1
|
Nogueira DMB, Rosso MPDO, Santos PSDS, Sousa-Neto MD, Silva-Sousa AC, Soares CT, Reis CHB, Rossi JDO, Bueno CRDS, Buchaim DV, Buchaim RL, Zangrando MSR. Biological Behavior of Bioactive Glasses SinGlass (45S5) and SinGlass High (F18) in the Repair of Critical Bone Defects. Biomolecules 2025; 15:112. [PMID: 39858506 PMCID: PMC11763790 DOI: 10.3390/biom15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
This study evaluated the osteogenic potential of the bioactive glasses SinGlass (45S5) and SinGlass High (F18) in regenerating critical bone defects in rat calvaria. Both biomaterials promoted new bone formation around the particles, with the SinGlass High (F18) group exhibiting a higher rate of bone maturation. Histomorphological and birefringence analyses revealed better organization of the newly formed bone in the biomaterial-treated groups, and immunohistochemistry indicated the expression of osteogenic markers such as osteocalcin, immunostaining for bone morphogenetic protein 2 (BMP 2), and immunostaining for bone morphogenetic protein 4 (BMP 4). Microtomography computadorized (Micro-CT) revealed centripetal bone formation in both groups, with greater integration of the particles into the surrounding bone tissue. The superior performance of SinGlass High (F18) was attributed to its higher potassium and magnesium content, which enhance osteoconductivity. After 42 days, the SinGlass High (F18) group showed the highest percentage of new bone formation, in line with previous studies. Although our results are promising, the limited follow-up period and use of a single animal model highlight the need for further research to validate clinical applicability. SinGlass High (F18) appears to be a viable alternative to autografts in bone repair, with potential to improve tissue integration and accelerate recovery.
Collapse
Affiliation(s)
- Dayane Maria Braz Nogueira
- Department of Anatomy, Faculty of Higher Education of the Interior of São Paulo (FAIP), Marília 17512-130, Brazil;
| | | | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology, and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil;
| | - Manoel Damião Sousa-Neto
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil; (M.D.S.-N.); (A.C.S.-S.)
| | - Alice Corrêa Silva-Sousa
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil; (M.D.S.-N.); (A.C.S.-S.)
| | - Cleverson Teixeira Soares
- Lauro de Souza Lima Institute (ILSL), Anatomical Pathology Laboratory of Bauru (ANATOMED), Bauru 17034-971, Brazil;
| | | | | | | | - Daniela Vieira Buchaim
- Anatomy Department, Medical School, University Center of Adamantina (FAI), Adamantina 17800-000, Brazil;
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil
| | - Rogério Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | | |
Collapse
|
2
|
Shearer A, Molinaro M, Montazerian M, Sly JJ, Miola M, Baino F, Mauro JC. The unexplored role of alkali and alkaline earth elements (ALAEs) on the structure, processing, and biological effects of bioactive glasses. Biomater Sci 2024; 12:2521-2560. [PMID: 38530228 DOI: 10.1039/d3bm01338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bioactive glass has been employed in several medical applications since its inception in 1969. The compositions of these materials have been investigated extensively with emphasis on glass network formers, therapeutic transition metals, and glass network modifiers. Through these experiments, several commercial and experimental compositions have been developed with varying chemical durability, induced physiological responses, and hydroxyapatite forming abilities. In many of these studies, the concentrations of each alkali and alkaline earth element have been altered to monitor changes in structure and biological response. This review aims to discuss the impact of each alkali and alkaline earth element on the structure, processing, and biological effects of bioactive glass. We explore critical questions regarding these elements from both a glass science and biological perspective. Should elements with little biological impact be included? Are alkali free bioactive glasses more promising for greater biological responses? Does this mixed alkali effect show increased degradation rates and should it be employed for optimized dissolution? Each of these questions along with others are evaluated comprehensively and discussed in the final section where guidance for compositional design is provided.
Collapse
Affiliation(s)
- Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maziar Montazerian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Jessica J Sly
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Marta Miola
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
3
|
de la Torre GMO, Tatarková M, Netriová Z, Barlog M, Bertolla L, Hnatko M, Taveri G. Applying the Alkali-Activation Method to Encapsulate Silicon Nitride Particles in a Bioactive Matrix for Augmented Strength and Bioactivity. MATERIALS (BASEL, SWITZERLAND) 2024; 17:328. [PMID: 38255496 PMCID: PMC10817523 DOI: 10.3390/ma17020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
The development of bioactive ceramics still poses challenges in finding a good compromise between bioactivity and mechanical robustness. Moreover, a facile, low-cost and energy-saving synthesis technique is still needed. This study concerns the synthesis of a bioactive material by growing a bioactive Na-Ca-Mg-Si-based ceramic matrix produced using the alkali-activation method on silicon nitride (Si3N4) particles. This technique simultaneously forms the matrix precursor and functionalizes the Si3N4 particles' surface. The optimal strength-bioactivity compromise was found for the composition containing 60 wt.% Si3N4 and 40 wt.% of the matrix exhibiting good compressive strength of up to 110 MPa and extensive precipitation of hydroxyapatite on the sample surface after 7 days of soaking in simulated body fluid. This innovative approach merging strong non-oxide binary ceramics with the versatile and low-cost alkali-activation method holds great expectations for the future in biomaterials.
Collapse
Affiliation(s)
- Guido Manuel Olvera de la Torre
- Institute of Inorganic Chemistry (ICC), Slovak Academy of Sciences (SAV), Dubrávska cesta 9, SK-845 36 Bratislava, Slovakia; (G.M.O.d.l.T.); (M.T.); (Z.N.); (M.B.); (M.H.)
| | - Monika Tatarková
- Institute of Inorganic Chemistry (ICC), Slovak Academy of Sciences (SAV), Dubrávska cesta 9, SK-845 36 Bratislava, Slovakia; (G.M.O.d.l.T.); (M.T.); (Z.N.); (M.B.); (M.H.)
| | - Zuzana Netriová
- Institute of Inorganic Chemistry (ICC), Slovak Academy of Sciences (SAV), Dubrávska cesta 9, SK-845 36 Bratislava, Slovakia; (G.M.O.d.l.T.); (M.T.); (Z.N.); (M.B.); (M.H.)
| | - Martin Barlog
- Institute of Inorganic Chemistry (ICC), Slovak Academy of Sciences (SAV), Dubrávska cesta 9, SK-845 36 Bratislava, Slovakia; (G.M.O.d.l.T.); (M.T.); (Z.N.); (M.B.); (M.H.)
| | - Luca Bertolla
- Institute of Physics of Materials (IPM), Academy of Sciences of the Czech Republic (ASCR), Žižkova 22, 117 20 Brno, Czech Republic;
| | - Miroslav Hnatko
- Institute of Inorganic Chemistry (ICC), Slovak Academy of Sciences (SAV), Dubrávska cesta 9, SK-845 36 Bratislava, Slovakia; (G.M.O.d.l.T.); (M.T.); (Z.N.); (M.B.); (M.H.)
- Centre for Advanced Materials and Applications (CEMEA), Slovak Academy of Sciences (SAV), Dubrávska cesta 9, SK-845 36 Bratislava, Slovakia
| | - Gianmarco Taveri
- Institute of Inorganic Chemistry (ICC), Slovak Academy of Sciences (SAV), Dubrávska cesta 9, SK-845 36 Bratislava, Slovakia; (G.M.O.d.l.T.); (M.T.); (Z.N.); (M.B.); (M.H.)
- Centre for Advanced Materials and Applications (CEMEA), Slovak Academy of Sciences (SAV), Dubrávska cesta 9, SK-845 36 Bratislava, Slovakia
| |
Collapse
|