1
|
He L, McAndrew R, Barbu R, Gifford G, Halacoglu C, Drouin-Allaire C, Weber L, Kristensen LG, Gupta S, Chen Y, Petzold CJ, Allaire M, Li KH, Ralston CY, Gochin M. Structure and Interactions of HIV-1 gp41 CHR-NHR Reverse Hairpin Constructs Reveal Molecular Determinants of Antiviral Activity. J Mol Biol 2024; 436:168650. [PMID: 38866091 PMCID: PMC11297672 DOI: 10.1016/j.jmb.2024.168650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Engineered reverse hairpin constructs containing a partial C-heptad repeat (CHR) sequence followed by a short loop and full-length N-heptad repeat (NHR) were previously shown to form trimers in solution and to be nanomolar inhibitors of HIV-1 Env mediated fusion. Their target is the in situ gp41 fusion intermediate, and they have similar potency to other previously reported NHR trimers. However, their design implies that the NHR is partially covered by CHR, which would be expected to limit potency. An exposed hydrophobic pocket in the folded structure may be sufficient to confer the observed potency, or they may exist in a partially unfolded state exposing full length NHR. Here we examined their structure by crystallography, CD and fluorescence, establishing that the proteins are folded hairpins both in crystal form and in solution. We examined unfolding in the milieu of the fusion reaction by conducting experiments in the presence of a membrane mimetic solvent and by engineering a disulfide bond into the structure to prevent partial unfolding. We further examined the role of the hydrophobic pocket, using a hairpin-small molecule adduct that occluded the pocket, as confirmed by X-ray footprinting. The results demonstrated that the NHR region nominally covered by CHR in the engineered constructs and the hydrophobic pocket region that is exposed by design were both essential for nanomolar potency and that interaction with membrane is likely to play a role in promoting the required inhibitor structure. The design concepts can be applied to other Class 1 viral fusion proteins.
Collapse
Affiliation(s)
- Li He
- Department of Foundational Biomedical Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Ryan McAndrew
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Razvan Barbu
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Grant Gifford
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Cari Halacoglu
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Camille Drouin-Allaire
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lindsey Weber
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marc Allaire
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| | - Corie Y Ralston
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miriam Gochin
- Department of Foundational Biomedical Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA; Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Chiliveri SC, Louis JM, Best RB, Bax A. Real-time Exchange of the Lipid-bound Intermediate and Post-fusion States of the HIV-1 gp41 Ectodomain. J Mol Biol 2022; 434:167683. [PMID: 35700771 PMCID: PMC9378563 DOI: 10.1016/j.jmb.2022.167683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
The envelope glycoprotein gp41 of the HIV-1 virus mediates its entry into the host cell. During this process, gp41 undergoes large conformational changes and the energy released in the remodeling events is utilized to overcome the barrier associated with fusing the viral and host membranes. Although the structural intermediates of this fusion process are attractive targets for drug development, no detailed high-resolution structural information or quantitative thermodynamic characterization are available. By measuring the dynamic equilibrium between the lipid-bound intermediate and the post-fusion six-helical bundle (6HB) states of the gp41 ectodomain in the presence of bilayer membrane mimetics, we derived both the reaction kinetics and energies associated with these two states by solution NMR spectroscopy. At equilibrium, an exchange time constant of about 12 seconds at 38 °C is observed, and the post-fusion conformation is energetically more stable than the lipid-bound state by 3.4 kcal mol-1. The temperature dependence of the kinetics indicates that the folding occurs through a high-energy transition state which may resemble a 5HB structure. The energetics and kinetics of gp41 folding in the context of membrane bilayers provide a molecular basis for an improved understanding of viral membrane fusion.
Collapse
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. https://twitter.com/SaiChiliveri
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Zhou G, Chu S, Kohli A, Szoka FC, Gochin M. Biophysical studies of HIV-1 glycoprotein-41 interactions with peptides and small molecules - Effect of lipids and detergents. Biochim Biophys Acta Gen Subj 2020; 1864:129724. [PMID: 32889078 DOI: 10.1016/j.bbagen.2020.129724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND The hydrophobic pocket (HP) of HIV-1 glycoprotein-41 ectodomain is defined by two chains of the N-heptad repeat trimer, within the protein-protein interface that mediates 6HB formation. It is a potential target for inhibitors of viral fusion, but its hydrophobic nature and proximity to membrane in situ has precluded ready analysis of inhibitor interactions. METHODS We evaluated the sensitivity of 19F NMR and fluorescence for detecting peptide and small molecule binding to the HP and explored the effect of non-denaturing detergent or phospholipid as cosolvents and potential mimics of the membrane environment surrounding gp41. RESULTS Chemical shifts of aromatic fluorines were found to be sensitive to changes in the hydrogen bonding network that occurred when inhibitors transitioned from solvent into the HP or into ordered detergent micelles. Fluorescence intensities and emission maxima of autofluorescent compounds responded to changes in the local environment. CONCLUSIONS Gp41 - ligand binding occurred under all conditions, but was diminished in the presence of detergents. NMR and fluorescence studies revealed that dodecylphosphocholine (DPC) was a poor substitute for membrane in this system, while liposomes could mimic the membrane surroundings. GENERAL SIGNIFICANCE Our findings suggest that development of high potency small molecule binders to the HP may be frustrated by competition between binding to the HP and binding to the bilayer membrane.
Collapse
Affiliation(s)
- Guangyan Zhou
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, United States of America
| | - Shidong Chu
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, United States of America
| | - Aditya Kohli
- Department of Bioengineering and Therapeutic Sciences, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America
| | - Francis C Szoka
- Department of Bioengineering and Therapeutic Sciences, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America; Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America
| | - Miriam Gochin
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, United States of America; Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America.
| |
Collapse
|
4
|
Liu N, Girvin ME, Brenowitz M, Lai JR. Conformational and lipid bilayer-perturbing properties of Marburg virus GP2 segments containing the fusion loop and membrane-proximal external region/transmembrane domain. Heliyon 2019; 5:e03018. [PMID: 31890962 PMCID: PMC6926192 DOI: 10.1016/j.heliyon.2019.e03018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/04/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Fusion of host and viral membranes is a crucial step during infection by enveloped viruses. In the structurally-defined "class I″ viral glycoproteins, the formation of a highly stable α-helical bundle by the ectodomain of the fusion subunit (e.g., GP2 for Marburg virus, MARV) is postulated to provide the energetic driving force to overcome barriers associated with membrane fusion. Upon cell binding, the fusion subunit is proposed to form an extended intermediate that bridges both the viral and host membranes, and collapse of this extended intermediate brings the two membranes into proximity. While there is much high-resolution structural data available for prefusion and post-fusion structures of viral glycoproteins, little information is available about intermediate conformations especially in the context of the fusion loop/peptide (FL or FP) and membrane-proximal external region (MPER)/transmembrane (TM) segments. We present structural and functional studies on segments of MARV GP2 that encompass the FL and MPER/TM in detergent micelles and lipid bicelles. A protein that contains most elements of GP2 ("MGP2-full") is α-helical in membrane-mimicking environments and has pH-dependent membrane lytic activity. MGP2-full is monomeric under such conditions, contrasting with the trimeric species that has been described previously for MARV GP2 ectodomain in aqueous buffer. Variants of MARV GP2 containing the N- and C-terminal halves ("MGP2-FNL" and "MGP2-CMT", respectively) have similar properties. This work provides novel insight into conformational and membrane-perturbing properties of the MARV fusion subunit and how they may relate to viral membrane fusion.
Collapse
Affiliation(s)
- Nina Liu
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Mark E Girvin
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
5
|
Lee M, Morgan CA, Hong M. Fully hydrophobic HIV gp41 adopts a hemifusion-like conformation in phospholipid bilayers. J Biol Chem 2019; 294:14732-14744. [PMID: 31409642 DOI: 10.1074/jbc.ra119.009542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/04/2019] [Indexed: 11/06/2022] Open
Abstract
The HIV envelope glycoprotein mediates virus entry into target cells by fusing the virus lipid envelope with the cell membrane. This process requires large-scale conformational changes of the fusion protein gp41. Current understanding of the mechanisms with which gp41 induces membrane merger is limited by the fact that the hydrophobic N-terminal fusion peptide (FP) and C-terminal transmembrane domain (TMD) of the protein are challenging to characterize structurally in the lipid bilayer. Here we have expressed a gp41 construct that contains both termini, including the FP, the fusion peptide-proximal region (FPPR), the membrane-proximal external region (MPER), and the TMD. These hydrophobic domains are linked together by a shortened water-soluble ectodomain. We reconstituted this "short NC" gp41 into a virus-mimetic lipid membrane and conducted solid-state NMR experiments to probe the membrane-bound conformation and topology of the protein. 13C chemical shifts indicate that the C-terminal MPER-TMD is predominantly α-helical, whereas the N-terminal FP-FPPR exhibits β-sheet character. Water and lipid 1H polarization transfer to the protein revealed that the TMD is well-inserted into the lipid bilayer, whereas the FPPR and MPER are exposed to the membrane surface. Importantly, correlation signals between the FP-FPPR and the MPER are observed, providing evidence that the ectodomain is sufficiently collapsed to bring the N- and C-terminal hydrophobic domains into close proximity. These results support a hemifusion-like model of the short NC gp41 in which the ectodomain forms a partially folded hairpin that places the FPPR and MPER on the opposing surfaces of two lipid membranes.
Collapse
Affiliation(s)
- Myungwoon Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Chloe A Morgan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
6
|
Kwon B, Lee M, Waring AJ, Hong M. Oligomeric Structure and Three-Dimensional Fold of the HIV gp41 Membrane-Proximal External Region and Transmembrane Domain in Phospholipid Bilayers. J Am Chem Soc 2018; 140:8246-8259. [PMID: 29888593 DOI: 10.1021/jacs.8b04010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The HIV-1 glycoprotein, gp41, mediates fusion of the virus lipid envelope with the target cell membrane during virus entry into cells. Despite extensive studies of this protein, inconsistent and contradictory structural information abounds in the literature about the C-terminal membrane-interacting region of gp41. This C-terminal region contains the membrane-proximal external region (MPER), which harbors the epitopes for four broadly neutralizing antibodies, and the transmembrane domain (TMD), which anchors the protein to the virus lipid envelope. Due to the difficulty of crystallizing and solubilizing the MPER-TMD, most structural studies of this functionally important domain were carried out using truncated peptides either in the absence of membrane-mimetic solvents or bound to detergents and lipid bicelles. To determine the structural architecture of the MPER-TMD in the native environment of lipid membranes, we have now carried out a solid-state NMR study of the full MPER-TMD segment bound to cholesterol-containing phospholipid bilayers. 13C chemical shifts indicate that the majority of the peptide is α-helical, except for the C-terminus of the TMD, which has moderate β-sheet character. Intermolecular 19F-19F distance measurements of singly fluorinated peptides indicate that the MPER-TMD is trimerized in the virus-envelope mimetic lipid membrane. Intramolecular 13C-19F distance measurements indicate the presence of a turn between the MPER helix and the TMD helix. This is supported by lipid-peptide and water-peptide 2D 1H-13C correlation spectra, which indicate that the MPER binds to the membrane surface whereas the TMD spans the bilayer. Together, these data indicate that full-length MPER-TMD assembles into a trimeric helix-turn-helix structure in lipid membranes. We propose that the turn between the MPER and TMD may be important for inducing membrane defects in concert with negative-curvature lipid components such as cholesterol and phosphatidylethanolamine, while the surface-bound MPER helix may interact with N-terminal segments of the protein during late stages of membrane fusion.
Collapse
Affiliation(s)
- Byungsu Kwon
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Myungwoon Lee
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Alan J Waring
- Department of Medicine , Harbor-UCLA Medical Center , 1000 West Carson Street, Building RB2 , Torrance , California 90502 , United States
| | - Mei Hong
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
7
|
Schroeder S, Kaufman JD, Grunwald M, Walla PJ, Lakomek NA, Wingfield PT. HIV-1 gp41 transmembrane oligomerization monitored by FRET and FCS. FEBS Lett 2018; 592:939-948. [PMID: 29453892 DOI: 10.1002/1873-3468.13010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/21/2018] [Accepted: 02/11/2018] [Indexed: 11/08/2022]
Abstract
The HIV-1 envelope gp120/gp41 trimer mediates viral membrane fusion. After cluster of differentiation-4 recognition, gp120 detaches from the virus, exposing gp41 which triggers fusion. During the fusion process, gp41 may not remain trimeric, which could have functional importance. Here, we probe the reversible association of full length gp41 (minus the cytoplasmic domain) in detergent micelles (with probes attached to transmembrane domain) by fluorescence resonance energy transfer (FRET) with a μm dissociation constant. This is compared with other methods. A gp41-targeted fusion inhibitor must interfere with this transition, and monomeric, partially monomeric or trimeric states all present potential binding epitopes. The gp41 self-association is a valid drug target model and FRET, a potential high-throughput assay system, could be used to screen drug libraries.
Collapse
Affiliation(s)
| | - Joshua D Kaufman
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD, USA
| | | | - Peter J Walla
- Institute for Physical and Theoretical Chemistry, Technical University Braunschweig, Germany
| | - Nils-Alexander Lakomek
- Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Switzerland
| | - Paul T Wingfield
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Liang S, Ratnayake PU, Keinath C, Jia L, Wolfe R, Ranaweera A, Weliky DP. Efficient Fusion at Neutral pH by Human Immunodeficiency Virus gp41 Trimers Containing the Fusion Peptide and Transmembrane Domains. Biochemistry 2018; 57:1219-1235. [PMID: 29345922 DOI: 10.1021/acs.biochem.7b00753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV) is membrane-enveloped, and an initial infection step is joining/fusion of viral and cell membranes. This step is catalyzed by gp41, which is a single-pass integral viral membrane protein. The protein contains an ∼170-residue ectodomain located outside the virus that is important for fusion and includes the fusion peptide (FP), N-helix, loop, C-helix, and viral membrane-proximal external region (MPER). The virion initially has noncovalent complexes between three gp41 ectodomains and three gp120 proteins. A gp120 contains ∼500 residues and functions to identify target T-cells and macrophages via binding to specific protein receptors of the target cell membrane. gp120 moves away from the gp41 ectodomain, and the ectodomain is thought to bind to the target cell membrane and mediate membrane fusion. The secondary and tertiary structures of the ectodomain are different in the initial complex with gp120 and the final state without gp120. There is not yet imaging of gp41 during fusion, so the temporal relationship between the gp41 and membrane structures is not known. This study describes biophysical and functional characterization of large gp41 constructs that include the ectodomain and transmembrane domain (TM). Significant fusion is observed of both neutral and anionic vesicles at neutral pH, which reflects the expected conditions of HIV/cell fusion. Fusion is enhanced by the FP, which in HIV/cell fusion likely contacts the host membrane, and the MPER and TM, which respectively interfacially contact and traverse the HIV membrane. Initial contact with vesicles is made by protein trimers that are in a native oligomeric state that reflects the initial complex with gp120 and also is commonly observed for the ectodomain without gp120. Circular dichroism data support helical structure for the N-helix, C-helix, and MPER and nonhelical structure for the FP and loop. Distributions of monomer, trimer, and hexamer states are observed by size-exclusion chromatography (SEC), with dependences on solubilizing detergent and construct. These SEC and other data are integrated into a refined working model of HIV/cell fusion that includes dissociation of the ectodomain into gp41 monomers followed by folding into hairpins that appose the two membranes, and subsequent fusion catalysis by trimers and hexamers of hairpins. The monomer and oligomer gp41 states may therefore satisfy dual requirements for HIV entry of membrane apposition and fusion.
Collapse
Affiliation(s)
- S Liang
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - P U Ratnayake
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - C Keinath
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - L Jia
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - R Wolfe
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - A Ranaweera
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - D P Weliky
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Conformation and Trimer Association of the Transmembrane Domain of the Parainfluenza Virus Fusion Protein in Lipid Bilayers from Solid-State NMR: Insights into the Sequence Determinants of Trimer Structure and Fusion Activity. J Mol Biol 2018; 430:695-709. [PMID: 29330069 DOI: 10.1016/j.jmb.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023]
Abstract
Enveloped viruses enter cells by using their fusion proteins to merge the virus lipid envelope and the cell membrane. While crystal structures of the water-soluble ectodomains of many viral fusion proteins have been determined, the structure and assembly of the C-terminal transmembrane domain (TMD) remains poorly understood. Here we use solid-state NMR to determine the backbone conformation and oligomeric structure of the TMD of the parainfluenza virus 5 fusion protein. 13C chemical shifts indicate that the central leucine-rich segment of the TMD is α-helical in POPC/cholesterol membranes and POPE membranes, while the Ile- and Val-rich termini shift to the β-strand conformation in the POPE membrane. Importantly, lipid mixing assays indicate that the TMD is more fusogenic in the POPE membrane than in the POPC/cholesterol membrane, indicating that the β-strand conformation is important for fusion by inducing membrane curvature. Incorporation of para-fluorinated Phe at three positions of the α-helical core allowed us to measure interhelical distances using 19F spin diffusion NMR. The data indicate that, at peptide:lipid molar ratios of ~1:15, the TMD forms a trimeric helical bundle with inter-helical distances of 8.2-8.4Å for L493F and L504F and 10.5Å for L500F. These data provide high-resolution evidence of trimer formation of a viral fusion protein TMD in phospholipid bilayers, and indicate that the parainfluenza virus 5 fusion protein TMD harbors two functions: the central α-helical core is the trimerization unit of the protein, while the two termini are responsible for inducing membrane curvature by transitioning to a β-sheet conformation.
Collapse
|
10
|
Pancera M, Changela A, Kwong PD. How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design. Curr Opin HIV AIDS 2017; 12:229-240. [PMID: 28422787 PMCID: PMC5557343 DOI: 10.1097/coh.0000000000000360] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW An HIV-1 vaccine that elicits broadly neutralizing antibodies (bNAbs) remains to be developed. Here, we review how knowledge of bNAbs and HIV-1 entry mechanism is guiding the structure-based design of vaccine immunogens and immunization regimens. RECENT FINDINGS Isolation of bNAbs from HIV-1-infected donors has led to an unprecedented understanding of the sites of vulnerability that these antibodies target on the HIV-1 envelope (Env) as well as of the immunological pathways that these antibody lineages follow to develop broad and potent neutralization. Sites of vulnerability, however, reside in the context of diverse Env conformations required for HIV-1 entry, including a prefusion-closed state, a single-CD4-bound intermediate, a three-CD4-bound intermediate, a prehairpin intermediate and postfusion states, and it is not always clear which structural state optimally presents a particular site of vulnerability in the vaccine context. Furthermore, detailed knowledge of immunological pathways has led to debate among vaccine developers as to how much of the natural antibody-developmental pathway immunogens should mimic, ranging from only the recognized epitope to multiple antigens from the antibody-virus coevolution process. SUMMARY A plethora of information on bNAbs is guiding HIV-1-vaccine development. We highlight consideration of the appropriate structural context from the HIV-1-entry mechanism and extraordinary progress with replicating template B-cell ontogenies.
Collapse
Affiliation(s)
- Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Creating an Artificial Tail Anchor as a Novel Strategy To Enhance the Potency of Peptide-Based HIV Fusion Inhibitors. J Virol 2016; 91:JVI.01445-16. [PMID: 27795416 DOI: 10.1128/jvi.01445-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/05/2016] [Indexed: 11/20/2022] Open
Abstract
20 (enfuvirtide) and other peptides derived from the human immunodeficiency virus type 1 (HIV-1) gp41 C-terminal heptad repeat (CHR) region inhibit HIV fusion by binding to the hydrophobic grooves on the N-terminal heptad repeat (NHR) trimer and blocking six-helix-bundle (6-HB) formation. Several strategies focusing on the binding grooves of the NHR trimer have been adopted to increase the antiviral activity of the CHR peptides. Here, we developed a novel and simple strategy to greatly enhance the potency of the existing peptide-based HIV fusion inhibitors. First, we identified a shallow pocket adjacent to the groove in the N-terminal region of NHR trimer as a new drug target, and then we designed several short artificial peptides to fit this target. After the addition of IDL (Ile-Asp-Leu) to the C terminus of CHR peptide WQ or MT-WQ, the conjugated peptides, WQ-IDL and MT-WQ-IDL, showed much more potent activities than WQ and T20, respectively, in inhibiting HIV-1 IIIB infection. WQ-IDL and MT-WQ-IDL were also more effective than WQ in blocking HIV-1 Env-mediated membrane fusion and had higher levels of binding affinity with NHR peptide N46. We solved the crystal structure of the 6-HB formed by MT-WQ-IDL and N46 and found that, besides the N-terminal MT hook tail, the IDL tail anchor of MT-WQ-IDL also binds with the shallow hydrophobic pocket outside the groove of the NHR trimer, resulting in enhanced inhibition of HIV-1 fusion with the target cell. It is expected that this novel approach can be widely used to improve the potency of peptidic fusion inhibitors against other enveloped viruses with class I fusion proteins. IMPORTANCE The hydrophobic groove of the human immunodeficiency virus type 1 (HIV-1) gp41 NHR trimer has been known as the classic drug target to develop fusion inhibitors derived from the gp41 CHR. Here, we developed a novel and simple strategy to improve the existing peptide-based HIV fusion inhibitors. We identified a shallow pocket adjacent to the groove in the NHR trimer and added a short artificial peptide consisting of three amino acids (IDL) to the C terminus of a fusion inhibitor to fit this new target. The inhibition activity of this new conjugated peptide was significantly enhanced, by 77-fold, making it much more potent than T20 (enfuvirtide) and suggesting that the IDL tail can be adopted for optimizing existing HIV-1 CHR peptide fusion inhibitors. This new approach of identifying a potential binding pocket outside the traditional target and creating an artificial tail anchor can be widely applied to design novel fusion inhibitors against other class I enveloped viruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV).
Collapse
|
12
|
Yao H, Lee M, Liao SY, Hong M. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain. Biochemistry 2016; 55:6787-6800. [DOI: 10.1021/acs.biochem.6b00568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongwei Yao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Myungwoon Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shu-Yu Liao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Louis JM, Baber JL, Ghirlando R, Aniana A, Bax A, Roche J. Insights into the Conformation of the Membrane Proximal Regions Critical to the Trimerization of the HIV-1 gp41 Ectodomain Bound to Dodecyl Phosphocholine Micelles. PLoS One 2016; 11:e0160597. [PMID: 27513582 PMCID: PMC4981318 DOI: 10.1371/journal.pone.0160597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023] Open
Abstract
The transitioning of the ectodomain of gp41 from a pre-hairpin to a six-helix bundle conformation is a crucial aspect of virus-cell fusion. To gain insight into the intermediary steps of the fusion process we have studied the pH and dodecyl phosphocholine (DPC) micelle dependent trimer association of gp41 by systematic deletion analysis of an optimized construct termed 17-172 (residues 528 to 683 of Env) that spans the fusion peptide proximal region (FPPR) to the membrane proximal external region (MPER) of gp41, by sedimentation velocity and double electron-electron resonance (DEER) EPR spectroscopy. Trimerization at pH 7 requires the presence of both the FPPR and MPER regions. However, at pH 4, the protein completely dissociates to monomers. DEER measurements reveal a partial fraying of the C-terminal MPER residues in the 17-172 trimer while the other regions, including the FPPR, remain compact. In accordance, truncating nine C-terminal MPER residues (675-683) in the 17-172 construct does not shift the trimer-monomer equilibrium significantly. Thus, in the context of the gp41 ectodomain spanning residues 17-172, trimerization is clearly dependent on FPPR and MPER regions even when the terminal residues of MPER unravel. The antibody Z13e1, which spans both the 2F5 and 4E10 epitopes in MPER, binds to 17-172 with a Kd of 1 ± 0.12 μM. Accordingly, individual antibodies 2F5 and 4E10 also recognize the 17-172 trimer/DPC complex. We propose that binding of the C-terminal residues of MPER to the surface of the DPC micelles models a correct positioning of the trimeric transmembrane domain anchored in the viral membrane.
Collapse
Affiliation(s)
- John M. Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JL)); (JR)
| | - James L. Baber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Annie Aniana
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (JL)); (JR)
| |
Collapse
|
14
|
Mistry B, D'Orsogna MR, Webb NE, Lee B, Chou T. Quantifying the Sensitivity of HIV-1 Viral Entry to Receptor and Coreceptor Expression. J Phys Chem B 2016; 120:6189-99. [PMID: 27137677 DOI: 10.1021/acs.jpcb.6b02102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection by many viruses begins with fusion of viral and cellular lipid membranes, followed by entry of viral contents into the target cell and ultimately, after many biochemical steps, integration of viral DNA into that of the host cell. The early steps of membrane fusion and viral capsid entry are mediated by adsorption to the cell surface, and receptor and coreceptor binding. HIV-1 specifically targets CD4+ helper T-cells of the human immune system and binds to the receptor CD4 and coreceptor CCR5 before fusion is initiated. Previous experiments have been performed using a cell line (293-Affinofile) in which the expressions of CD4 and CCR5 concentration were independently controlled. After exposure to HIV-1 of various strains, the resulting infectivity was measured through the fraction of infected cells. To design and evaluate the effectiveness of drug therapies that target the inhibition of the entry processes, an accurate functional relationship between the CD4/CCR5 concentrations and infectivity is desired in order to more quantitatively analyze experimental data. We propose three kinetic models describing the possible mechanistic processes involved in HIV entry and fit their predictions to infectivity measurements, contrasting and comparing different outcomes. Our approach allows interpretation of the clustering of infectivity of different strains of HIV-1 in the space of mechanistic kinetic parameters. Our model fitting also allows inference of nontrivial stoichiometries of receptor and coreceptor binding and provides a framework through which to quantitatively investigate the effectiveness of fusion inhibitors and neutralizing antibodies.
Collapse
Affiliation(s)
- Bhaven Mistry
- Department of Biomathematics, University of California , Los Angeles, California 90095, United States
| | - Maria R D'Orsogna
- Department of Biomathematics, University of California , Los Angeles, California 90095, United States.,Department of Mathematics, California State University , Northridge, California 91330, United States
| | - Nicholas E Webb
- Department of Infectious Disease, Children's Hospital Los Angeles , Los Angeles, California 90027, United States
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Tom Chou
- Department of Biomathematics, University of California , Los Angeles, California 90095, United States.,Department of Mathematics, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Louis JM, Baber JL, Clore GM. The C34 Peptide Fusion Inhibitor Binds to the Six-Helix Bundle Core Domain of HIV-1 gp41 by Displacement of the C-Terminal Helical Repeat Region. Biochemistry 2015; 54:6796-805. [PMID: 26506247 DOI: 10.1021/acs.biochem.5b01021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformational transition of the core domain of HIV-1 gp41 from a prehairpin intermediate to a six-helix bundle is responsible for virus-cell fusion. Several inhibitors which target the N-heptad repeat helical coiled-coil trimer that is fully accessible in the prehairpin intermediate have been designed. One such inhibitor is the peptide C34 derived from the C-heptad repeat of gp41 that forms the exterior of the six-helix bundle. Here, using a variety of biophysical techniques, including dye tagging, size-exclusion chromatography combined with multiangle light scattering, double electron-electron resonance EPR spectroscopy, and circular dichroism, we investigate the binding of C34 to two six-helix bundle mimetics comprising N- and C-heptad repeats either without (core(SP)) or with (core(S)) a short spacer connecting the two. In the case of core(SP), C34 directly exchanges with the C-heptad repeat. For core(S), up to two molecules of C34 bind the six-helix bundle via displacement of the C-heptad repeat. These results suggest that fusion inhibitors such as C34 can target a continuum of transitioning conformational states from the prehairpin intermediate to the six-helix bundle prior to the occurrence of irreversible fusion of viral and target cell membranes.
Collapse
Affiliation(s)
- John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - James L Baber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
16
|
Affiliation(s)
- Rob Kaptein
- Bijvoet Centre, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | | |
Collapse
|