Myrna Nurlatifah Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| | | | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| |
Collapse
|
10
|
Kantovitz KR, Carlos NR, Silva IAPS, Braido C, Costa BC, Kitagawa IL, Nociti-Jr FH, Basting RT, de Figueiredo FKP, Lisboa-Filho PN. TiO 2 nanotube-based nanotechnology applied to high-viscosity conventional glass-ionomer cement: ultrastructural analyses and physicochemical characterization. Odontology 2023; 111:916-928. [PMID: 36917400 DOI: 10.1007/s10266-023-00799-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
This study characterized TiO2 nanotube (TiO2-nt) ultrastructure and morphology, and the physicochemical impact on high-viscosity conventional glass-ionomer cement (GIC). TiO2-nt was synthesized by the alkaline method (n = 3), assessed by scanning (SEM) and transmission electron microscope (TEM), and was added (3%, 5%, 7%-in weight) to KM (Ketac Molar EasyMix™). Analyses included: SEM; Energy-dispersive spectroscopy (EDS); Raman spectroscopy (RAMAN); Setting time with Gillmore needles (ST); Color (Co); Radiopacity (XR); Water sorption (WS); and solubility (SO). Quantitative data were submitted to ANOVA and Tukey's tests (chr = 0.05). External and internal TiO2-nt diameters were 11 ± 2 nm and 6 ± 0 nm, respectively. Data analyses showed: (i) TiO2-nt present into KM matrix, with a concentration-dependent increase of Ti levels into KM, (ii) physical interaction between KM and TiO2-nt, (iii) longer initial ST for the 7% group compared to KM and 3% groups (p ≤ 0.01), (iv) decreased luminosity and yellowness for the 5% and 7% groups, (v) 36% greater radiopacity for the 5% group compared to enamel, dentin, and KM, and (vi) lower SO values for the 5% group, with no significant differences on WS across the groups. TiO2-nt displayed physical interaction with KM matrix, and also modified SO, XR and Co, without affecting ST. This study provides information on the potential impact of TiO2-nt on GIC performance. TiO2-nt may be proposed to boost confidence among dental surgeons in terms of GIC's handling characteristics, success rate and differential diagnostic.
Collapse
Affiliation(s)
| | - Natália Russo Carlos
- Faculdade São Leopoldo, SLMANDIC, Rua José Rocha Junqueira, 13, Campinas, SP, 13045-755, Brazil
| | | | - Caroline Braido
- Pediatric Division, Department of Health Sciences, Orthodontics and Pediatric Dentistry, Piracicaba Dental School, University of Campinas, UNICAMP, Piracicaba, SP, Brazil
| | - Bruna Carolina Costa
- Department of Physics, School of Science, São Paulo State University, UNESP, Bauru, SP, Brazil
| | - Igor Lebedenco Kitagawa
- Federal Institute of Education, Science and Technology of São Paulo, IFSP, Birigui, SP, Brazil
| | - Francisco Humberto Nociti-Jr
- Faculdade São Leopoldo, SLMANDIC, Rua José Rocha Junqueira, 13, Campinas, SP, 13045-755, Brazil
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, UNICAMP, Piracicaba, SP, Brazil
| | - Roberta Tarkany Basting
- Faculdade São Leopoldo, SLMANDIC, Rua José Rocha Junqueira, 13, Campinas, SP, 13045-755, Brazil
| | | | | |
Collapse
|
11
|
Tsolianos I, Nikolaidis AK, Koulaouzidou EA, Achilias DS. An Evaluation of Experimental Calcium Ion-Leachable Nanocomposite Glass Ionomer Cements. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2690. [PMID: 37836331 PMCID: PMC10574207 DOI: 10.3390/nano13192690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Glass ionomer cements (GICs) are among the main restorative dental materials used broadly in daily clinical practice. The incorporation of clay nanoparticles as reinforcing agents is one potential approach to improving GIC properties. This study aims to investigate whether the incorporation of calcium-modified clay (Ca-clay) nanoparticles in conventional GICs alters their structural characteristics, along with their physicochemical and mechanical properties. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were performed to assess the surface characterization of GIC nanocomposites, whereas a setting reaction was carried out via an attenuated total reflection Fourier transform infrared spectrometer (ATR-FTIR). A universal testing machine was used for compression tests, while calcium ion release was quantified using inductively coupled plasma optical emission spectrometry (ICP-OES). GIC composite groups reinforced with Ca-clay were found to release a fine amount of calcium ions (5.06-9.91 ppm), with the setting reaction being unaffected for low Ca-clay loadings. The median compressive strength of 3 wt% in the Ca-clay group (68.97 MPa) was nearly doubled compared to that of the control group (33.65 MPa). The incorporation of Ca-clay nanoparticles in GICs offers a promising alternative among dental restorative materials regarding their chemical and mechanical properties.
Collapse
Affiliation(s)
- Ioannis Tsolianos
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece; (I.T.); (E.A.K.)
| | - Alexandros K. Nikolaidis
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece; (I.T.); (E.A.K.)
| | - Elisabeth A. Koulaouzidou
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece; (I.T.); (E.A.K.)
| | - Dimitris S. Achilias
- Laboratory of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
12
|
Nicholson JW, Sidhu SK, Czarnecka B. Fluoride exchange by glass-ionomer dental cements and its clinical effects: a review. Biomater Investig Dent 2023; 10:2244982. [PMID: 37615013 PMCID: PMC10444020 DOI: 10.1080/26415275.2023.2244982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
The topic of fluoride release and uptake by glass-ionomer (glass polyalkenoate) dental cements is reviewed. The study was based on a literature search carried out using PubMed. The main key words used were glass-ionomer and fluoride, and further refinements were made by adding the keywords anti-microbial, anti-caries and remineralization. Papers were selected from the initial search, which concentrated on fundamental aspects of fluoride release, including kinetics and the influence of the cement composition, and resulting clinical performance against caries. Other relevant papers were cited where they added useful and relevant data. From these published papers, it was possible to explain the detailed mechanism of fluoride release by glass-ionomer cements and also its uptake. Fluoride release has been shown to be a two-step process. In neutral solutions, the steps can be divided into early wash-out and long-term diffusion. In acid conditions, the early wash-out remains, though with greater amounts of fluoride released, and the long-term release becomes one of slow dissolution. The effect of fluoride on the viability of oral micro-organisms has been described, and glass-ionomers have been shown to release sufficient fluoride to reduce the size and viability of adjacent populations of oral bacteria. The effect of low levels of fluoride on the remineralization of tooth tissue has been considered. Levels needed to increase remineralization are much lower than those needed to adversely affect oral bacteria, from which we conclude that glass-ionomers release sufficient fluoride to promote remineralization. Despite this, there remains uncertainty about their overall contribution to sound oral health, given the widespread use of other sources of fluoride, such as toothpastes.
Collapse
Affiliation(s)
- John W. Nicholson
- Dental Materials Unit, Bart’s and the London Institute of Dentistry, Queen Mary University of London, London, UK
- Bluefield Centre for Biomaterials, London, UK
| | - Sharanbir K. Sidhu
- Centre for Oral Bioengineering, Institute of Dentistry, Bart’s & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Beata Czarnecka
- Department of Biomaterials and Experimental Dentistry, University of Medical Sciences, Poznań, Poland
| |
Collapse
|
13
|
Potiprapanpong W, Naruphontjirakul P, Khamsuk C, Channasanon S, Toneluck A, Tanodekaew S, Monmaturapoj N, Young AM, Panpisut P. Assessment of Mechanical/Chemical Properties and Cytotoxicity of Resin-Modified Glass Ionomer Cements Containing Sr/F-Bioactive Glass Nanoparticles and Methacrylate Functionalized Polyacids. Int J Mol Sci 2023; 24:10231. [PMID: 37373383 DOI: 10.3390/ijms241210231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
This study prepared low-toxicity, elemental-releasing resin-modified glass ionomer cements (RMGICs). The effect of 2-hydroxyethyl methacrylate (HEMA, 0 or 5 wt%) and Sr/F-bioactive glass nanoparticles (Sr/F-BGNPs, 5 or 10 wt%) on chemical/mechanical properties and cytotoxicity were examined. Commercial RMGIC (Vitrebond, VB) and calcium silicate cement (Theracal LC, TC) were used as comparisons. Adding HEMA and increasing Sr/F-BGNPs concentration decreased monomer conversion and enhanced elemental release but without significant effect on cytotoxicity. Rising Sr/F-BGNPs reduced the strength of the materials. The degree of monomer conversion of VB (96%) was much higher than that of the experimental RMGICs (21-51%) and TC (28%). The highest biaxial flexural strength of experimental materials (31 MPa) was significantly lower than VB (46 MPa) (p < 0.01) but higher than TC (24 MPa). The RMGICs with 5 wt% HEMA showed higher cumulative fluoride release (137 ppm) than VB (88 ppm) (p < 0.01). Unlike VB, all experimental RMGICs showed Ca, P, and Sr release. Cell viability in the presence of extracts from experimental RMGICs (89-98%) and TC (93%) was significantly higher than for VB (4%). Experimental RMGICs showed desirable physical/mechanical properties with lower toxicity than the commercial material.
Collapse
Affiliation(s)
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Chutikarn Khamsuk
- Assistive Technology and Medical Devices Research Center (A-MED), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Somruethai Channasanon
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Arnit Toneluck
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand
| | - Siriporn Tanodekaew
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Naruporn Monmaturapoj
- Assistive Technology and Medical Devices Research Center (A-MED), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Anne M Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
14
|
Magalhães GDAP, Thomson JJ, Smoczer C, Young LA, Matos AO, Pacheco RR, Souza MT, Zanotto ED, Puppin Rontani RM. Effect of Biosilicate ® Addition on Physical-Mechanical and Biological Properties of Dental Glass Ionomer Cements. J Funct Biomater 2023; 14:302. [PMID: 37367266 DOI: 10.3390/jfb14060302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
This study investigated the influence of incorporating Biosilicate® on the physico-mechanical and biological properties of glass ionomer cement (GIC). This bioactive glass ceramic (23.75% Na2O, 23.75% CaO, 48.5% SiO2, and 4% P2O5) was incorporated by weight (5%, 10%, or 15%) into commercially available GICs (Maxxion R and Fuji IX GP). Surface characterization was made by SEM (n = 3), EDS (n = 3), and FTIR (n = 1). The setting and working (S/W time) times (n = 3) and compressive strength (CS) were analyzed (n = 10) according to ISO 9917-1:2007. The ion release (n = 6) was determined and quantified by ICP OES and by UV-Vis for Ca, Na, Al, Si, P, and F. To verify cell cytotoxicity, stem cells from the apical papilla (SCAP) were exposed to eluates (n = 3, at a ratio of 1.8 cm2/mL) and analyzed 24 h post-exposure. Antimicrobial activity against Streptococcus mutans (ATCC 25175, NCTC 10449) was analyzed by direct contact for 2 h (n = 5). The data were submitted for normality and lognormality testing. One-way ANOVA and Tukey's test were applied for the working and setting time, compressive strength, and ion release data. Data from cytotoxicity and antimicrobial activity were submitted for Kruskal-Wallis' testing and Dunn's post hoc test (α = 0.05). Among all experimental groups, only those with 5% (wt) of Biosilicate® showed better surface quality. Only M5% showed a comparable W/S time to the original material (p = 0.7254 and p = 0.5912). CS was maintained for all Maxxion R groups (p > 0.0001) and declined for Fuji IX experimental groups (p < 0.0001). The Na, Si, P, and F ions released were significantly increased for all Maxxion R and Fuji IX groups (p < 0.0001). Cytotoxicity was increased only for Maxxion R with 5% and 10% of Biosilicate®. A higher inhibition of S. mutans growth was observed for Maxxion R with 5% of Biosilicate® (less than 100 CFU/mL), followed by Maxxion R with 10% of Biosilicate® (p = 0.0053) and Maxxion R without the glass ceramic (p = 0.0093). Maxxion R and Fuji IX presented different behaviors regarding Biosilicate® incorporation. The impacts on physico-mechanical and biological properties were different depending on the GIC, but therapeutic ion release was increased for both materials.
Collapse
Affiliation(s)
- Gabriela de Alencar Pinto Magalhães
- Department of Health Sciences and Pediatric Dentistry, Pediatric Division, Piracicaba Dental School, UNICAMP, State University of Campinas, Piracicaba 13414-903, Brazil
| | - Joshua J Thomson
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA
| | - Cristine Smoczer
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA
| | - Laura Ann Young
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA
| | - Adaias O Matos
- Division of Clinical Essentials and Simulation, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA
| | - Rafael Rocha Pacheco
- Department of Restorative Sciences, Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Maria Trevelin Souza
- Vitreous Materials Laboratory, Department of Materials Engineering, Center for Research, Education and Technology in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil
| | - Edgar Dutra Zanotto
- Vitreous Materials Laboratory, Department of Materials Engineering, Center for Research, Education and Technology in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil
| | - Regina Maria Puppin Rontani
- Department of Health Sciences and Pediatric Dentistry, Pediatric Division, Piracicaba Dental School, UNICAMP, State University of Campinas, Piracicaba 13414-903, Brazil
| |
Collapse
|
15
|
Mangal U, Kang TY, Jung JW, Kim JY, Seo JY, Cha JY, Lee KJ, Yu HS, Kim KM, Kim JM, Kwon JS, Choi SH. Polybetaine-enhanced hybrid ionomer cement shows improved total biological effect with bacterial resistance and cellular stimulation. Biomater Sci 2023; 11:554-566. [PMID: 36472228 DOI: 10.1039/d2bm01428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Hybrid ionomer cements (HICs) are aesthetic polyelectrolyte cements that have been modified with a resin. The setting of HICs occurs by both monomer polymerization and an acid-base reaction. In addition, HICs contain a resin, which is substituted for water. Thus, the competition between the setting reactions and reduced water content inherently limits polysalt formation and, consequently the bioactive interactions. In this study, we explored the effects of polybetaine zwitterionic derivatives (mZMs) on the augmentation of the bioactive response of HICs. The polybetaines were homogenized into an HIC in different proportions (α, β, and γ) at 3% w/v. Following basic characterization, the bioactive response of human dental pulp stem cells (hDPSCs) was evaluated. The augmented release of the principal constituent ions (strontium, silica, and fluoride) from the HIC was observed with the addition of the mZMs. Modification with α-mZM elicited the most favorable bioactive response, namely, increased ion elution, in vitro calcium phosphate precipitation, and excellent biofouling resistance, which deterred the growth of the bridging species of Veillonella. Moreover, α-mZM resulted in a significant increase in the hDPSC response, as confirmed by a significant increase (p < 0.05) in alizarin red staining. The results of mRNA expression tests, performed using periodically refreshed media, showed increased and early peak expression levels for RUNX2, OCN, and OPN in the case of α-mZM. Based on the results of the in vitro experiments, it can be concluded that modification of HICs with polybetaine α-mZM can augment the overall biological response.
Collapse
Affiliation(s)
- Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Tae-Yun Kang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Ju Won Jung
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. .,Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, South Korea.
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. .,BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Hyung-Seog Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Jin-Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, South Korea.
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. .,BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. .,BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
16
|
Kim JY, Choi W, Mangal U, Seo JY, Kang TY, Lee J, Kim T, Cha JY, Lee KJ, Kim KM, Kim JM, Kim D, Kwon JS, Hong J, Choi SH. Multivalent network modifier upregulates bioactivity of multispecies biofilm-resistant polyalkenoate cement. Bioact Mater 2022; 14:219-233. [PMID: 35310353 PMCID: PMC8897648 DOI: 10.1016/j.bioactmat.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woojin Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Tae-Yun Kang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Joohee Lee
- Johns Hopkins University, 3400 N. Charles St., Mason Hall, Baltimore, MD 21218, USA
| | - Taeho Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jin-Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry, Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae-Sung Kwon
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
17
|
Morais AMDS, Pereira YMR, Souza-Araújo IJD, Silva DF, Pecorari VGA, Gomes OP, Nociti-Júnior FH, Puppin-Rontani RM, Vieira-Junior WF, Lisboa-Filho PN, Kantovitz KR. TiO2 nanotube-containing glass ionomer cements display reduced aluminum release rates. Braz Oral Res 2022; 36:e097. [PMID: 35830141 DOI: 10.1590/1807-3107bor-2022.vol36.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Titanium dioxide nanotubes (TiO2-nts) were incorporated into a glass ionomer cement (GIC) with improved mechanical properties and antibacterial activity. The aims of the present in vitro study were to define the elemental characterization, aluminum (Al) release rate, and initial working time for GIC reinforced with TiO2-nts, in an experimental caries model. TiO2-nts were incorporated into GIC powder components at 5% by weight, and compared with unblended GIC. Experimental approaches used energy-dispersive spectrometry (EDS), atomic absorption spectrophotometry (AAS), and brightness loss to define surface element properties, Al release rates, and initial working time, respectively. Statistical analysis was performed by 2-way ANOVA, Tukey's test, generalized linear models, and Student's t test (a = 0.05). EDS data analysis revealed that TiO2-nts incorporated into GIC had no significant impact on the typical elemental composition of GICs in an in vitro caries model. Regarding the demineralizing solution, GIC with TiO2-nt significantly decreased the Al release rate, compared with the control group (p < 0.0001). Moreover, TiO2-nt incorporated into GIC did not alter the initial working time of the material (p > 0.05). These findings add information to our scientific body of knowledge concerning the potential impact of TiO2-nt on the performance of conventional GICs.
Collapse
Affiliation(s)
- Ana Mara da Silva Morais
- Faculdade São Leopoldo Mandic - SLMandic, School of Dentistry, Dental Material Area, Campinas, SP, Brazil
| | | | - Isaac Jordão de Souza-Araújo
- University of Campinas - Unicamp, Piracicaba Dental School, Department of Restorative Dentistry, Piracicaba, SP, Brazil
| | - Daniel Furtado Silva
- Federal University of Paraíba - UFPB, School of Dentistry, Restorative Dentistry Area, João Pessoa, PB, Brazil
| | | | - Orisson Ponce Gomes
- São Paulo State University - Unesp, School of Sciences, Department of Physics, Bauru, SP, Brazil
| | | | - Regina Maria Puppin-Rontani
- University of Campinas - Unicamp, Piracicaba Dental School, Department of Pediatric Dentistry, Piracicaba, SP, Brazil
| | | | | | - Kamila Rosamilia Kantovitz
- Faculdade São Leopoldo Mandic - SLMandic, School of Dentistry, Dental Material Area, Campinas, SP, Brazil
| |
Collapse
|
18
|
Monomer Conversion, Dimensional Stability, Biaxial Flexural Strength, Ion Release, and Cytotoxicity of Resin-Modified Glass Ionomer Cements Containing Methacrylate-Functionalized Polyacids and Spherical Pre-Reacted Glass Fillers. Polymers (Basel) 2021; 13:polym13162742. [PMID: 34451281 PMCID: PMC8399068 DOI: 10.3390/polym13162742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to prepare RMGICs for pulp protection that contain polyacids functionalized with methacrylate groups (CMs) to enable light-activated polymerization without the need for toxic 2-hydroxyethyl methacrylate (HEMA) monomers. The effects of using CM liquids with 0 or 5 wt% HEMA on the physical/mechanical properties and cytotoxicity of the experimental RMGICs were assessed. Spherical pre-reacted glass fillers (SPG) were used as the powder phase. The experimental RMGICs were prepared by mixing SPG with CM liquid (0 wt% HEMA, F1) or CMH liquid (5 wt% HEMA, F2). Commercial materials (Vitrebond, VB; TheraCal LC, TC) were used for the comparisons. The degree of monomer conversion and fluoride release of both F1 and F2 were significantly lower than those of VB. F1 showed comparable biaxial flexural strength with VB but higher strength than TC. The dimensional stability (mass/volume changes) of the experimental materials was comparable with that of the commercial materials. F1 and F2 exhibited higher Sr/Ca ion release and relative cell viability than VB. The use of CMH liquid reduced the strength but enhanced the fluoride release of the experimental RMGICs. In conclusion, the experimental RMGICs showed comparable strength but lower cytotoxicity compared to the commercial RMGICs. These novel materials could be used as alternative materials for pulp protection.
Collapse
|